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Рассмотрен электрохимический способ очистки воздуха от углекислого газа при работе электрохимической ячейки
в режиме кислородного насоса. Предложен механизм удаления СО2. Рассмотрено влияние ряда параметров на процесс
удаления СО2. Предложена схема использования модуля очистки воздуха от СО2 в комплекте с батареей щелочных
топливных элементов. Предложен способ декарбонизации щелочного электролита.
Ключевые слова: щелочной водородно-кислородный топливный элемент, электрохимический способ очистки воздуха,
декарбонизация

The method for air purification from carbon dioxide gas in operating electrochemical cell at oxygen pump mode is
considered. The work suggests a mechanism of CO2 removal. The effect of a number of parameters to CO2 removal is discussed.
A scheme of module application for air purification from CO2 completed with Alkaline Fuel Cell Stack (AFCS) is proposed.
Provided is a method for alkaline electrolyte decarbonization.
Key words: alkaline hydrogen-oxygen fuel cell, electrochemical technique of air purification, decarbonization

ВВЕДЕНИЕ

В работе [1] было показано, что щелочной

водородно-кислородный топливный элемент (ТЭ)

может быть использован для очистки воздуха от

углекислого газа. Такой способ интересен тем, что

в процессе очистки идёт и генерация энергии, т. е.

этот метод практически оказывается энергетиче-

ски беззатратным, но неудобен он тем, что здесь

необходимо иметь постоянную продувку водорода,

поскольку при работе на воздухе будет идти по-

стоянное выделение СО2. Постоянная же продувка

водорода, учитывая взрывоопасность последнего,

вряд ли может быть приемлема во всех случаях,

особенно при использовании ТЭ на транспорте.

В настоящей статье рассматривается другой

электрохимический способ очистки воздуха от уг-

лекислого газа. Этот способ заключается в исполь-

зовании процессов, протекающих в так называемом

«кислородном электрохимическом насосе», когда

на электроды в щелочном электролите подаётся

напряжение, при этом на катоде кислород будет

поглощаться по реакции:

О2 + 2Н2О + 4е−→ 4ОН−, (1)

а на аноде выделяться:

4ОН−− 4е−→ О2 + 2Н2О. (2)

Если же теперь в катодную камеру подать

вместо кислорода воздух, то вместе с электрохи-

мической реакцией поглощения кислорода пойдёт

реакция карбонизации электролита. Как показано

в работе [1], эта реакция, скорее всего, носит хи-

мический характер, поскольку карбонизация имеет

место при наличии СО2 как в водородной камере,

так и в кислородной, т. е. процесс карбонизации не

зависит от потенциала:

СО2 + 2КОН → К2СО3 + Н2О. (3)

На аноде же в этом случае параллельно с ре-

акцией (2) начнётся выделение СО2 по реакции:

2СО2−
3 – 4е−→ 2СО2 + О2. (4)

Поглощение и выделение СО2 в таких услови-

ях подтверждено экспериментально. Анализ элек-

тролита в щелочном топливном элементе после его

работы на воздухе показал наличие в нём только

КОН и К2СО3.

Для повышения эффективности работы очи-

стителя воздуха (декарбонизатора) с точки зрения

снижения энергопотребления и уменьшения количе-

ства кислорода, потребляемого в катодной камере,

необходимо минимизировать на аноде долю реак-

ции (2) при увеличении доли реакции (4).

Следует отметить, что в чистом виде процесс

по реакциям (1), (3), (4) провести пока не удалось,

т. е. вместе с процессом очистки воздуха от СО2

всегда присутствовал процесс перекачки кислоро-

да — реакции (1) и (2).

Для дополнительной проверки высказанных

предположений были проведены специальные экс-

перименты по замене в катодной камере воздуха на

азот, т. е. таким образом была исключена возмож-

ность протекания реакции (1). Все эксперименты,

представленные в этой статье, проводились на той
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же 6-элементной батарее с матричным электроли-

том, что и в работе [1], при этом напряжение

ограничивалось величиной 7 В, а ток −2 А. Воздух

(а затем азот) подавался в катодную камеру, а по

выходе из неё поступал в анодную камеру. Расход

воздуха во всех случаях был равен 6 л/мин через

весь модуль. Содержание СО2 в газах контроли-

ровалось на выходе из обеих камер с помощью

газоанализаторов «Гамма-100». Во избежание вы-

падения осадков карбонатов в камерах газы пе-

ред поступлением в катодную камеру увлажнялись

(см. [1]).

Перед заменой воздуха на азот содержание

СО2 после катодной камеры составляло 4.6 ppm,

а после анодной — 580 ppm, напряжение на модуле

было равно 6.2 В, ток — 2 А. Изменение содержа-

ния СО2 в газе, выходящем из анодной камеры,

в зависимости от времени показано на рис. 1.

Кислород в азоте, поступающем в катодную камеру

в пределах чувствительности прибора «Гамма —

100», отсутствовал.
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Рис. 1. Изменение содержания СО2 на выходе из анодной
камеры при подаче в катодную камеру азота

Эксперимент продолжался в течение 75 минут.

За это время содержание СО2 в газе, выходящем из

анодной камеры, снизилось до 56 ppm; напряжение

вначале повысилось до 7.0 В, а затем постепенно

понизилось до 6.2 В; ток вначале понизился до

1.2 А, а затем повысился до 2.0 А.

При повторной подаче в катодную камеру

воздуха напряжение на батарее установилось на

уровне 5.5 В, ток — на уровне 2 А, содержание СО2

на выходе из анодной камеры поднялось до 400—

450 ppm. Содержание СО2 на выходе из катодной

камеры в течение всех экспериментов находилось

на уровне 410 ppm.

Когда же в катодную камеру подали чистый

кислород (СО2 отсутствует) напряжение и ток со-

хранились на прежнем уровне, а содержание СО2

в газе, выходящем из анодной камеры, хотя и по-

низилось до 180250 ppm, но оставалось достаточно

высоким. Повышение тока на модуле до 5.5 А

(напряжение повысилось до 7 В) привело к увели-

чению скорости выхода СО2 до ∼ 850 ppm.

Таким образом, проведённые эксперименты

показали, что при подаче вместо воздуха азота,

т. е. при исключении реакции (1), процесс декар-

бонизации электролита и выделения СО2 начинает

затухать. При этом мгновенного прекращения про-

цесса не происходит, по нашему мнению, потому,

что в поток азота в катодной камере начинает выде-

ляться адсорбированный на стенках трубопроводов

и растворённый в воде увлажнителя кислород. По

мере расходования этого кислорода выделение СО2

снижается. В конце эксперимента ток установился

на уровне 2 А (∼ 11.4 мА/см2), а напряжение —

на уровне ∼ 6 В (1 В — на элемент), что заметно

меньше напряжения, необходимого для разложения

воды. Причина установления столь высокой вели-

чины остаточного тока в настоящее время не ясна.

Возможно, это связано с восстановлением и окисле-

нием материалов, входящих в состав используемых

в экспериментах анодов и катодов. Возобновление

выделения СО2 после подачи в катодную камеру

воздуха подтверждает, что в процессе проведения

эксперимента с азотом существенной декарбониза-

ции электролита не произошло.

Продолжение выделения углекислого газа по-

сле замены воздуха на чистый кислород и воз-

растание скорости этого выделения с увеличением

тока, на наш взгляд, дополнительно подтвержда-

ет высказанное предположение о том, что про-

цесс выделения СО2 на аноде электрохимической

ячейки из закарбонизованного электролита имеет

электрохимический характер и для его протекания

необходимо обеспечить электрохимическое потреб-

ление О2 на катоде. Снижение скорости выделения

углекислого газа практически в два раза при пере-

ходе с воздуха на чистый кислород, по-видимому,

связано с прекращением поглощения СО2 по реак-

ции (3) на катоде и соответственно с повышением

доли вклада в анодный электрохимический процесс

реакции (2).

В ходе проведённых экспериментов было об-

наружено, что степень увлажнения поступающего

в катодную камеру воздуха не только предотвра-

щает появление в газовых камерах сухих осад-

ков К2СО3, но и существенным образом влияет

на степень очистки воздуха от СО2. Полученные

результаты представлены на рис. 2.
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Рис. 2. Зависимость содержания СО2 в выходящем из катодной
полости воздухе от температуры увлажнения: � — эксперимен-
тальные точки, � — средние значения по экспериментальным
точкам; — — линия аппроксимации; - - — полиномиальная

линия по средним значениям

Из рисунка видно, что существует некото-

рый оптимум по температуре увлажнения возду-

ха, при котором поглощение углекислого газа из

воздуха максимально. При снижении увлажнения

(уменьшение температуры) поглощение СО2 замет-

но ухудшается. Это, по-видимому, связано с тем,

что граница электролита в пористом катоде в этом

случае сдвигается внутрь пористой среды и контакт

молекул СО2 с КОН затрудняется. При чрезмерном

же увлажнении вся пористая поверхность электро-

да покрывается плёнкой щёлочи, и это приводит

к снижению поверхности, участвующей в поглоще-

нии углекислого газа.

На степень очистки воздуха от углекислого

газа заметно влияют пропускаемый через электро-

химическую ячейку ток и концентрация щёлочи,

которой заправлена ячейка. Соответствующие экс-

периментальные зависимости показаны на рис. 3.
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Рис. 3. Зависимость содержания СО2 в воздухе, выходящем из
катодной камеры, от тока нагрузки при различных концентра-
циях заправочной щёлочи: ◦ — 12 ммоль/л; � — 7 ммоль/л;
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Увеличение тока повышает количество обра-

зующихся по реакции (1) ионов ОН−, ускоряя тем

самым реакцию карбонизации. При этом, как уже

указывалось выше, увеличивается и скорость вы-

деления СО2 в анодной камере, что, по-видимому,

является естественным, поскольку повышение тока

ведёт к повышению скорости доставки ионов СО2−
3

к аноду. К сожалению, повышение тока приводит

и к увеличению перетекания кислорода из катодной

камеры в анодную, снижая тем самым концентра-

цию кислорода в очищаемом воздухе. Поэтому как

с точки зрения уменьшения энергетических затрат,

так и с точки зрения снижения нежелательных

потерь кислорода, очистку воздуха от углекислого

газа надо проводить при минимально возможном

токе.

Повышение заправочной концентрации элек-

тролита, как видно из рис. 3, также увеличивает

степень очистки воздуха от СО2. Однако при более

высокой концентрации электролита необходимо бо-

лее жёстко поддерживать температуру увлажнения

воздуха, поступающего в катодную камеру, так как

при недостаточном увлажнении в газовых камерах

возможно образование осадков, а при переувлажне-

нии — вытекание электролита из ТЭ.

Общее время работы модуля-очистителя в ре-

жиме очистки воздуха от СО2 составило более

1000 ч, и в течение всего этого времени при под-

держании оптимальных условий увлажнения мо-

дуль обеспечивал надёжную очистку воздуха от

СО2. На рис. 4 представлен один из этапов работы

очистителя, заправленного щёлочью с концентра-

цией 7 моль/л.
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Рис. 4. Изменение содержания СО2 и кислорода в воздухе,

выходящем из катодных камер батареи во времени: � —

содержание CO2 на выходе; � — ток; × — содержание

кислорода в воздухе на выходе
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Принципиальная схема работы батареи ще-

лочных ТЭ с использованием описанного выше

способа очистки воздуха от СО2 показана на рис. 5.

Воздух, подаваемый в батарею щелочных

топливных элементов 3 насыщаясь парами воды

в увлажнителе 1, проходит через катодную полость

электрохимического модуля 2, где СО2 взаимо-

действует со щелочным электролитом. При этом

образуется карбонат калия, который растворяется

в электролите, а воздух очищается от углекислого

газа. Далее воздух, очищенный от СО2, поступает

в катодные камеры батареи топливных элемен-

тов 3. Выходящий из батареи воздух, обеднённый

по кислороду, подаётся в анодную полость элек-

трохимического модуля 2, где сдувает с анодов

электрохимически выделившийся диоксид углерода

в атмосферу. В качестве анодного газа в батарее

топливных элементов 3 используется водород. В ба-

тарее водород насыщается парами воды и далее

поступает во влагоотделитель 4, где вода конденси-

руется. Насос 5 обеспечивает циркуляцию водорода

в замкнутом контуре «батарея — влагоотделитель».

Вода из влагоотделителя 4 подаётся в увлажни-

тель 1.

В случае если вся вода, нарабатываемая ба-

тареей ТЭ, удаляется с помощью воздуха, влагоот-

делитель должен быть переставлен на воздушную

линию и вода из него подаваться в увлажнитель.

Рассмотренный способ очистки воздуха от

СО2 может применяться для обеспечения непре-

рывной длительной устойчивой работы водород-

воздушных ТЭ со щелочным электролитом в тече-

ние сотен и даже тысяч часов.

Поскольку содержание СО2 в воздухе невели-

ко (300400 ppm), энергетические затраты на прове-

дение такой очистки также не будут чрезмерными.

Наши предварительные оценки по результатам про-

ведённых экспериментов с учётом сопровождающе-

го процесс очистки перетекания кислорода показы-

вают, что энергетические затраты на этот процесс

не будут превышать 4 % от полной электрохими-

ческой мощности батареи топливных элементов.

Опыт работы с электрохимическим генерато-

ром «Фотон» показал, что даже при работе на срав-

нительно чистых с технической точки зрения водо-

роде и кислороде (по ГОСТ 302280 и ГОСТ 358378

соответственно) в электролите накапливается кар-

бонат калия. В работе [2] показано, что через

5000 ч функционирования ∼ 40 % КОН перешло

в К2СО3. При этом напряжение каждого ТЭ при

плотности тока 220 мА/см2 в среднем понизилось

на ∼ 130 мВ. Оказалось, что 75 % этих потерь

можно вернуть путём замены закарбонизованного

электролита на чистый. Таким образом, при ра-

боте со щелочными ТЭ опасность карбонизации

электролита есть практически всегда, и поэтому

Рис. 5. Схема функционирования батареи щелочных топливных элементов с электрохимическим модулем
очистки воздуха от СО2
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Электрохимический способ очистки воздуха от СО2

необходим метод периодической очистки батареи

щелочных ТЭ от карбонатов калия. Один из таких

методов прямо вытекает из результатов экспери-

ментов, описанных в этой работе. Для проведения

декарбонизации необходимо в кислородные камеры

подать кислород, а водородные камеры продувать

любым инертным газом, например азотом. При по-

даче на электроды соответствующего напряжения

на катоде (кислородном электроде) начнётся погло-

щение кислорода по реакции (1), а на аноде (во-

дородном электроде) — выделение СО2 по реакции

(4), причём такая очистка щёлочи от карбонатов

может проводиться на батарее как с циркулирую-

щим, так и с матричным электролитом.
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