О ПЕРИОДИЧЕСКИХ ФУНКЦИЯХ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ И ЧЕБЫШЁВСКИХ ПОДПРОСТРАНСТВАХ, ИМИ ЗАДАВАЕМЫХ В $L_1[0,1]^{n1}$ Б. Б. Беднов (Москва, Россия)

noriiii@inbox.ru

В комплексном пространстве $L_1[0,1]^n$ исследуется существование и единственность элемента наилучшего приближения в замыкании линейной оболочки экспонент со спектром из решётки в \mathbb{Z}^n .

Kлючевые слова: пространство L_1 , чебышёвское множество, периодические функтии

ON PERIODIC FUNCTIONS OF SEVERAL VARIABLES AND TCHEBYSHEV SUBSPACES DEFINED BY THEM IN $L_1[0,1]^{n_1}$ B. B. Bednov (Moskow, Russia)

noriiii@inbox.ru

There are investigated existense and uniqueness of the best approximation element in the closure of the linear shell of exponents with a spectrum from the sublattice of \mathbb{Z}^n in complex space $L_1[0,1]^n$.

Keywords: complex L_1 space, Tchebyshev sets, periodic functions.

Пусть $(X, \| \cdot \|)$ — банахово пространство. Подпространство $Y \subset X$ называется подпространством существования, если для каждого $x \in X$ найдётся такой элемент $y \in Y$, что $\|x-y\| = \inf_{z \in Y} \|x-z\|$. Любой такой элемент y для x называется ближайшим в Y, или элементом наилучшего приближения. Подпространство $Y \subset X$ называется подпространством единственности, если для каждого $x \in X$ существует не более одного элемента наилучшего приближения в Y. Подпространство $Y \subset X$ называется чебышёвским (в X), если Y есть и подпространство существования, и подпространство единственности в X, то есть для каждого $x \in X$ существует и единствен элемент наилучшего приближения в Y.

В 1940 году Дуб [1] доказал, что пространство Харди H_1 является чебышёвским подпространством в пространстве комплекснозначных суммируемых на [0,1] функций $L_1[0,1]$.

Обозначим $Y_{\Lambda} = \overline{\langle e^{2\pi i\lambda \mathbf{t}}\rangle}_{\lambda\in\Lambda}$ — замыкание линейной оболочки комплексных экспонент $e^{2\pi i\lambda \mathbf{t}}$ со спектром показателей λ из некоторого множества $\Lambda\subset\mathbb{Z}^n$ — подпространство из пространства $L_1[0,1]^n$ комплекснозначных функций n действительных переменных, суммируемых на $[0,1]^n$, $\mathbf{t}=(t_1,\ldots,t_n)\in[0,1]^n$.

 $^{^1}$ Работа поддержана РФФИ (проект № 18-01-00333) и Программой Президента РФ "Ведущие научные школы РФ" (грант НШ 6222.2018.1).

 $^{^{1}}$ This article is supported of RFBR (project № 18-01-00333) and Program of President RF "Leading scientific schools RF" (grant HIII 6222.2018.1).

Напомним, что пространство Харди H_1 изометрически изоморфно подпространству $\overline{\langle e^{2\pi int}\rangle}_{n\in\mathbb{N}}\subset L_1[0,1].$

В 1974 году Кахан [2] описал все чебышёвские подпространства Y_{Λ} в $L_1[0,1].$

Теорема А ([2]). Пусть $\Lambda \subset \mathbb{Z}$. Подпространство Y_{Λ} чебышёвское в $L_1[0,1]$ тогда и только тогда, когда Λ — бесконечная (хотя бы в одну сторону) арифметическая прогрессия с нечетной разностью.

Обобщением бесконечной арифметической прогрессии из \mathbb{Z} (из теорем Дуба и Кахана) на множество в \mathbb{Z}^n является подрешетка из \mathbb{Z}^n .

Пусть Λ — все целочисленные линейные комбинации n целочисленных векторов $\omega_1, \ldots, \omega_n \in \mathbb{Z}^n$, то есть $\Lambda = \Lambda(\omega_1, \ldots, \omega_n) = \{\lambda = (\lambda_1, \ldots, \lambda_n) \mid \lambda = k_1\omega_1 + \cdots + k_n\omega_n$ при $k_1, \ldots, k_n \in \mathbb{Z}, \omega_j \in \mathbb{Z}^n, j = 1, \ldots, n\}$. Такое множество Λ мы будем называть решёткой, или подрешёткой \mathbb{Z}^n . Число $\det T = |\det(\gamma_1, \ldots, \gamma_n)|$ называется определителем решётки T и не зависит от выбора базиса решётки T (см., напр. $[3, \Gamma n.1]$). Подрешётка Λ задаёт подпространство $Y_{\Lambda} = \overline{\langle e^{2\pi i \lambda t} \rangle_{\lambda \in \Lambda}}$ в пространстве $L_1[0,1]^n$.

Полярная решётка T^* (вообще говоря, не из \mathbb{Z}^n) к решётке T это решётка, состоящая из всех таких векторов γ^* , что для каждого $\gamma \in T$ скалярное произведение (γ^*, γ) есть целое число. При этом $\det T \det T^* = 1$ (см., напр. [3, гл.1, §5]).

Напомним, что функция $\phi: \mathbb{R}^n \to \mathbb{C}$ называется периодической, если $\phi(\mathbf{x}+\tau) = \phi(\mathbf{x})$ при $\tau \in T$, где T — решётка в \mathbb{R}^n , называемая решёткой периодов функции $\phi(\mathbf{x})$.

При линейно независимых $\omega_1, \ldots, \omega_n \in \mathbb{Z}^n$ решётке $\Lambda = \Lambda(\omega_1, \ldots, \omega_n)$ соответствует подпространство Y_{Λ} — подпространство периодических функций с решёткой периодов Λ^* .

Заметим, что решётке Λ с нулевым определителем соответствует подпространство Y_{Λ} , не являющееся подпространством единственности в $L_1[0,1]^n$.

Теорема. Пусть $\omega_1, \ldots, \omega_n \in \mathbb{Z}^n$, $\Lambda = \Lambda(\omega_1, \ldots, \omega_n)$. Подпространство Y_{Λ} чебышёвское в $L_1[0,1]^n$ тогда и только тогда, когда $\det \Lambda$ нечётен.

СПИСОК ЛИТЕРАТУРЫ

- [1] Doob J. L. A minimum problem in the theory of analytic functions // Duke Math. J. 1941. Vol. 8, \mathbb{N}_2 3. P. 413–424.
- [2] Kahane J. P. Best approximation in $L^1(T)$ // Bull. Amer. Math. Soc. 1974. Vol. 80, N_2 5. P. 788–804.
- [3] Касселс Дж. В. С. Введение в геометрию чисел. М.: Мир, 1965. 420 с.