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Рассмотрены объемные интегральные и интегродифференциальные уравнения, описываю-

щие стационарные собственные моды открытых диэлектрических резонаторов, конкретизиро-

ванные для цилиндрического случая. Предложены алгоритмы их решения. Численно итера-

ционными методами исследованы собственные колебания Н 01δ и Н 011 цилиндрического 

диэлектрического резонатора. 
 

Dielectric Resonators: The Integral and Integrodifferential Equations Methods 
 

M.V. Davidovich 
 

The volume integrodifferential and integral equations which are describing the stationary eigenmodes 

of open dielectric resonators have been considered and concretized for cylindrical case. The numeri-

cal algorithms for its solutions are proposed. The H 01δ and H 011 eigen oscillations of cylindrical 

dielectric resonator have been numerically investigated using the iteration technique. 

 
Введение 

Методам анализа диэлектрических резонаторов (ДР) посвя-

щено большое число работ (см., например, монографию [1] и 

приведенный в ней список литературы), при этом использова-

лись различные методы: приближенные эвристические (напри-

мер, метод магнитной стенки), теория возмущений (разложение 

по малому параметру) [2], метод частичных областей (МЧО), или 

сшивания, с получением поверхностных интегральных уравне-

ний (ПИУ) [1], метод ПИУ [3], метод объемного интегрального 

уравнения (ОИУ) [4]. Из них строгими являются методы ПИУ и 

ОИУ, причем последний является наиболее универсальным, по-

скольку позволяет анализировать неоднородные ДР произволь-

ной формы. Однако в литературе он достаточно полно не рас-

смотрен. В публикации [4] с помощью него анализируется мода 

H01δ однородного цилиндрического диэлектрического резонатора 

(ЦДР), причем в конечном итоге используется теория возмуще-

ний. Из-за сложности определения коэффициентов разложения 

МЧО для ЦДР так и не был строго реализован, а был заменен 

приближенным подходом [1], не позволяющим определять ра-

диационные добротности колебаний. 

В работе рассмотрены ОИУ и объемно-поверхностные ин-

тегродифференциальные уравнения (ИДУ) для произвольных 

анизотропных и неоднородных ДР, конкретизированные и чис-

ленно исследованные для ЦДР. 
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1. Интегральные и интегродифференциальные уравнения 

Открытый диэлектрический резонатор в 

виде диэлектрического тела объема V с про-

ницаемостью ( )r
r

ε̂ , ограниченного замкну-

той поверхностью S произвольной формы, 

описывается однородным объемным гипер-

сингулярным интегральным уравнением (ИУ) 
 

( ) ( )
( ) ( )[ ] ( ) .€€,

2

VdrEIrrrkG

krE

V

′′−′′−×

×+⋅∇∇=

∫
rrrrr

rr

ε
 (1) 

 

В уравнении (1) k c= ω / , ( ) =rkG
r

,  

( ) ( )rjkr
rr

−=
−

exp4
1

π , проницаемость ε€ 

может, вообще говоря, зависеть от частоты и 

быть тензором, соответственно чему I€ озна-

чает единичный тензор. Далее явные зависи-

мости от частоты (волнового числа k) для 

скалярной функции Грина G, проницаемости 

и электрического поля E
r

 будем для удобст-

ва опускать. Формальное внесение диффе-

ренциального оператора divgrad •≡∇∇⋅ , 

действующего в (1) на нештрихованные ко-

ординаты (координаты точки наблюдения), 

под интеграл приводит к появлению в ядре 

сильной неинтегрируемой особенности типа 
3−

′− rr
rr

, что делает невозможным приме-

нение кусочно-постоянных функций (или 

квадратурных формул) для непосредственно-

го численного решения. Получающийся ин-

теграл в обычном смысле расходится, и пра-

вую часть (1) следует понимать в обобщен-

ном смысле как распределение (обобщенную 

функцию) [5], а ИУ (1) можно трактовать как 

псевдоинтегральное. Операторы, соответст-

вующие ИУ (1), называют также псевдодиф-

ференциальными [5–7] . 

ИУ (1) определяет комплексные волно-

вые числа k (частоты колебаний) соответст-

вующего ДР, при этом зависимость прони-

цаемости от координат позволяет описывать 

большое разнообразие структур. Модифика-

ция ИУ (1) путем введения поверхностных 

электрических токов и объемного магнитно-

го тока поляризации делает возможным учет 

металлических экранов и магнитных свойств 

ДР. В целях компактности изложения эти 

задачи здесь не рассматриваются. Если про-

ницаемость однородна и может быть выне-

сена за знак интеграла, ИУ (1) существенно 

упрощается. Вместо ИУ (1) будем использо-

вать эквивалентное ему интегродифференци-

альное уравнение (ИДУ) [8]: 
 

( ) ( ) ( )[ ] ( ){

( ) ( )( ) ( )[ ]}
( )[ ] ( ) ( )( ) ( ) .€€

€€

€€2

SdrrGrErIr

VdrEIrrrG

rEIrrrGkrE

S

V

′′−∇ ′′′′−′+

+′′−′⋅∇ ′′−∇+

+′−′′−=

∫

∫

rrrrrrr

rrrrr

rrrrrrr

νε

ε

ε

(2) 

 

Термин ИДУ будем применять к уравнению, 

в котором на неизвестную функцию дейст-

вуют как операторы интегрирования, так и 

операторы дифференцирования, причем ее 

производные могут находиться как под зна-

ком интеграла, так и вне него. Последний 

случай сводится к первому формальным вве-

дением дельта-особенности в ядро. В [9] и в 

ряде других работ под ИДУ понимают урав-

нение типа (1), в котором дифференциаль-

ный оператор действует на интегральный 

оператор (интеграл). ИДУ (2) является син-

гулярным с интегрируемой особенностью. 

Его можно получить, используя, например, 

формулы Стреттона−Чу [9], или же непо-

средственно применяя векторные интеграль-

ные теоремы и перенося в (1) операции диф-

ференцирования с ядра на подынтегральную 

функцию [8]. Поскольку нормальная компо-

нента электрического поля имеет скачок на 

поверхности S, в поверхностном интеграле в 

формуле (2) следует взять ее внутреннее зна-

чение. Внешнее значение, соответствующее 

вакууму, будем обозначать символом «+», а 

внутреннее − соответственно как −≡ EE
rr

. 

Наличие скачка приводит к появлению на S 

поверхностной плотности связанного заряда 

( ) ( )[ ] ( )rEIrr
rrr −−= νεσ ˆˆˆ , Sr ∈

r
. В случае ска-

лярной проницаемости ИДУ (2) может быть 

преобразовано в объемно-поверхностное ИУ 

[4, 9]: 
 

( ) ( ) ( )[ ] ( ){

( ) ( ) ( )[ ] ( )}
( )[ ] ( ) ( )( ) ( ) ,1

1

1

2

SdrrGrErr

VdrrGrrEr

rErrrGkrE

S

V

′′−∇′′′′−′+

+′′−∇′′∇′′′−

−′−′′−=

∫

∫
−

rrrrrrr

rrrrrr

rrrrrrr

νε

εε

ε

(3) 

 

поскольку тогда в силу соленоидальности 

вектора ( ) ( )rEr
rrr

ε  имеем 
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( )( ) ( )[ ] ( ) ( ) ( ) ( )rrErrErEr
rrrrrrrrr

εεε ∇=⋅−∇=−⋅∇ −11 . 
 

В этом случае ( ) ( )[ ] ( ) ( ) −=−= +−
rErErr
rrrr

ννεσ 1  

( )rE
r−− ν , т.е. поверхностная плотность заряда 

является скалярной величиной и выражается 

через скачок поля. Поверхностные интегра-

лы в (2) и (3) появляются, если тело имеет 

резкую границу, т.е. функция ( )r
r

ε€  на S раз-

рывная и скачком уменьшается до единицы. 

Если же ( )r
r

ε€  гладкая и плавно уменьшается 

до единицы в некотором внутреннем припо-

верхностном слое, то ( ) ( )rErE
rr −+ = νν  и по-

верхностный интеграл не возникает, однако 

в указанном слое имеется объемная плот-

ность заряда. Нетрудно показать, что в пре-

деле при уменьшении толщины такого слоя 

до нуля объемный интеграл по нему эквива-

лентен поверхностному интегралу от полу-

чающегося скачка нормальной компоненты 

поля. Еще один подход к анализу ДР может 

быть основан на сингулярном ИУ, получае-

мом из (1) путем выделения особенности 

( )rG
r

,0  в ФГ ( ) ( ) ( )rkGrGrkG
rrr

,,0, ∆+=  и 

соответствующего ей внеинтегрального чле-

на путем интегрирования по бесконечно ма-

лому шару, окружающему точку наблюде-

ния. Такое ИУ не содержит поверхностных 

интегралов. 

Далее будем рассматривать ИУ (3), по-

скольку оно описывает достаточно широкий 

класс краевых задач для ДР и имеет по срав-

нению с (1) ядро с пониженной максималь-

ной особенностью типа производной потен-

циала простого слоя [10]. Если проницае-

мость является кусочно-постоянной величи-

ной, то объем V (и соответственно интеграл) 

разбивается на подобласти, внутри которых 

.0=∇ε  При этом нормальная компонента 

поля приобретает скачки на границах разде-

ла, и необходимо добавить к поверхностному 

интегралу соответствующие интегралы по 

двусторонним поверхностям раздела S ± . В 

этом случае ядро объемного интегрального 

оператора имеет слабую особенность типа 

1−
′− rr
rr

. При нахождении точки наблюдения 

на поверхности особенность в поверхност-

ном интеграле ′∇ G  является интегрируе-

мой, если интеграл понимать в смысле глав-

ного значения. При этом интеграл от нее по 

участку, вырезаемому бесконечно малой 

сферой с центром в точке r
r

, равен нулю. 

Поэтому к ИУ (3) можно применять числен-

ные методы с использованием кусочно-

постоянных объемных и поверхностных эле-

ментов (или соответствующие квадратурные 

формулы). 

Рассмотрим цилиндрические ДР, для 

чего используем представление ФГ в цилин-

дрической системе координат [11]. Один из 

способов такого представления заключается 

в замене переменных ( )x = ρ ϕcos , 

( )y = ρ ϕsin  в соответствующих декарто-

вых представлениях, например, 
 

( ) ( ) ( )G z z R jkRρ ϕ ρ ϕ π, , | , , exp′ ′ ′ = −
−

4
1

, (4) 
 

( ) ( )( )R z z= + ′ − ′ − ′ + − ′ρ ρ ρρ ϕ ϕ2 2 2
2 cos . 

 

Можно выполнить указанную замену и в 

других декартовых представлениях ФГ, опи-

сываемых приведенными в [11] соотноше-

ниями, например, в (2.8) и (2.14), или же 

использовать представление (2.15) (далее все 

аналогичные ссылки будут соответствовать 

указанной работе). Однако часто более удоб-

но применять непосредственные представле-

ния ФГ в цилиндрической системе (формулы 

(2.17), (2.18), (2.20), (2.21) и (2.22)). Наличие 

нескольких видов представлений ФГ создает 

удобства при вычислении интегралов в мат-

ричных элементах, поскольку есть возмож-

ность выбрать наиболее подходящую фор-

мулу, для которой они вычисляются наибо-

лее просто, а также позволяет решить задачу 

несколькими алгоритмами. При переходе в 

цилиндрическую систему координат вектор-

потенциал A
r

 и вектор E
r

 преобразуются по 

формулам (2.63), при этом ИУ (3) приобре-

тает вид 
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( ) ( ) ( )[ ]
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rErr
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′
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+′
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
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

′

′−
′∇′′′−

−′′−′+′−′×

×−′′−=

∫

∫

∫

−

ρ∂

∂
νε

ρ∂

∂
εε

ϕϕϕϕ

εϕρ
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ρ
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rrrr
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( ) ( ) ( )[ ]

( ) ( ) ( ) ( ){ }

( ) ( ) ( )[ ] ( )

( )[ ] ( ) ( )( ) ( )
,1
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1,,

1

2
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rrG

rErr
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rrG

rrEr
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S

V

V

′
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

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



′′

′−
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−′′−′−′−′×
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∫

∫

∫

−
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∂
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∂
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εϕρ
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rrrr
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rrr

(6) 

 

( )
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1
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1
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rrG
rErr

Vd
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V

z
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′
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

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



′
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=

∫

∫

∫
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∂

∂
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∂

∂
εε

ε
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rr
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rr
rrrr
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  (7) 

 

В связанных ИУ (5)–(7) для компактности 

записи использованы координаты r
r

 и r ′
r

, 

которые следует рассматривать в цилиндри-

ческой системе (например, как в (4)). Эле-

мент объема имеет вид dV d d dz′ = ′ ′ ′ ′ρ ρ ϕ , а 

вид элемента поверхности dS ′  зависит от 

координаты точки на цилиндре. 

В случае, если поле не зависит от коор-

динаты ϕ , указанные ФГ можно упростить, 

выполнив интегрирование по углу. Пусть, 

например, рассматриваются азимутально-

симметричные H-колебания изотропного 

ЦДР радиуса 0r  и высоты h. Тогда отлична 

от нуля лишь Eϕ -компонента, и ИУ (5)–(7) 

приобретает вид [4]  
 

( )

( )( ) ( ) ,,|,1,

,

2

∫ ′′′′′−′′=

=

MS

zddzzGzk

zE

ρρρρρε

ρϕ

   (8) 

 

где 
MS  – меридианное сечение: 

00 r≤≤ ρ , 

2/hz ≤ , а ядро имеет представление 

( )

( ) ( ) .,,|,,cos

,|,

2

0

∫ ′′′′′−=

=′′

π

ϕϕρϕρϕϕ

ρρ

dzzG

zzG

  (9) 

 

ФГ (9) не зависит от ϕ  и представляет-

ся также удвоенным интегралом типа (9) по 

области ( )π,0 . Действительно, сделаем в (9) 

замену переменных ϕϕϑ −′= . Поскольку R 

и G периодичны по ϑ  с периодом π2 , зна-

чение интеграла (9) по области ( )ϕπϕ −− 2,  

не зависит от значения ϕ . В [4] предложено 

вычислять ФГ (9), разлагая экспоненту в (4) 

в ряд и выражая рекуррентно получающиеся 

интегралы через эллиптические интегралы 

первого и второго рода. Но для ФГ (9) есть и 

другие представления, например, из (2.18) 

следует 

( )

( ) ( ) ( )
,

exp

2

1

,|,

0
22

22

11

∫
∞

−

′−−−′
=

=′′

χχ
χ

χρχχρ

ρρ

d
k

zzkJJ

zzG

(10) 

 

а из (2.22) соответственно получим 
 

( )
( )( ) ( )
( ) ( ) ( )

( )( ) .exp

4

,|,

0
222

1

22

1

22

1

222

1

γγ

ργργ

ργργ

ρρ

dzzj

kHkJ

kJkHj

zzG

′−−×

×












−′−

−′−−
=

=′′

∫
∞

  (11) 

 

В (11) верхнее значение в фигурной 

скобке надо брать при ρ ρ< ′ , а нижнее – 

при ρ ρ> ′ . Представления ФГ (9) – (11) удоб-

ны для анализа азимутально-симметричных 

H0nδ и E0nδ типов колебаний. Для гибридных 

HЕmnδ и EHmnδ типов ФГ имеют вид (2.18) и 

(2.22), в суммах которых необходимо оста-

вить только один азимутальный член 

( )( )exp − − ′jm ϕ ϕ .  

 
2. Понижение особенности  
методом непосредственного интегрирования 

Рассмотрим другой метод получения 

ИУ с пониженной особенностью, заклю-

чающийся в интегрировании ИУ (1) по коор-

динатам точки наблюдения. Для простоты 

будем считать проницаемость скалярной 

величиной и константой. Согласно теореме 

Гельмгольца любой вектор однозначно мо-
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жет быть представлен своей соленоидальной 

и потенциальной частями [12, 13], поэтому 

разобьем электрическое поле на соленои-

дальную и потенциальную части: 
ps EEE
rrr

+= , 

или 

( ) Φ∇−×∇= CrE
rrr

.                (12) 
 

Далее индекс s означает соленоидаль-

ную, а p – потенциальную части векторов. 

Наша цель состоит в переформулировке ИУ 

(1) и эквивалентного ему ИУ (3) для величин 

C
r

 и Φ . Поскольку E
r

 – полярный вектор, то 

Φ  – скаляр, а C
r

 – аксиальный вектор (псев-

довектор). Выбор этих величин неоднозна-

чен, так как C
r

 может быть дополнен гради-

ентом произвольного псевдоскаляра Ψ , а 

потенциал Φ  определен с точностью до 

произвольной константы c0 . Для того чтобы 

исключить неоднозначность в выборе векто-

ра C
r

, подчиним его условию 0=⋅∇ C
r

, т.е. 

будем считать его соленоидальным. Таким 

образом, введенные величины удовлетворя-

ют соотношениям 
 

( ) Φ−∇=⋅∇ 2
rE
rr

 ,                (13) 
 

( )

( ) .
22
CCdivgrad

CrE
rr

rrr

−∇=∇−⋅=

=×∇×∇=×∇
       (14) 

 

Далее следует подставить (12) в (3) и произ-

вести разделение вихревых и потенциальных 

частей на два уравнения. В соотношении (3) 

сразу выделяем потенциальный вектор 

( ) UrE p −∇=
rr

0
, где 

 

( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) .1

1

∫

∫

′′′′−−+

+′∇′′′−−=

−

−

S

V

SdrErrrG

rdrErrGrU

rrrrrr

rrrrrr

νε

εε

(15) 

 

Функция U есть потенциал, созданный плот-

ностью заряда поляризации. Для однородно-

го диэлектрика объемный интеграл исчезает, 

поскольку объемной плотности заряда поля-

ризации нет, и (15) представляет собой по-

тенциал поверхностной плотности заряда σ  

(потенциал простого слоя). Рассмотрим ос-

тавшийся объемный интеграл, который пре-

образуем следующим образом: 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) .

1

1

2

2




′′−∇′′Φ+

+′′Φ′−′−

−′′×′−∇′−





−′′×′′−−=

=′′Φ∇′−′×∇′′−−

∫

∫

∫

∫

∫

VdrrGr

SdrrrGr

VdrCrrG

SdrCrrrGk

rdrrCrrGk

V

S

V

S

V

rrr

rrrrr

rrrr

rrrrrr

rrrrrr

ν

νε

ε

 (16) 

При выполнении данного преобразования 

были использованы теорема о роторе, теоре-

ма о градиенте и соотношения векторной 

алгебры для векторного оператора ′∇ [13]. 

Возьмем дивергенцию от обеих частей (3). 

При Sr ∉
r

 имеем E
r

⋅∇ , поэтому  
 

( ) ( ) ( )

( ) ( ) ( ) ( ) .,~ SrrSdrrrrG

SdrCrrrG

S

S

∉−=′′Φ′′−⋅∇=

=′′×′′−⋅∇

∫

∫
rrrrrrr

rrrrrr

ρν

ν

 

 

На поверхности указанные величины 

терпят скачок. В частности, дивергенция 

второго интеграла равна нулю. Ротор от со-

отношения (16) в силу (3) совпадает с E
r

×∇ . 

Поверхностные интегралы разделим на со-

леноидальные и потенциальные части: 
 

( ) ( ) ( ) ( ) ( )∫ +=′′×′′−
S

ps rMrMSdrCrrrG
rrrrrrrrrr

ν , 

 

( ) ( ) ( ) ( ) ( )∫ +=′′Φ′′−
S

ps rPrPSdrrrrG
rrrrrrrrr

ν . 

 

Разделяя соленоидальные и потенциальные 

части в (3), получаем два уравнения: 
 

( ) ( ) ( ) ( ){

( ) ( ) ,

12




′′−∇′×′+

+−−=×∇

∫ VdrrGrC

rPrMkrC

V

ss

rrrr

rrrrrr
ε

     (17) 

 

( ) ( ) ( ) ( ){

( ) ( ) ( ).

12

rUVdrrGr

rMrPkr

V

pp

rrrr

rrrrr

∇−



′′−′Φ∇+

+−−−=Φ∇−

∫

ε

    (18) 

 

Общий интеграл последнего уравнения 

есть 



 

8                                                                                                                                                         Научный отдел 

Известия Саратовского университета. 2008. Т. 8. Сер. Физика, вып. 1 

( ) ( )

( ) ( ) ( ) ( )

( ) ,

1

0

00

2

crU

VdrrGrrr

kr

V

++

+








′′−′Φ+Φ−Ψ×

×−=Φ

∫
r

rrrrr

r
ε

(19) 

где 
 

( ) ( ) ( ) ( )., 00 rrMrrP pp

rrrrrr
Ψ−∇=Φ−∇=     (20) 

 

Неизвестные потенциалы Φ 0  и Ψ 0  удовле-

творяют уравнению Пуассона: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),~

0

2

rSdrrGrr

SdrrrGrr

S

S

rrrrrr

rrrrrr

ρν

ν

−=′′−∇′′′Φ=

=′′Φ′−′⋅−∇=Φ∇

∫

∫
(21) 

 

( ) ( ) ( )

( ) ( ).~
0

2 rr

SdrCrrrG
S

rr

rrrrrr

Ψ∇=−=

=′′×′′−⋅∇− ∫

ρ

ν
   (22) 

 

Решение этого уравнения методом Фурье 

(методом ФГ) имеет вид 
 

( )
( )

( )
( ) ( )( )

.
exp~

2

1
23

0

0

∫ ∫
′−−′

′=

=








Ψ

Φ

k

rrkjr
rdkd

r

r

r

rrrr
rr

r

r

ρ

π

   (23) 

 

В (23) первые два интеграла берутся по бес-

конечной области пространства r ′
r

 и прост-

ранственной спектральной области += xkxk 0

rr
 

zy kzky 00

rr
++ . Используя свернутый вид ФГ 

[11], можно (23) представить как 
 

( )

( ) ( ) ( ) ( ) .0

0

∫∫ ′′′′−′∇′′′′′′Φ′−′=

=Φ

S

SdrrGrrrrGrd

r

rrrrrrrr

r

ν (24) 

 

Проинтегрируем далее уравнение (17): 
 

( ) ( ) ( ) ( )

( ) ( ) ,

12




′′−∇′×′+

+




−=×∇

∫ VdrrGrC

rPrMkrC

V

ss

rrrr

rrrrrr
ε

 

 

( ) ( ) ( ) ( ) ( ){ }r„rCrCkrC
rrrrrrrr

321

2

0 1 +−−= ε  .  (25) 
 

Здесь 

( ) ( )rMrC s

rrrr
=×∇ 1

 , ( ) ( )rPrC s

rrrr
=×∇ 2

 ,  (26) 

( ) ( ) ( )∫ ′′′−=
V

VdrCrrGrC
rrrrrr

3  .         (27) 

Для удовлетворения вектором (25) условию 

0=⋅∇ C
r

 достаточно потребовать, чтобы век-

торы 
iC
r

 (i = 1, 2, 3) были соленоидальными. 

Поэтому, взяв ротор от соотношений (26) и 

(27), получим, что эти неизвестные векто-                       

ры должны также удовлетворять уравнени-

ям Пуассона с правыми частями ( )rM s

rr
− , 

( )rPs

rr
−  и ( )rN

rr
−  соответственно. Тогда вы-

ражения для этих векторов будут иметь фор-

му (23), в которой для вектора 1C
r

 следует 

поверхностный интеграл из соотношения 

(21) заменить на ротор вектора 
sM

r
, для век-

тора 2C
r

 – соответственно на ротор вектора 

sP
r

, а для 3C
r

 – на ротор вектора (27). 

В результате получены новые связанные 

ИУ (19) и (25). Связь осуществляется в силу 

того, что нормальная компонента поля на S 

(поверхностная плотность заряда ( ) =r
r

σ  

( ) ( )rE
r−−= νε 1 ) в (15) и (19) определяется 

потенциальной и соленоидальной частями E
r

. 

При 0→k  функция (19) определяет потен-

циал плотности заряда поляризации тела, 

который согласно принципам электростати-

ки на бесконечности должен стремиться к 

нулю. Для этого необходимо положить 

00 =c , при этом ( ) ( )rUr
rr

=Φ . Полученные 

новые ОИУ являются связанными через по-

верхностные интегралы уравнениями Фред-

гольма второго рода с пониженной по срав-

нению с (1) сингулярностью ядер. 
 

3. Поля в дальней зоне 

Приведенные ИУ и ИДУ следует решать 

в объеме V резонатора, однако представле-

ния (1)–(3) справедливы во всем пространст-

ве. В дальней зоне rr ′>>
rr

, поэтому произ-

водными в (1) можно пренебречь, а в (2) и (3) 

оставить член, пропорциональный 
1−

′− rr
rr

. 

Перейдем в сферическую систему координат, 

в которой скалярную ФГ можно представить 

в следующем виде: ( ) ( ) ( )ψcosrjk
erGrrG

′≈′−
rrr

. 

Здесь как обычно ( ) ( ) ( ) +′= θθψ coscoscos  
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( ) ( ) ( )ϕϕθθ ′−′+ cossinsin  – косинус угла ме-

жду векторами r
r

 и r ′
r

. Обозначим nE
r

 и 

nnn jωωω ′′+′=  затухающее во времени соб-

ственное поле и комплексную частоту моды 

с номером n , 0>′′
nω . Тогда для собственной 

моды имеем 
 

( ) ( ) ( )ϕθ
π

ωω
,

4

/exp
2

2

F
rc

crj
rE nn

n

rrr −
=  .     (28) 

 

Функция F
r

 зависит от распределения элек-

трического поля в объеме V и определяет 

диаграммы направленности излучения ДР 

для указанной моды [14]: 
 

( ) ( ) ( )[ ] ( )

( ) .sin

€€, 2/cos

ϕθθ

εϕθ ψω

′′′′×

×′′−′= ∫
′

ddrd

rrEIreF
V

crj n
rrrr

 

 

Как видно, поля собственных мод (28) воз-

растают на бесконечности [15], что связано с 

экспоненциальным их убыванием во време-

ни: более дальним расстояниям соответст-

вуют более ранние моменты времени излу-

чения (определяемые запаздыванием r/c), 

когда энергия колебаний в объеме V была 

экспоненциально больше. Модуль функции 

(28) имеет минимум в точке r cn n= ′′/ ω . Ес-

ли эта точка соответствует дальней зоне, то в 

заданном направлении внутри V поле может 

иметь колебательный характер, затем по 

мере удаления от ДР его модуль убывает до 

указанного радиуса, а затем начинает воз-

растать. Для высокодобротных колебаний 

r an >> , что оправдывает приближенный ме-

тод вычисления действительных собствен-

ных частот [1] путем замены полей (28) на 

убывающие.  

 
4. Численные алгоритмы и результаты 

В общем виде все колебания ДР опреде-

ляются ИДУ (2). Для изотропного диэлек-

трика можно также использовать ИУ (3), 

которое для ЦДР имеет вид (5) – (7). Послед-

ние уравнения описывают все типы колеба-

ний в изотропном случае. Для однородного 

ЦДР 0=∇ε , поэтому вторые объемные ин-

тегралы в этих соотношениях исчезают, а 

перед первыми получаем спектральный па-

раметр ( )12 −εk . ИУ (5) – (7) можно решить 

численно, используя, например, метод обоб-

щенных взвешенных невязок [16] и выте-

кающие из него методы: Ритца, Трефтца, 

моментов, Галеркина, коллокаций. В силу 

комплексности скалярной ФГ спектральный 

параметр становится комплексным даже в 

отсутствии потерь в диэлектрике. Общее 

численное решение спектральной задачи 

хотя и является строгим и универсальным, но 

требует нахождения комплексных корней 

ω ω ωn n nj= ′ + ′′  характеристического урав-

нения, обычно представляющего собой оп-

ределитель с матричными элементами в виде 

несобственных интегралов в спектральной 

пространственной области от трансцендент-

ных специальных функций. Необходимость 

приближенного численного вычисления мат-

ричных элементов, усечение бесконечного 

определителя, ошибки округления при его 

численном вычислении, приближенное оп-

ределение его корней может приводить к 

большим погрешностям, особенно при опре-

делении резонансных частот колебаний 

высших типов. Поэтому целесообразно ис-

пользовать методы разложения интегрально-

го оператора по малым параметрам. Пусть 

ДР характеризуется некоторым размером a. 

В качестве такового могут служить макси-

мальный радиус ЦДР (при этом предполо-

жим, что его высота h меньше a). Тогда для 

низших мод при больших ε  малым безраз-

мерным спектральным параметром будет 

κ π λ= =ka a2 /  (поскольку λε −1 2/ ~ a ). 

Исходным для построения основанных на 

этом численных методов служит разложение 

экспоненты в ФГ (4) в ряд: 
 

( ) ( ) ( )

( )
.

!4

1

0

0

∑

∑
∞

=

∞

=

−
=

=−=′−

n

n

n

n

n

n

jkR

R

RGjkrrG

π

rr

        (29) 

 

Ограничимся N членами такого разложения. 

В силу равномерной непрерывности (29) в V 

можно ИУ (3) представить в операторном 

виде 

( ) ( )

( ) ,€

€€

0

00

2

∑

∑∑

=

==

−+

+−−−=

N

n

n

n

N

n

n

n
N

n

n

n

ESjk

ELjkEKjkkE

r

rrr

  (30) 
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где входящие в (30) линейные интегральные 

операторы выражаются так: 
 

( ) ( )[ ] ( ) VdrErrrR
n

EK
V

n

n
′′−′′−= ∫

− rrrrrr
1

!4

1ˆ 1 ε
π

, 

 

( ) ( ) ( )[ ]

( ) ,

!4

1€

1

1

VdrrR

rrEr
n

EL

n

V

n

′′−∇′×

×′∇′′′=

−

−

∫
rr

rrrrr
εε

π  

 

( )[ ] ( ) ( )( )

( ) .

1
!4

1€

1 SdrrR

rErr
n

ES

n

S

n

′′−∇′×

×′′′−′=

−

∫
rr

rrrrrr
νε

π   

 

Введем скалярное произведение в простран-

стве искомых решений: 
 

( ) ( ) ( )∫
∗=

V

dVrvruvu
rrrrrr

,  . 

 

Тогда согласно методу обобщенных взве-

шенных невязок [16] исходная краевая зада-

ча эквивалентна отысканию нулевых стацио-

нарных значений (E = 0) функционала  
 

( )

( ) ( ) .€,
~€,

~

€,
~

,
~

00

0

2

∑∑

∑

==

=






−−





−+

+




−−





=

N

n

n

n
N

n

n

n

N

n

n

n

ESEjkELEjk

EKEjkkEEE

rrrr

rrrr

(31) 

 

В силу структуры разложения (29) соотно-

шение (31) является разложением по малому 

параметру ka. В случае метода Галеркина 

EE
rr

=
~

, и функционал становится квадра-

тичным. Рассмотрим низшие порядки по 

волновому числу k. При N=0 будем иметь 
 

( ) ( ) ( )
( )EKE

ESEELEEE
k rr

rrrrrr

0

002

ˆ,

ˆ,ˆ,, −+
=  .       (32) 

 

Соотношение (32) можно рассматривать как 

функционал для определения собственных 

частот в нулевом приближении. В этом при-

ближении частоты действительные. В работе 

[4] предложено использовать соответствую-

щие (32) собственные функции для вычисле-

ния высших порядков. Однако это не облег-

чает задачу, поскольку аналитически они не 

известны. Члены ( )ESE n

rr
€,  с поверхностными 

и объемными интегралами исчезают только 

для азимутально-симметричных H-колеба-

ний, а члены ( )ELE n

rr
€,  – в случае кусочно-

постоянной проницаемости. Наличие по-

верхностного интеграла свидетельствует о 

связанной плотности поверхностного заряда, 

возникающей из-за поляризации диэлектри-

ка. Для высокодобротных колебаний этот 

интеграл должен либо отсутствовать, либо 

быть малым, поскольку излучение главным 

образом связано с соответствующим ему 

дипольным током поляризации. Разложим 

поле по полной ортонормированной в V сис-

теме векторных функций (в качестве таковых 

можно взять, например, объемные кусочно-

постоянные векторные конечные элементы 

(КЭ)): 

( ) ( )∑
=

=
M

m

mm reErE
1

rrrr
 .               (33) 

 

В случае объемных КЭ в каждом элементе 

имеется три вектора с тремя ортогональными 

поляризациями, поэтому число разбиений 

объема V равно M/3. Разложение (33) приво-

дит к уравнению в виде равенства нулю оп-

ределителя размерности M M× , в каждом 

матричном элементе которого имеется член 
2+N

k  максимальной степени. Таким образом, 

характеристическое уравнение представляет 

собой полином по κ  степени M (N + 2) с дей-

ствительными и мнимыми коэффициентами, 

который можно записать как 
 

( )
( )

( )

( ) .0det

... 2

2

4

4

3

3

2

2

10

==

=−−+

++−−=

+
+

mm

NM

NMMN

A

DjD

DjDDjDD

κκ

κκκκ

    (34) 

 

Здесь введены безразмерные матричные эле-

менты, которые имеют вид 
 

( ) ( )

( ) ( ) ( ) ( ) ,
2

00

0

2

∑∑

∑
+

=

′

=

′

=

′

+

′′

−=−+

+−+=

N

n

n

mm

n
N

n

n

mm

n

N

n

n

mm

n

mmmm

djCj

еjA

κκ

κδ
 

 

( ) ( )( )mnm

nn

mm eKeaе ′
+−

′ =
rr €,

2 , 

 

( ) ( ) ( ){ }
mnmmnm

nn

mm eSeeLeaC ′′
−

′ −=
rrrr €,€, , 

 

при этом 
( ) ( )

d Cmm

n

mm n mm

n

′ ′ ′= +δ δ 0
 для n < 2, 

( ) ( ) ( )n

mm

n

mm

n

mm Cеd ′
−

′′ += 2  для Nn ≤≤2  и 
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( ) ( )2−
′′ = n

mm

n

mm еd  при n > N. Входящие в (34) ко-

эффициенты выражаются через определите-

ли, в которых учтены только матричные эле-

менты, дающие указанную степень спект-

рального параметра. Например,  
 

( )( )0

0 det mmdD ′= , ( )
( )( )2

2 det +
′+ = N

mmNM dD . 
 

Нахождение корней полинома является бо-

лее простой задачей, нежели поиск ком-

плексных корней определителя с матричны-

ми элементами в виде интегралов от транс-

цендентных функций спектрального пара-

метра. Однако порядок многочлена (34) мо-

жет быть очень большим, поэтому для его 

уменьшения необходимо согласовывать па-

раметры N и M. Если необходимо найти пер-

вые K собственных значений, то целесообраз-

но выбрать K = N = M. Если же для некото-

рой моды из физических соображений при-

ближенно известна собственная функция E
r

, 

то уравнение (31) приобретает вид полнома 

( ) 0== EkD , где величина E (31) определена 

при EE
rr

=
~

. Ограничившись N = 2, получим 

уравнение четвертой степени, решение кото-

рого известно аналитически. 

Рассмотрим другой подход, основанный 

на асимптотическом [17] разложении ФГ 

типа (9) по малому параметру ka. Для коле-

баний с азимутальным индексом m скаляр-

ную ФГ можно записать так: 
 

( )
( )( )

( )( ) ( )( ){ }.,,,,

4

exp

,,,

21 zzGzzjG

jm

zzG

′−′+′−′−×

×
′−−

=

=′−′−′

ρρρρ

π

ϕϕ

ϕϕρρ

(35) 

 

Здесь первая функция комплексная и имеет 

вид 
 

( )( )

( ) ( ) ( )
,

exp

,,

0
22

22

1

∫
−

′−−−′
=

=′−′

k

mm
d

k

zzkjJJ

zzG

χχ
χ

χρχχρ

ρρ

(36) 

 

 

а вторая – действительная и представляется 

интегралом 

( )( )

( ) ( ) ( )
∫
∞

−

′−−−′
=

=′−′

k

mm
d

k

zzkJJ

zzG

.
exp

,,

22

22

2

χχ
χ

χρχχρ

ρρ

(37) 

 

В интеграле (36) сделаем замену χ α= k , а в 

интеграле (37) разложим квадратные корни 

по малому параметру ( ) 1/
2

<χk : 
 

( ) ( )
( )

( )∑
∞

=

−− −
=−

0

212/122 /
!!2

!!12

n

n
k

n

n
k χχχ ,  

 

( ) ( )
( )

( )






 −

−=− ∑
∞

=1

22/122 /
!!2

!!32
1

n

n
k

n

n
k χχχ . (38) 

 

Поскольку ряды (38) сходятся неравномерно, 

соответствующие разложения следует трак-

товать как асимптотические [17]. Первая 

функция приобретает вид 
 

( )( )

( ) ( )

( )( ) ( ){ }
αα

α

αα

ρααρ

ρρ

d
zzkjzzk

kJkJk

zzG

mm

2

22

1

0

1

1

1sin1cos

,,

−

′−−−′−−
×

×′=

=′−′

∫  

и при 0→k  стремится к нулю, как 12 +m
k . Ее 

разложение по параметру k дается разложе-

нием в ряды функций Бесселя и тригономет-

рических функций. Оставляя члены не более 

второго порядка (что дает четвертый поря-

док по k), получим: 
 

( )

( )

( )
( )

( )( )( )
( )

( )
.

!

!2

1

!14

11!2

2

12

2

2222

1

0
2

322

22

12

2

12
1

α
α

αρρ

α

α

α

αρρ

d
m

zzjk

m

zz

m

k

m

k
G

m

mm

m

m



′−

−






 ′−−
+

+

′+
×







×
−

−
−

′
≈

+

+++

∫

 

 

Вторая функция выражается в форме 
 

( ) ( )
( )

( ) ( )

.......
82

!!2

!!12

32

42

12

22

2

2

0

2

χ
χχχ

ρχχρ
χ

dzz
kkk

eJJ
n

n
G

n

n

n

n

n

n

k

zz

mm

N

n









+′−







+++×

×′
−

=

+

+

+

+

∞
′−−

=
∫∑

 

Входящие в нее интегралы последователь-

ным интегрированием по частям разлагаются 
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в ряд по параметру k . Например, после од-

нократного интегрирования 
 

( ) ( )

( ) ( )

( ) ( )[ ] .
1

1
1

∫

∫

∞
′−−

−

′−−

∞
′−−−

′
′

−
−

−′
−

=

=′=

k

zz

mm

n
n

zzk

mm

k

zz

mm

nn

mn

deJJ
n

k

ekJkJ
n

k

deJJkI

χρχχρ
χ

ρρ

χρχχρχ

χ

χ

 

 

Однако такая процедура неудобна. Поэтому 

сделаем в (18) замену α χ= −2 2
k  и раз-

ложим 
( )2G  в ряд Тейлора в окрестности 

нуля по параметру 2
k : 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ....exp 2

4

42

2

22

0

0

22222

+++=′−−×

×+′+= ∫
∞

GkGkGdzz

kJkJG mm

αα

αραρ

  

Здесь первые два члена имеют вид 
 

( ) ( ) ( ) ( )∫
∞

′−−′=
0

2

0 exp αααρρα dzzJJG mm
 , 

( ) ( ) ( ){

( ) ( )} ( ) .exp

2

1

0

12

2

αααρραρ

αρραρα

dzzJJ

JJG

mm

mm

′−−′′′+

+′′= ∫
∞

−

 

 

Рассмотренные ряды являются асимпто-

тическими, и их необходимо обрывать при 

достижении заданной точности [17]. 

Очень удобными для численного анали-

за ДР являются итерационные методы одно-

временного решения ИУ (ИДУ) и характери-

стического уравнения. На рис. 1–5 в качестве 

примера приведены результаты анализа δ01H  

и 
011H  мод однородного и неоднородного 

ЦДР. Использованы метод прямой итерации 

в форме метода последовательных прибли-

жений (МПП) и метод минимальных невязок 

(ММН) с замораживанием значений ФГ от 

спектрального параметра на предыдущем 

шаге, примененные к ИУ и строгому харак-

теристическому уравнению. Были использо-

ваны одномерные кусочно-постоянные и 

дифференцируемые (в виде полиномов вто-

рого порядка) КЭ, заданные по трем узлам 

[18]. Оба метода сходятся к одним и тем же 

результатам за несколько итераций по пара-

метру k.  

     Объемные (двумерные) КЭ строились в 

виде прямого произведения одномерных КЭ. 

На каждой итерации по параметру k вычис-

лялась зависящая от него матрица и выпол-

нялось несколько (или несколько десятков) 

итераций для получения решения ИУ в виде 

собственной функции с нормировкой на еди-

ницу.  Рис. 1 демонстрирует сходимость в за- 
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Рис. 1. Сходимость результатов для собственных частот  

f (ГГц)  ЦДР от числа базисных функций N при кусочно-

постоянной (1, 2)  и  полиномиальной  квадратичной  (3) 

аппроксимациях  для   38=ε ,   r0 = 5 мм:   h = 7 мм (1);  

h = 4 мм (2, 3) 
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 Рис. 2. Зависимости резонансной частоты f (ГГц)  

 и  добротности  Q  однородного  ЦДР  r0 = 5 мм,  

 h = 7 мм  от  значения  диэлектрической  прони- 

 цаемости:  1 – мода Н01δ ,  2 – мода Н011 

f 

 N 

f , Q/10 
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 Рис. 3.  Зависимость  резонансной  частоты  f (ГГц)  

 от формы ЦДР для однородного (1, 2) диэлектрика  

 с  ε = 50  и неоднородного вдоль оси z диэлектрика  

 (3, 4) для h = 5 мм: 1 – мода Н01δ ; 2, 3, 4 – мода Н011 
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 Рис. 4.   Зависимость   Re(Eϕ)   (сплошные  кривые)  

 и Im(Eϕ) (штриховые кривые) от координаты ρ (см)  

 для  ЦДР   ε  =  100,   r0 = h = 5 мм:   1  –  мода Н01δ   

 при  z = 0.09;  2 – мода Н011  при  z = 2.41;  3 − мода  

 Н011  при  z = 0.09 

  

 висимости от числа разбиений (узлов) по 

каждой из двух координат. Число пробных 

функций (порядок матрицы) здесь 
2

N . При 

использовании гладких КЭ размерность за-

дачи снижается примерно в 4 раза. Резуль-                

таты для собственных частот примерно на           

1–1.5% ниже, чем данные из [4]. В частности, 
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 Рис. 5.   Зависимость   Re(Eϕ)   (сплошные   кривые)  

 и Im(Eϕ) (штриховые кривые) от координаты z (мм)  

 для   ЦДР   ε = 100,   r0 = h = 5 мм:   1, 2 – мода Н01δ   

 при   ρ = 3, 4   и   ρ  = 1.66 мм;   2  –  мода  Н011  при  

 ρ = 4.46 мм 

  

для кривых (2, 3) уточнение по методу Эйт-

кена дает 5.237524=f  ГГц, тогда как в [4] 

5.289=f  ГГц. С другой стороны, решение 

самосопряженной задачи с линейным вхож-

дением собственного значения 2−k  (т.е. для 

ФГ при 0=k ) рассмотренными методами 

дает значения, практически совпадающие с 

[4]. На рис. 2 представлены резонансные час-

тоты и добротности однородного ЦДР как 

функции диэлектрической проницаемости. 

Частоты Н011 колебаний при рассмотренной 

форме ДР примерно в полтора раза, а доб-

ротности − на порядок выше, чем для низше-

го типа Н01δ колебаний, поскольку в первом 

случае Q связана с магнитно-дипольным из-

лучением, в во втором – с магнитно-квадру-

польным. Рис. 3 представляет зависимость 

резонансной частоты от формы однородного 

и неоднородного вдоль оси z диэлектрика. 

Кривая 3 соответствует неоднородному ди-

электрику с проницаемостью ( ) += 1(25zε  

( ))/cos hzπ+ , а кривая 4 – проницаемости 

( ) ( )hzz /cos491 πε += . В последнем случае 

при 2/hz ±=  отсутствует скачок ε. На рис. 4 

и 5 приведены распределения электрическо-

го поля ϕE  в зависимости от координат ρ и z. 

Для обеих мод по обеим координатам обра-

f 

r0 / h 

Еϕ 
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зуются неполные стоячие полуволны. Дейст-

вительные составляющие поля существенно 

больше мнимых составляющих, при этом 

отношение их порядка Q.  

 
Заключение 

 Получены ИУ и ИДУ, описывающие соб-

ственные колебания ДР произвольной фор-

мы, которые конкретизированы для ЦДР. 

Предложен метод асимптотического разло-

жения ядра по малому параметру, позво-

ляющий получать характеристическое урав-

нение в виде полинома по спектральному 

параметру. Предложены и реализованы для 

ЦДР эффективные итерационные алгоритмы 

решения задач на собственные значения. 

Задачи о возбуждении ДР следует формули-

ровать добавлением к полученным уравне-

ниям неоднородных членов, соответствую-

щих возбуждающему полю. В реальных кон-

струкциях ДР расположен на элементах кре-

пления, поэтому важно учитывать наличие 

металлических тел. Обобщение приведенных 

уравнений при наличии бесконечного иде-

ально проводящего экрана получается мето-

дом изображений для скалярной ФГ, что, в 

частности, использовано для моды Н011. Для 

двух параллельных экранов необходимо уже 

учитывать бесконечное число изображений. 

ДР в прямоугольном волноводе и в прямо-

угольном экране можно проанализировать с 

помощью метода двумерных и трехмерных 

изображений [19, 20]. Соответствующие ря-

ды для ФГ хорошо сходятся. Наличие произ-

вольных экранов или металлических тел тре-

бует введения члена в виде поверхностного 

интеграла от искомого распределения по-

верхностной плотности тока, что может су-

щественно усложнить анализ, поскольку 

требует решения комбинированного поверх-

ностно-объемного ИУ для распределения 

поля и тока. Тем не менее рассмотренные 

методы представляются более общими и 

перспективными для численных расчетов, 

чем МЧО и связанный с ним метод ПИУ, 

поскольку последние применимы только к 

ДР с координатными поверхностями, а метод 

ПИУ [3] – к однородным ДР. 
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