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В работе предложена новая конструкция бака для герметичного свинцово-кислотного аккумулятора, работающего за
бортом подводного аппарата в условиях повышенного внешнего давления. Такой бак является одновременно корпусом акку-
мулятора и компенсатором давления. Показано, что обязательным условием применения такого бака является использование
гелеобразного электролита.
Ключевые слова: свинцово-кислотный аккумулятор, автономные аппараты, забортный источник тока, гелеобразный электролит.

In this paper a new design of a container is detailed for sealed lead-acid battery operating overboard of a submersible
vehicle in conditions of increased ambient pressure. Such a container is both a battery jar and a pressure compensator. It has
been shown that a mandatory requirement for such container use is an application of a gelled-electrolyte. Authors have offered a
two-stage technology of filling of accumulators without using vacuum pumping.
Key words: lead-acid battery, self-contained devices, outboard power source, gel-like electrolyte.

ВВЕДЕНИЕ

В настоящее время подводные аппараты на-

ходят широкое применение для решения большого

числа важных и ответственных задач. Подводные

аппараты обеспечивают проведение:

1) комплекса океанологических научных ис-

следований (геологических, биологических, гидро-

физических, гидроакустических и т. д.);

2) спасательных работ, связанных с поиском

затонувших объектов и помощи их экипажам, с до-

ставкой на грунт или подъемом на поверхность

различных предметов;

3) испытаний морской техники.

Современные подводные аппараты различают-

ся по:

— глубине погружения (малоглубинные — до

600 м, среднеглубинные — до 2000 м, глубоковод-

ные — свыше 2000 м);

— обитаемости или необитаемости;

— способу перемещения под водой (плаваю-

щие, буксируемые, перемещающиеся по грунту);

— способу электропитания (автономные, ка-

бельные);

— способу передачи информации (гидроаку-

стические, кабельные);

— способу обеспечения статического состоя-

ния (якорные, донные, динамически позиционируе-

мые).

Наиболее перспективными следует считать

энергетически автономные подводные аппараты,

имеющие наибольший уровень оперативности и по-

тенциальных возможностей. Источником движения

таких аппаратов являются аккумуляторные батареи.

Основная батарея подводного аппарата имеет запас

энергии 50–160 кВт·ч. На его борту имеются также

вспомогательные (10–20 кВт·ч) и аварийные источ-

ники тока. В настоящее время в качестве основ-

ных и вспомогательных аккумуляторных батарей

в основном используют свинцово-кислотные акку-

муляторы, а в качестве аварийных — серебряно-

цинковые, никель-цинковые и никель кадмиевые.

Известно [1] применение литий-ионной аккуму-

ляторной батареи в качестве основного источни-

ка энергии в составе подводных аппаратов. Ин-

терес представляет использование также никель-

водородных аккумуляторов, имеющих прочный ме-

таллический корпус [2] и, следовательно, способ-

ных работать за бортом подводного аппарата. Со-

временные никель-водородные аккумуляторы могут

эксплуатироваться на глубинах до 300 м. Повыше-

ние глубины эксплуатации потребует увеличения

толщины прочного корпуса, что приведёт к значи-

тельному снижению удельных энергетических ха-

рактеристик таких аккумуляторов.

Свинцово-кислотные аккумуляторные батареи

могут размещаться либо в отсеке подводного ап-

парата, либо за бортом, что определяет различное

их исполнение. Наиболее перспективными следу-

ет считать забортные аккумуляторы, так как их

применение позволяет повысить полезный объём

отсеков подводного аппарата и эффективность ис-

пользования последнего. Однако применение свин-

цовых аккумуляторов за бортом требует реализации
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мероприятий по компенсации действия внешнего

гидростатического давления, которое в условиях

определенной газозаполненности аккумулятора мо-

жет привести к его разрушению или попаданию

в него морской воды. Для компенсации внеш-

него гидростатического давления в современных

свинцово-кислотных аккумуляторах используются

дополнительные камеры с эластичными стенками

и клапаном, заполненные электролитом. Электролит

из такой камеры компенсирует объемные изменения

электролита в аккумуляторе, связанные со сжатием

и повышением растворимости газов, находящихся

в нем. Другой путь компенсации внешнего гид-

ростатического давления основан на применении

диэлектрической жидкости, отделяющей электролит

аккумулятора от морской воды. В этом случае ак-

кумуляторная батарея помещается в специальный

контейнер с диэлектрической жидкостью. Понят-

но, что оба способа компенсации внешнего дав-

ления значительно уменьшают удельные массовые

и объемные характеристики свинцового аккуму-

лятора и снижают его конкурентоспособность по

отношению к другим электрохимическим системам.

В настоящее время основной тенденцией раз-

вития свинцовых аккумуляторов является переход

на их герметичное исполнение. Применение та-

ких аккумуляторов позволяет значительно увели-

чить срок службы аккумуляторной батареи, снять

ограничения по ее ориентации в пространстве,

практически исключить газообразование и суще-

ственно снизить объем работ по ее обслуживанию.

При этом аккумуляторы сохраняют самую низкую

стоимость и высокое качество энергии. Однако от-

носительно высокое газозаполнение герметичных

свинцовых аккумуляторов не позволяет исполь-

зовать их в качестве забортного источника тока

подводного аппарата, так как внешнее гидростати-

ческое давление неизбежно приведет к разрушению

их полимерных корпусов.

Целью настоящей работы явилось определе-

ние путей, позволяющих использовать герметичный

свинцово-кислотный аккумулятор как забортный

источник тока для подводных аппаратов.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

И ИХ ОБСУЖДЕНИЕ

Авторами настоящей работы предложено ис-

пользовать для забортных аккумуляторов бак из

термоэластопласта, который выполняет одновре-

менно роль корпуса и компенсатора давления [3].

Стенки такого бака могут значительно деформиро-

ваться при воздействии внешнего гидростатическо-

го давления без их разрушения.

Термоэластопласты представляют собой тер-

мопластичные эластомеры, которые при обычных

температурах обладают свойствами резины. Их

условная прочность и относительное удлинение

составляют соответственно 6–9 мПа и 200–250%.

В настоящей работе был использован термоэла-

стопласт «Армлен ПП ТЭП-6», представляющий

собой полипропилен с каучуком, имеющим услов-

ную прочность и относительное удлинение соот-

ветственно 9 мПа и 250%. Внешний вид бака из

термоэластопласта показан на рис.1.

Герметичный свинцово-кислотный аккумуля-

тор с абсорбированным электролитом имеет отно-

сительно высокие свободный газовый объем (10–

15%) и газовую пористость элементов электродного

блока. При внешнем давлении это будет приводить

к значительным деформациям стенок бака и неже-

лательному воздействию их на электродный блок.

С целью исключения этого необходимо иметь боль-

шой зазор между стенками бака и электродным

блоком, что приведет к снижению удельных ем-

костных характеристик аккумулятора. Снизить сво-

бодный газовый объем аккумулятора можно за счет

замены абсорбированного жидкого электролита на

гелеобразный электролит. В этом случае газовые

каналы между электродами, обеспечивающие высо-

кую эффективность замкнутого кислородного цик-

ла, образуются не за счет ограничения электролита

и нахождения его только в объеме электродного

блока, а за счет образования трещин в гелеобраз-

ном электролите в межэлектродном пространстве.

Таким образом, в герметичных аккумуляторах с ге-

леобразным электролитом весь внутренний объем

бака за пределами электродного блока может быть

заполнен электролитом, что снизит свободный га-

зовый объем и, как следствие этого, величину

деформации стенок бака. Это позволит иметь мини-

мальный зазор между ними и электродным блоком

и обеспечит высокую объемную удельную энергию

аккумулятора.

Следует отметить, что деформирование стенок

аккумулятора при воздействии на него внешнего

гидростатического давления будет способствовать

закрытию газовых каналов в гелеобразном элек-

тролите, что в условиях разряда (при погружении

подводного аппарата) будет снижать внутреннее

сопротивление аккумулятора и повышать его раз-

рядные характеристики. При последующем заряде

(в условиях отсутствия внешнего давления) газо-

вые каналы в межэлектродном пространстве будут

восстанавливаться за счет давления пузырьков во-

дорода на гелеобразный электролит и обеспечивать

эффективность кислородного цикла.
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Рис.1. Внешний вид бака из термоэластопласта

Таким образом, условием применения баков

из термоэластопласта для аккумуляторов подвод-

ных аппаратов является использование гелеобраз-

ного электролита.

Учитывая, что вязкость гелеобразного элек-

тролита в 5–6 раз превышает вязкость обычного

жидкого электролита, заполнение герметичных ак-

кумуляторов гелеобразным электролитом, как пра-

вило, проводят при вакуумировании аккумулятора.

Наиболее распространёнными в мировой практике

являются следующие способы заливки гелеобраз-

ным электролитом.

1. Заполнение ячейки самотеком электролита.

Это наиболее медленный способ, который к то-

му же приводит к неравномерному распределению

электролита по объёму электродного блока. Способ

применяется для аккумуляторов, в которых отно-

шение высоты электрода к толщине сепаратора не

превышает 50.

2. Заливка 60% электролита самотеком и по-

следующее вакуумирование аккумулятора. Далее

добавляют оставшийся электролит.

3. Вакуумирование аккумулятора с последу-

ющим добавлением 35% электролита и повтор-

ным вакуумированием. Далее добавляют еще 35%

электролита, аккумулятор вакуумируют и заливают

оставшиеся 30% электролита.

Вакуумирование можно производить в «мяг-

ком» вакууме, когда давление несколько ниже атмо-

сферного, и в «жестком» вакууме — при давлении

не выше 2 кПа. В последнем случае гарантируется

быстрое заполнение пластин электролитом.

Однако применение эластичных баков созда-

ет проблемы при выполнении операции заполне-

ния под вакуумом, так как при этом происходит

значительная деформация стенок бака. С другой

стороны, отказ от вакуумирования не позволяет

качественно заполнить аккумуляторы гелеобразным

электролитом.

С целью повышения эффективности заполне-

ния электродов электролитом нами была предложе-

на двухстадийная технология заполнения аккуму-

ляторов без применения вакуумирования. На пер-

вой стадии аккумуляторы заливали жидким элек-

тролитом (раствор серной кислоты с плотностью

1.28 г/см3). После выдержки, в течение кото-

рой электролит заполнял поры электродов, жид-

кий электролит сливали и аккумуляторы заполня-

ли гелеобразным электролитом. Гелеобразный элек-

тролит готовили путем смешения серной кислоты

с плотностью 1.28 г/см3 и аэросила SiO2(5мас.%).

Эффективность двухстадийной технологии за-

полнения была проверена на основе проведе-

ния сравнительных испытаний путем непрерыв-

ного циклирования герметичных аккумуляторов

с номинальной емкостью 110 А·ч, изготовленных

с использованием различных технологий заполне-

ния электролитом. Были испытаны аккумуляторы

с заполнением гелеобразным электролитом без ва-

куумирования и заполнением по вышеописанной
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двухстадийной технологии. Циклирование проводи-

ли путем чередования четырёхступенчатых зарядов

и разрядов током 5-часового режима в течение

трех часов. Через каждые 20 циклов проводили

контрольный разряд током 10-часового режима до

конечного напряжения 1.75 В.

На рис. 2 представлены результаты сравни-

тельных испытаний герметичных аккумуляторов

с различными технологиями заполнения электро-

литом. Из рис. 2 видно, что применение двухста-

дийной технологии заполнения позволяет повысить

емкостные характеристики герметичных аккумуля-

торов. Это связано с повышением коэффициента

использования активных масс за счет более каче-

ственного заполнения электродов электролитом.

На рис. 3 показаны значения напряжения

в конце заряда аккумуляторов, изготовленных

с применением различной технологии заполнения
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Рис. 2. Изменение емкости на 10-часовом режиме разряда
в процессе циклирования герметичных аккумуляторов с раз-
личными технологиями заполнения электролитом: заполнение
гелеобразным электролитом без вакуумирования (∆), двухста-

дийная технология заполнения (�)

электролитом. При отсутствии процесса рекомби-

нации кислорода напряжение в конце заряда опре-

деляется потенциалами двух газовых электродов,

работающих независимо, и составляет 2.70–2.75 В.

При формировании газовых каналов в межэлек-

тродном пространстве и протекании процесса кис-

лородной рекомбинации напряжение в конце за-

ряда снижается до значений 2.30–2.50 В за счет

деполяризации отрицательного электрода. Степень

снижения напряжения аккумулятора определяется

скоростью восстановления кислорода на отрица-

тельном электроде. На рис.3 видно, что в течение

первых ста циклов формирование газовых кана-

лов в межэлектродном пространстве аккумуляторов

неустойчиво. В дальнейшем рекомбинация кисло-

рода достаточно стабильна, о чем свидетельствует

устойчивое снижение напряжения в конце заряда.

Следует отметить, что для аккумуляторов, запол-

ненных электролитом по двухстадийной техноло-

гии, напряжение в конце заряда ниже, чем для

аккумуляторов, заполненных только гелеобразным

электролитом. Это указывает на то, что эффектив-

ность кислородного цикла для таких аккумуляторов

выше, что может быть связано с менее затруд-

ненным выходом кислорода на внешнюю границу

электрода с последующим формированием газовых

каналов.
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Рис. 3. Изменение конечного зарядного напряжения в процессе
циклирования герметичных аккумуляторов с различной тех-
нологией заполнения электролитом: заполнение гелеобразным
электролитом без вакуумирования (◦), двухстадийная техноло-

гия заполнения (•)

Для проведения испытаний герметичных

свинцовых аккумуляторов в баках из термоэласто-

пласта в условиях высокого внешнего гидростати-

ческого воздействия были изготовлены аккумулято-

ры с номинальной емкостью 170 А·ч. Положитель-

ные токоотводы отливали из сплава Pb-Sb-Sn-Se,

а отрицательные — из сплава Pb-Ca. Была ис-

пользована двухстадийная технология заполнения

аккумуляторов электролитом. Гелеобразный элек-

тролит готовили путем смешения серной кислоты
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с плотностью 1.28 г/см3 и 5 мас.% аэросила (SiO2).
Было испытано 3 аккумулятора.

Испытания аккумуляторов включали в себя

следующие этапы:

1) циклирование аккумуляторов с целью на-

бора емкости (9 циклов);

2) проведение контрольного разряда током

в нормальных условиях (цикл № 10);

3) проведение контрольного разряда в услови-

ях высокого гидростатического воздействия (цикл

№ 11);

4) проведение контрольного разряда в нор-

мальных условиях (цикл № 12);

5) разборка аккумуляторов с целью оценки

состояния электродного блока после испытаний на

воздействие внешнего давления.

Разряды на этапе набора емкости проводили

током 8.5 А. Все контрольные разряды проводили

током 17 А до конечного напряжения 1.75 В.

Испытания на воздействие внешнего гидро-

статического давления проводили в специальной

гидробарокамере. Давление во время контрольного

разряда составляло 5.1 МПа.

В таблице показано изменение емкости ак-

кумуляторов в процессе проведения контрольных

разрядов №10–12. Из таблицы видно, что аккумуля-

торы в баке из термоэластопласта сохраняют свою

работоспособность при воздействии на них высоко-

го внешнего гидростатического давления. Отмечено

некоторое повышение емкости для аккумуляторов,

разряжаемых под давлением, что связано со сниже-

нием газозаполнения аккумулятора и повышением

использования активных масс.

Результаты испытаний

№ цикла
Разрядная ёмкость на 10-часовом режиме, А·ч

Аккумулятор
№1

Аккумулятор
№2

Аккумулятор
№3

10 170 172 175

11 175 176 177

12 173 173 175

Удельная объемная энергия аккумулятора в ба-

ке из термоэластопласта составляет 81.6 Вт·ч/дм3.

Удельная объемная энергия промышленно вы-

пускаемого аккумулятора номинальной емкостью

200 А·ч, предназначенного для работы за бортом

подводного аппарата и имеющего внешний компен-

сатор давления, составляет 65–70 Вт·ч/дм3. Таким

образом, использование бака из термоэластопласта

позволяет увеличить объемную удельную энергию

аккумулятора на 11–16%.

На рис.4 показан электродный блок аккуму-

лятора с баком из термоэластопласта после испы-

таний на воздействие внешнего гидростатического

давления. Осмотр электродного блока показал от-

сутствие каких-либо деформаций и разрушений.

Рис. 4. Внешний вид электродного блока аккумулятора с ба-
ком из термоэластопласта после испытаний на воздействие

внешнего гидростатического давления

ЗАКЛЮЧЕНИЕ

В работе показана возможность примене-

ния баков из термоэластопласта для герметичных

свинцово-кислотных аккумуляторов, работающих

за бортом подводных аппаратов. Применение таких

баков позволяет исключить из конструкции акку-

муляторов внешние компенсационные устройства

и, соответственно, повысить их удельные объемные

характеристики.

Показано, для применения баков из термоэла-

стопласта необходимо использование в аккумуля-

торе гелеобразного электролита, что обеспечивает

снижение свободного газового объема.
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