ОБОРУДОВАНИЕ

для проведения палеомагнитных, петромагнитных и магнито-минералогических исследований в лаборатории Петрофизики

Статический мультичастотный измеритель магнитной восприимчивости - каппамост MFK1-FB (производство AGICO, Брно, Чехия).

Статический мультичастотный измеритель магнитной восприимчивости (каппамост) предназначен для лабораторных высокоточных измерений объёмной и удельной магнитной восприимчивости образцов горных пород (в том числе по образцам произвольной формы и объема), анизотропию магнитной восприимчивости, исследований зависимостей величины магнитной восприимчивости от интенсивности и частоты поля.

Прибор представляет сверхточный полностью автоматический мост индуктивности. Он оборудован автоматической системой обнуления (действительной и мнимой составляющих) и автоматической компенсацией теплового сдвига дисбаланса моста, а также автоматическим переключением соответствующего диапазона измерения. Микропроцессор управляет всеми функциями каппа-моста.

Основные технические характеристики:

<u>Размеры образца:</u> Цилиндр — диаметр 25.4 ± 1 мм, длина 22 ± 1 мм. Куб: 20x20x20 мм, 23x23x23 мм. Произвольные фрагменты до 40 см^3

<u>Рабочие частоты:</u> 976 Hz, 3904 Hz, 15616 Hz

<u>Интенсивность поля:</u> 2 - 700 А/м при 976 Hz, 2 - 350 А/м при 3904 Hz, 2 - 200 А/м при 15616 Hz

А/м при 3904 Hz, 2 - 200 А/м при 15616 Hz

<u>Диапазон измерений магнитной восприимчивости</u>: до 0.5 ед. СИ

<u>Чувствительность</u>: для магнитной восприимчивости: $3\cdot 10^{-8}$ ед. СИ, для анизотропии $2\cdot 10^{-8}$ ед. СИ.

Двухскоростные измерители остаточной намагниченности (спин-магнитометр) JR-6 (производство AGICO, Брно, Чехия).

В лаборатории установлены два измерителя остаточной намагниченности, предназначенных для измерения остаточной намагниченности горных пород с ручным изменением положения измеряемого образца. Чувствительность прибора позволяет получать палеомагнитную информацию по слабомагнитным осадочным породам, которая оставалась недоступной при использовании предыдущих поколений спин-магнитометров. В соответствии с необходимой точностью, можно измерять образец в двух, четырех, или шести положениях. Измеритель Остаточной Намагниченности состоит из набора, самая важная часть которого - пара катушек Гельмгольца и блок управления измерением. Принцип работы основан на вращении образца с постоянной угловой скоростью в блоке погрузки внутри пары катушек Гельмгольца. В катушках создаётся АС напряжение, амплитуда и фаза которого зависит от величины и направления остаточного вектора намагничивания. Прибор обеспечивает две скорости вращения, большую - для достижения максимальной чувствительности, и меньшую - для измерения слабых образцов. Все функции прибора управляются микропроцессором. Прибор автоматически выполняет тесты на условия ошибки.

Основные технические характеристики:


Размер образца:

Цилиндр: Диаметр 25.4 мм 2
25.0 мм. высота 22.0 мм 22.0

Цилиндр: Диаметр 25.4 мм 25.4 мм 25.0 мм, высота 22.0 мм 22.0 мм Куб: Длина грани 20.0 мм 20.0 мм Скорость вращения: Высокая 87.7 об/сек. Низкая 16.7 об/сек Диапазон измерения: до 12 500 А/м Чувствительность: 2 х 10-6 А/м (при высокой скорости)

Демагнитизатор (установка размагничивания) переменным полем LDA-3 AF (производство AGICO, Брно, Чехия).

Демагнитизатор служит для размагничивания образцов горных пород за счет смены магнитного поля с целью выделения стабильной компоненты естественной остаточной намагниченности. Процесс демагнитизации автоматизирован управляется Задаются параметры размагничивания: микропроцессором. следующие размагничивания, время размагничивания, скорость нарастания и убывания поля. Электрический ток для создания размагничивающего АГ поля, поступающий из сети, отфильтровывается таким образом, чтобы эффективно подавить высокие гармонические компоненты, которые могут производить паразитическое намагничивание.

Основные технические характеристики:

Защитный кожух: три коаксиальных цилиндра из пермаллоя (мю-металла)

Размер образца: куб с 20 мм гранями

цилиндр: 25,4 мм в диаметре 21-22 мм высотой

 $\frac{AF}{B}$ поле $\frac{P}{B}$ поле $\frac{P}{B}$ Размагничивания: от $\frac{Q}{B}$ от $\frac{Q}{B}$ до $\frac{Q}{B}$ мин

Установка для терморазмагничивания (печь Апарина) (производство Красноярск, Россия).

Установка служит для проведения магнитных температурных чисток образцов при палеомагнитных исследованиях с целью выделения стабильной компоненты естественной остаточной намагниченности. Установка представляет собой печь из немагнитного материала, которая вставлена в пять коаксиальных пермаллоевых цилиндров длиной 122 см, обеспечивающих немагнитное пространство внутри печи. Температура в печи контролируется термопарой и автоматическим регулятором.

Основные технические характеристики: Максимальная температура: 700°C Величина остаточного магнитного поля в печи: 50 нТл

Термомагнитный анализатор фракций ТАФ-2 (производство ООО «Орион», геофизическая обсерватория ОИФЗ РАН «Борок», п. Борок, Ярославская обл.).

Термомагнитный анализатор фракций предназначен для экспрессной диагностики видов ферромагнитных и железосодержащих парамагнитных минералов слабомагнитных В осадочных породах путем дифференциального термомагнитного Принцип работы прибора анализа. заключается В непрерывной регистрации намагниченности образца при нагреве образцов до температуры 800°С и последующем охлаждении в искусственном магнитном поле. качестве диагностических признаков

выступают точки Кюри (температуры, выше которой исчезают ферромагнитные свойства) или температуры фазовых переходов (уникальные для каждого минерала). Управление ТАФ-2 осуществляется компьютером, процедуры установки нуля и выбора диапазона измерений автоматизированы, прибор оснащен интерфейсом для цифровой регистрации данных на компьютере. С помощью установки ТАФ-1 можно диагностировать наличие в породах пирротина, пирита, сидерита, магнетита, маггемита, гематита, гидроокислов железа и некоторых других минералов. Важнейшими достоинствами при этом являются возможность диагностики тонкодисперсных минералов, экспрессность анализов и малый объем пробы.

Основные технические характеристики:

<u>Чувствительность по магнитному моменту:</u> 8E-10 A×м².

Максимальная масса образца: 0.2 г.

Максимальная величина магнитного поля: 520 кА/м.

Температура нагрева: от +25° до +750°C Скорость нагрева: 4°C / сек.

Установка магнитного насыщения (производство НИИ физики СГУ, Саратов)

Установка магнитного насыщения состоит из электромагнита, обеспечивающего постоянное магнитное поле, регулировочного блока, позволяющего регулировать

интенсивность электромагнита и амперметра. Установка предназначена для снятия параметров: остаточной намагниченности насыщения (Jrs), коэрцитивной силы (Hcr), поля насыщения (Hs).

Основные технические характеристики: Максимальная интенсивнось поля: 0.75 Тл Точность выстанвления интенсивности поля: 10-4 Тл

Лабораторные муфельные электропечи СНОЛ 6/11-В с программным регулированием температуры для проведения массовых термокаппаметрических исследований, то есть измерений магнитной восприимчивости после нагрева в

электропечи до 500°C в воздушной среде. Изначально немагнитный пирит при температурах около 500°C в окислительной превращается сильномагнитный среде В магнетит. Таким образом, вариации прироста магнитной восприимчивости ($dK = K_t - K_0$, где K_t - магнитная восприимчивость после нагрева (термокаппа), а K_0 – исходная магнитная восприимчивость) стратиграфическому ПО концентрации разрезу отражают новообразованного магнетита, которым можно судить о наличии пирита в породах.

Повышенные концентрации тонкодисперсного пирита в осадочных породах, как правило, являются надежным индикатором высокого содержания органического вещества в исходном осадке.

Измеритель остаточного поля (нанотеслометр) (производство ООО «Орион», геофизическая обсерватория ОИФЗ РАН «Борок», п. Борок, Ярославская обл.)

Измеритель предназначен для контроля величины интенсивности остаточного магнитного поля внутри установок для магнитных чисток температурой и переменным магнитным полем.

Портативные измерители магнитной восприимчивости КТ-6 (производство Брно, Чехия).

Малогабаритные измерители магнитной восприимчивости КТ-6 предназначены для быстрого измерения магнитной восприимчивости обнаженных горных пород, буровых кернов и крупных кусков горных пород в полевых условиях.

Основные технические характеристики: Чувствительность: 1·10⁻⁵ (ед. СИ) Диапазоны измерений с автоматическим переключением уровня точности: (9,99; 99,9; 999) от -999 до 9999·10⁻³ (ед. СИ) Рабочая частота: 10 кГц Сохранение данных до 70 измерений Источник питания: напряжением 9 В Рабочая температура: от -10°C до +55°C Размеры (диаметр х длина): 65 мм х 187 мм Вес, включая источник питания 0,35 кг

Портативные измерители магнитной восприимчивости КТ-10 (производство Брно, Чехия).

Обладает на порядок большей чувствительностью (по сравнению с КТ-6): $1 \cdot 10^{-6}$ (ед. СИ). Для выполнения измерений на неровной поверхности прибор КТ-10 может быть снабжен щупом, кроме того, прибор обеспечивает автоматическую коррекцию и отображение величины истинной магнитной восприимчивости.

Основные технические характеристики: Чувствительность: 0,000001 единиц СИ Диапазон измерения: 0,000001...0,99999 единиц СИ с автоматическим переключением диапазонов измерения

<u>Частота измерений:</u> 20 измерений в секунду в режиме сканирования (Scan)

Запоминающее устройство: до 500 измерений Источник питания: две алкалиновые батареи размера AA

Рабочая температура: -20...60°C

Размеры: 200×57×30 мм

Масса: 0.3 кг

Вспомогательное оборудование: электронные весы, электромагнитный сепаратор, сушильный шкаф, камнерезные станки.