О кратном интеграле периодической функции нескольких переменных¹

Г. К. Соколова, С. С. Орлов (Иркутск, Россия)

98gal@mail.ru, orlov sergey@inbox.ru

Заметка посвящена исследованию свойства периодичности функций нескольких действительных переменных. Доказывается теорема о представлении кратного интеграла с переменными верхними пределами периодической функции многих действительных переменных, что является обобщением леммы о представлении интеграла периодической функции одной переменной в виде суммы линейной и периодической функции. Без ограничения общности, рассматриваются функции, имеющие в качестве множества периодов прямоугольную решётку.

Ключевые слова: периодическая функция многих действительных переменных, множество периодов, кратный интеграл.

Благодарности: работа выполнена при финансовой поддержке Правительства Иркутской области и РФФИ (проект № 20-41-385002 р_Наставник).

On the multiple integral of a periodic multivariate function¹

G. K. Sokolova, S. S. Orlov (Irkutsk, Russia)

98gal@mail.ru, orlov_sergey@inbox.ru

This note deals with the study of the periodicity property of a multivariate functions. Theorem on the representation of a multiple integral with variable upper boundaries of a periodic multivariate function is proved. This theorem is a generalization to the multidimensional case of the Lemma on the representation of the integral of a periodic function of one variable as a sum of linear and periodic functions. Without loss of generality, we consider functions with a rectangular lattice as the set of periods.

Keywords: periodic functions of several variables, set of periods, multiple integral.

Ранее в заметке [1] была описана структура множества P_f периодов периодической функции $f: \mathbb{R}^n \to \mathbb{R}$, и показано, что, не ограничивая общности, всякую периодическую функцию $f: \mathbb{R}^n \to \mathbb{R}$ можно считать периодической по первым m_1 переменным и постоянной по следующим m_2 переменным. Всюду далее будем полагать, что функция $f: \mathbb{R}^n \to \mathbb{R}$ является периодической по всем переменным с множеством периодов P_f решёткой $\Lambda(\bar{T}_1, \bar{T}_2, \dots, \bar{T}_n)$, порождённой векторами $\bar{T}_i = T_i \bar{e}_i$, система векторов $\{\bar{e}\}_{i=1}^n$ означает классический базис Галеля, и $i=1,2,\dots,n$.

Следующая теорема является обобщением леммы о представлении интеграла периодической функции одной переменной [2, стр. 57].

 $^{^1\}mathrm{C}$ татья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0)

 $^{^{1}}$ This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)

Теорема. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ непрерывна по совокупности всех переменных x_1, x_2, \ldots, x_n и является периодической с множеством периодов P_f , тогда имеет место равенство

$$\int_{P_{J_n}} f(t_1, t_2, \dots, t_n) dt_1 dt_2 \dots dt_n =
= \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \leq i_1 < \dots < i_k \leq n} \prod_{i \in J_n \setminus \{i_1, \dots, i_k\}} x_i \int_{P_{i_1, \dots, i_k}} S_{J_n \setminus \{i_1, \dots, i_k\}} dt_{i_1} dt_{i_2} \dots dt_{i_k} +
+ (-1)^{n-1} \prod_{i \in J_n} x_i S_{J_n} + \varepsilon(\bar{r}), \ \bar{r} \in \mathbb{R}^n, \ (1)$$

где $P_{i_1,...,i_k} = [0,x_{i_1}] \times ... \times [0,x_{i_k}]$ обозначает k-мерный параллелепипед, $J_n = \{1,2,\ldots,n\}$ — множество индексов, а выражение

$$S_{i_1,\dots,i_k} = \frac{1}{\mu(P_{\Lambda(\bar{T}_{i_1},\dots,\bar{T}_{i_k})})} \int_{P_{\Lambda(\bar{T}_{i_1},\dots,\bar{T}_{i_k})}} f(x_1,x_2,\dots,x_n) dx_{i_1} dx_{i_2} \dots dx_{i_k}$$

определяет среднее значение функции f по переменным x_{i_1}, \ldots, x_{i_k} на фундаментальном параллелепипеде $P_{\Lambda(\bar{T}_{i_1}, \ldots, \bar{T}_{i_k})}$ решётки $\Lambda(\bar{T}_{i_1}, \ldots, \bar{T}_{i_k})$ меры Жордана $\mu(P_{\Lambda(\bar{T}_{i_1}, \ldots, \bar{T}_{i_k})})$, функция $\varepsilon: \mathbb{R}^n \to \mathbb{R}$ периодическая с множеством периодов P_{ε} таким, что $P_f \subseteq P_{\varepsilon}$.

При n=1 приведённая выше теорема играет сущестенную роль при построении периодических решений обыкновенных дифференциальных уравнений [2], а также интегральных уравнений, например, [3]. Несмотря на громоздкий вид, формула (1) имеет простую структуру и напоминает формулу включения-исключения из теории множеств.

Доказательство заключается в проверке периодичности функции $\varepsilon: \mathbb{R}^n \to \mathbb{R}$ с периодами $\bar{T}_i = T_i \bar{\mathbf{e}}_i$, где, здесь и всюду далее, $i \in J_n$. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ периодическая с множеством периодов \mathbf{P}_f , и $j \in J_n$. Тогда имеет место соотношение

$$\varepsilon(\bar{r} + \bar{T}_j) - \varepsilon(\bar{r}) = \int_{P_{J_n \setminus \{j\}}} \int_0^{T_j} f(t_1, \dots, t_n) dt_1 dt_2 \dots dt_n -$$

$$-\sum_{k=1}^{n-2} (-1)^{k-1} \sum_{\substack{1 \leq i_1 < \dots < i_k \leq n \\ i_\ell \neq j, \ \ell \in J_n}} \prod_{i \in J_n \setminus \{i_1, \dots, i_k, j\}} x_i \int_0^{T_j} \int_{P_{i_1, \dots, i_k}} S_{J_n \setminus \{i_1, \dots, i_k, j\}} dt_{i_1} \dots dt_{i_k} -$$

$$-\sum_{k=1}^{n-2} (-1)^k \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ i_\ell \ne j, \ \ell \in J_n}} \prod_{i \in J_n \setminus \{i_1, \dots, i_k, j\}} x_i \int_0^{T_j} \int_{P_{i_1, \dots, i_k}} S_{J_n \setminus \{i_1, \dots, i_k, j\}} dt_{i_1} \dots dt_{i_k} - \int_0^{T_j} \int_{P_{J_n} \setminus \{j\}} f(t_1, \dots, t_n) dt_1 \dots dt_n - (-1)^{n-2} \prod_{i \in J_n \setminus \{j\}} x_i \int_0^{T_j} S_{J_n \setminus \{j\}} dt_j - \int_0^{T_j} \int_{P_{J_n} \setminus \{j\}} x_i \int_0^{T_j} S_{J_n \setminus \{j\}} dt_j = 0,$$

правая часть которого обращается в нуль, в силу выполнения равенства

$$\int_{P_{J_n\setminus\{j\}}} \int_{x_j}^{x_j+T_j} f(t_1,\ldots,t_n) dt_1 \ldots dt_n = \int_{P_{J_n\setminus\{j\}}} \int_{0}^{T_j} f(t_1,\ldots,t_n) dt_1 \ldots dt_n,$$

левая часть которого не зависит от переменной интегрирования x_j , что следует из периодичности с периодом T_j функции f по этой переменной и соотношения

$$\partial_{x_1 x_2 \dots x_n} \int_{P_{J_n \setminus \{j\}}} \int_{x_j}^{x_j + T_j} f(t_1, \dots, t_n) dt_1 \dots dt_n = f(\bar{r} + \bar{T}_j) - f(\bar{r}),$$

которое в силу непрерывности функции f по совокупности переменных x_1, x_2, \ldots, x_n является верным. Таким образом, периоды $\bar{T}_i = T_i \bar{\mathbf{e}}_i, i \in J_n$, порождающие множество периодов \mathbf{P}_f функции f являются периодами и функции ε , т. е. имеет место включение $\mathbf{P}_f \subseteq \mathbf{P}_{\varepsilon}$.

Отметим, что представление (1) инвариантно относительно выбора периодов по переменным $x_i, i \in J_n$ функции $f: \mathbb{R}^n \to \mathbb{R}$. Поскольку функция $f: \mathbb{R}^n \to \mathbb{R}$ непрерывна на \mathbb{R}^n по совокупности переменных, то функция $\varepsilon: \mathbb{R}^n \to \mathbb{R}$ имеет непрерывную всюду на \mathbb{R}^n смешанную производную $\partial_{x_1...x_n} \varepsilon$ и является решением следующей задачи типа Гурса

$$\partial_{x_1 \dots x_n} \varepsilon = f(\bar{r}) - \sum_{k=1}^{n-1} (-1)^{k-1} \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} S_{J_n \setminus \{i_1, \dots, i_k\}} - (-1)^{n-1} S_{J_n},$$

$$\varepsilon|_{x_j=0} = \varepsilon|_{x_i=0} = 0, \ i, j \in J_n,$$

которая является однозначно разрешимой [4, с. 298]. Отсюда немедленно следует, что npedcmaenenue (1) eduncmeenho. Если функция $f: \mathbb{R}^n \to \mathbb{R}$

тождественно постоянна или представима как сумма функций, которые зависят от каждой переменной с отдельности, т. е.

$$f(\bar{r}) = f_1(x_1) + \ldots + f_n(x_n),$$

тогда уравнение задачи типа Гурса окажется однородным $\partial_{x_1...x_n}\varepsilon = 0$, и рассматриваемая задача будет иметь тождественно нулевое решение. Иными словами, в этом случае, множество периодов функции $\varepsilon : \mathbb{R}^n \to \mathbb{R}$ совпадает со всем пространством \mathbb{R}^n .

Следующее утверждение является прямым следствием приведённой выше теоремы. Введём обозначение

$$F(\bar{r}) = \int_{P_{I_n}} f(t_1, t_2, \dots, t_n) dt_1 dt_2 \dots dt_n, \ \bar{r} \in \mathbb{R}^n,$$

где $P_{J_n}-n$ -мерный параллелепипед из теоремы 1.

Следствие. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ является непрерывной функцией по совокупности переменных x_1, x_2, \ldots, x_n и периодической с решёткой периодов P_f . Тогда для того чтобы кратный интеграл $F: \mathbb{R}^n \to \mathbb{R}$ был периодической функцией по всем переменным x_1, x_2, \ldots, x_n необходимо и достаточно, чтобы для каждого $i \in J_n$ выполнялось соотношение

$$\int_{0}^{T_{i}} f(x_{1}, \dots, x_{i-1}, t, \dots, x_{n}) dt = 0,$$

при всех $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in \mathbb{R}^{n-1}$. При этом $P_F = P_f$.

Приведённые результаты планируется применить к изучению вопроса существования периодических решений дифференциальных уравнений в частных производных, в том числе, и к построению множеств периодов найденных решений.

СПИСОК ЛИТЕРАТУРЫ

- [1] Соколова Г. К. О множестве периодов периодической функции нескольких переменных // Лобачевские чтения 2018: Труды математического центра имени Н.И. Лобачевского. Казань: Изд-во Казанского математического общества, Изд-во Академии наук РТ, 2018. Т. 56. С. 273–277.
- [2] Еругин Н. П. Книга для чтения по общему курсу дифференциальных уравнений. Минск: Наука и техника, 1979. 744 с.
- [3] *Малютина М. В., Орлов С. С.* Периодическое решение обобщенного интегрального уравнения Абеля первого рода // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. 2017. № 4 (44). С. 58–69.
- [4] Свешников А. Г., Боголюбов А. Н., Кравцов В. В. Лекции по математической физике. М.: Изд-во МГУ, 1993. 352 с.