МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУ-ДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕРЖДАЮ

Директор Института физики СГУ

(24 » Luciant 202

Рабочая программа дисциплины

ОПТИКА

Направление подготовки бакалавриата 12.03.04 Биотехнические системы и технологии

> Профиль подготовки бакалавриата **Медицинская фотоника**

Квалификация (степень) выпускника Бакалавр

Форма обучения очная

Саратов, 2023

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Березин К.В.	M	22.05.23
Председатель НМК Института физики СГУ	Скрипаль А.В.	Agra-	23.05.23
Заведующий кафедрой СГУ	Тучин В.В.		22.05.23
Специалист Учебного управления СГУ	,		

1. Цели освоения дисциплины

Целью освоения дисциплины «Оптика» является освоение фундаментальных разделов физики посвященных свету и оптическим явлениям.

Изучение дисциплины «Оптика» призвано также обеспечить:

- формирование современного естественнонаучного мировоззрения у студентов;
- расширение их научно-технического кругозора;
- развитие когнитивных и исследовательских умений;
- повышение уровня учебной автономии, способности к самообразованию.

Достижение указанных целей призвано, в конечном счете, дать возможность будущему бакалавру получить высшее образование в области физики, которое позволит ему успешно работать в избранной сфере деятельности в $P\Phi$ и за рубежом, обладать общекультурными, общепрофессиональными и профессиональными компетенциями, способствующими его социальной мобильности, востребованности на рынке труда и успешной профессиональной карьере.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина Б1.О.12 «Оптика» относится к Обязательной части Блока 1 - Дисциплины (модули) учебного плана. Преподавание дисциплины осуществляется в 4 семестре. Для усвоения дисциплины обучаемый должен обладать базовой физико-математической подготовкой, необходима содержательно-методическая взаимосвязь с математическими дисциплинами («Математический анализ и ТФКП», «Аналитическая геометрия и линейная алгебра», «Векторный и тензорный анализ», и физическими дисциплинами («Механика», «Молекулярная физика», «Электричество и магнетизм»).

Студенты должны иметь навыки самостоятельной работы с учебными пособиями и монографической учебной литературой, уметь решать требующие задачи, применения дифференциального интегрального математического аппарата, уметь производить приближенные преобразования аналитических выражений, иметь навыки работы на компьютере с математическими пакетами программ (например, MathCad, MatLab, Mathematica), графическим (например, OriginPro), графическим пакетом для схемных решений (например, CorelDraw) и текстовыми (например, MS Word, MS Excel) редакторами, уметь программировать и использовать численные методы решения физических задач, иметь навыки работы на физических экспериментальных установках, уметь оформлять результаты экспериментов с использованием графического материала и с оценкой погрешностей измерений.

Знания, полученные при освоении дисциплины «Оптика», необходимы при освоении следующих дисциплин «Атомная и ядерная физика»,

«Электродинамика биологических сред», а также ряда специальных дисциплин, связанных с волновой физикой.

3. Результаты обучения по дисциплине «Оптика»

Код и наименование	Код и наименование	Результаты обучения
компетенции	индикатора (индикаторов)	
,	достижения компетенции	
УК-1. Способен	1.1 Б.УК-1. Анализирует	Знать:
осуществлять поиск,	задачу, выделяя ее базовые	теоретические основы
критический анализ и синтез	составляющие. Осуществляет	оптических методов
информации, применять	декомпозицию задачи.	мониторинга, измерения и
системный	2.1 Б.УК-1. Находит и	диагностики биологических
подход для решения	критически анализирует	объектов.
поставленных задач	информацию, необходимую	Уметь:
	для решения поставленной	
	задачи.	использовать оптические
	3.1 Б.УК-1. Рассматривает	когерентные методы
	различные варианты решения	измерений, анализировать
	задачи, оценивая их	возможности их применения
	достоинства и недостатки.	в зависимости от
	4.1_ Б.УК-1. Грамотно,	поставленной задачи.
	логично, аргументированно	Владеть:
	формирует собственные	способностью к анализу
	суждения и оценки.	поставленной задачи,
	Отличает факты от мнений,	пониманию используемых
	интерпретаций, оценок и т.д.	методов и их границ
	в рассуждениях других	применимости.
	участников деятельности.	
	5.1_ Б.УК-1. Определяет и	
	оценивает практические	
	последствия возможных	
7770.0	решений задачи.	
УК-2. Способен определять	1.1_Б.УК-2. Формулирует в	Знать: Формулирует в
круг задач в рамках	рамках поставленной цели	рамках поставленной цели
поставленной цели и	проекта совокупность	проекта совокупность
выбирать оптимальные	взаимосвязанных задач,	взаимосвязанных задач,
способы их решения, исходя	обеспечивающих ее	обеспечивающих ее
из действующих правовых	достижение. Определяет	достижение. Определяет
норм, имеющихся ресурсов и	ожидаемые результаты	ожидаемые результаты
ограничений	решения выделенных задач.	решения выделенных задач.
	2.1_Б.УК-2. Проектирует	Уметь: Проектирует решение конкретной задачи проекта,
	решение конкретной задачи проекта, выбирая	выбирая оптимальный способ
	проекта, выоирая оптимальный способ ее	ее решения, исходя из
	решения, исходя из	действующих правовых норм
	действующих правовых норм	и имеющихся ресурсов и
	и имеющихся ресурсов и	ограничений.
	ограничений.	Владеть: Решает конкретные
	3.1_ Б.УК-2. Решает	задачи проекта заявленного
	конкретные задачи проекта	качества и за установленное
	заявленного качества и за	время. Публично
	установленное время	представляет результаты
	4.1 Б.УК-2. Публично	решения конкретной задачи
	D.0 It 2. 11 y 0.111 1110	решения конкренной задачи

	представляет результаты решения конкретной задачи проекта.	проекта.
УК-3. Способен	1.1 Б.УК-3. Понимает	Знать: Понимает
осуществлять социальное	эффективность	эффективность
взаимодействие и	использования стратегии	использования стратегии
реализовывать свою роль в	сотрудничества для	сотрудничества для
команде	достижения поставленной	достижения поставленной
коминде	цели, определяет свою роль в	цели, определяет свою роль в
	команде.	команде. Понимает
	2.1_Б.УК-3. Понимает	особенности поведения
	особенности поведения	выделенных групп людей, с
	выделенных групп людей, с	которыми
	которыми	работает/взаимодействует,
	работает/взаимодействует,	учитывает их в своей
	учитывает их в своей	деятельности (выбор
	деятельности (выбор	категорий групп людей
	категорий групп людей	осуществляется
	осуществляется	образовательной
	образовательной	организацией в
	организацией в	зависимости от целей
	зависимости от целей	подготовки – по возрастным
	подготовки – по возрастным	особенностям, по
	особенностям, по	этническому или
	этническому или	религиозному признаку,
	религиозному признаку,	социально незащищенные
	социально незащищенные	слои населения и т.п.).
	слои населения и т.п.).	Уметь: Предвидит
	3.1 _ Б.УК-3. Предвидит	результаты (последствия)
	результаты (последствия)	личных действий и планирует
	личных действий и планирует	последовательность шагов
	последовательность шагов	для достижения заданного
	для достижения заданного	результата.
	результата.	Владеть: Эффективно
	4.1 Б.УК-3. Эффективно	взаимодействует с другими
	взаимодействует с другими	членами команды, в т.ч.
	членами команды, в т.ч.	участвует в обмене
	участвует в обмене	информацией, знаниями,
	информацией, знаниями,	опытом и презентации
	опытом и презентации	результатов работы команды.
	результатов работы команды.	
УК-6. Способен управлять	1.1_Б.УК-6. Применяет	Знать: Применяет знание о
своим временем, выстраивать	знание о своих ресурсах и их	своих ресурсах и их пределах
и реализовывать траекторию	пределах (личностных,	(личностных, ситуативных,
саморазвития на основе	ситуативных, временных и	временных и т.д.) для
принципов образования в	т.д.) для успешного	успешного выполнения
течение всей жизни	выполнения порученной	порученной работы.
	работы.	Понимает важность
	2.1_Б.УК-6. Понимает	планирования перспективных
	важность планирования	целей деятельности с учетом
	перспективных целей	условий, средств, личностных
	деятельности с учетом	возможностей, этапов
	условий, средств, личностных	карьерного роста, временной
	возможностей, этапов	перспективы развития

ОПК-1. Способен применять	карьерного роста, временной перспективы развития деятельности и требований рынка труда. 3.1_Б.УК-6.Реализует намеченные цели деятельности с учетом условий, средств, личностных возможностей, этапов карьерного роста, временной перспективы развития деятельности и требований рынка труда. 4.1_Б.УК-6.Критически оценивает эффективность использования времени и других ресурсов при решении поставленных задач, а также относительно полученного результата. 5.1_Б.УК-6.Демонстрирует интерес к учебе и использует предоставляемые возможности для приобретения новых знаний и навыков. 1.1_Б.ОПК-1. Использует	деятельности и требований рынка труда. Уметь: Реализует намеченные цели деятельности с учетом условий, средств, личностных возможностей, этапов карьерного роста, временной перспективы развития деятельности и требований рынка труда. Владеть: Критически оценивает эффективность использования времени и других ресурсов при решении поставленных задач, а также относительно полученного результата. Демонстрирует интерес к учебе и использует предоставляемые возможности для приобретения новых знаний и навыков.
естественнонаучные и общеинженерные знания,	знания математики в инженерной практике при	математики в инженерной практике при моделировании
методы математического анализа и моделирования в	моделировании биотехнических систем.	биотехнических систем. Уметь: Употребляет знания
инженерной деятельности, связанной с разработкой,	2.1_Б.ОПК-1. Употребляет знания естественных наук в	естественных наук в инженерной практике
проектированием,	инженерной практике	проектирования
конструированием,	проектирования	биотехнических систем и
технологиями производства и	биотехнических систем и	медицинских изделий.
эксплуатации	медицинских изделий. 3.1 Б.ОПК-1. Практикует	Владеть: Практикует
биотехнических систем	общеинженерные знания в	общеинженерные знания в инженерной деятельности для
	инженерной деятельности для	анализа и проектирования
	анализа и проектирования	биотехнических систем,
	биотехнических систем,	медицинских изделий.
OHICA C	медицинских изделий.	Э
ОПК-4. Способен понимать принципы работы	1.1_Б.ОПК-4. Понимает	Знать: Понимает процессы, методы поиска, сбора,
принципы расоты современных	процессы, методы поиска, сбора, хранения, обработки,	хранения, обработки,
информационных технологий	предоставления,	предоставления,
и использовать их для	распространения информации	распространения информации
решения задач	и способы реализации таких	и способы реализации таких
профессиональной	процессов и методов.	процессов и методов.
деятельности	2.1_Б.ОПК-4. Выбирает и	Уметь: Выбирает и
	использует современные	использует современные
	информационно-	информационно-
	коммуникационные и	коммуникационные и

	интеллектуальные	интеллектуальные
	технологии,	технологии,
	инструментальные среды,	·
	1 1	инструментальные среды,
	программно-технические	программно-технические
	платформы и программные	платформы и программные
	средства, в том числе	средства, в том числе
	отечественного производства,	отечественного производства,
	для решения задач	для решения задач
	профессиональной	профессиональной
	деятельности.	деятельности.
	3.1_Б.ОПК-4. Анализирует	Владеть: Анализирует
	профессиональные задачи,	профессиональные задачи,
	выбирает и использует	выбирает и использует
	подходящие ИТ-решения.	подходящие ИТ-решения.
ОПК-5. Способен	1.1 Б.ОПК-5. Разрабатывает	Знать: Разрабатывает
участвовать в разработке	текстовую документацию в	текстовую документацию в
текстовой, проектной и	соответствии с	соответствии с
конструкторской	нормативными	нормативными
документации в соответствии	требованиями.	требованиями.
с нормативными	2.1_Б.ОПК-5. Разрабатывает	Уметь: Разрабатывает
требованиями	проектную и	проектную и
Тресования	конструкторскую	конструкторскую
	документацию в	документацию в соответствии
	соответствии с	с нормативными
		требованиями.
	нормативными	Владеть: Современные
	требованиями.	-
		информационно-
		коммуникационные и
		интеллектуальные
		технологии,
		инструментальные среды,
		программно-технические
		платформы и программные
		средства, в том числе
		отечественного производства.
ПК-1. Способен формировать	1.1_Б.ПК-1. Анализирует и	Знать: Анализирует и
технические требования и	определяет требования к	определяет требования к
задания на проектирование и	параметрам, предъявляемые к	параметрам, предъявляемые к
конструирование	разрабатываемым	разрабатываемым
биотехнических систем и	биотехническим системам и	биотехническим системам и
медицинских изделий.	медицинских изделиям с	медицинских изделиям с
	учетом характеристик	учетом характеристик
	биологических объектов,	биологических объектов,
	известных	известных
	экспериментальных и	экспериментальных и
	теоретических результатов	теоретических результатов
	2.1_Б.ПК-1. Находит,	Уметь: Находит,
	корректирует и обосновывает	корректирует и обосновывает
	техническое задание в части	техническое задание в части
	проектно-конструкторских	проектно-конструкторских
	характеристик блоков и узлов	характеристик блоков и узлов
	биотехнических систем и	биотехнических систем и
	медицинских изделий.	медицинских изделий.
	3.1 Б.ПК-1. Осуществляет	Владеть: Осуществляет
<u> </u>		Lungers. Ocymportsiner

поиск и анализ научно-	поиск и анализ научно-
технической информации,	технической информации,
отечественного и	отечественного и
зарубежного опыта, работает	зарубежного опыта, работает
с базами данных.	с базами данных.

4. Структура и содержание дисциплины «Оптика»

Общая трудоемкость дисциплины составляет 180 часов - 5 зачетных единиц, из них: 30 часов - лекции, 60 часов - лабораторные занятия, 30 часов - практические занятия, 24 часа - самостоятельная работа, подготовка к зачету и экзамену — 36 часов.

4.1. Структура дисциплины

№ п/	Раздел дисциплины	Сем	Недел я семес	сам рабо	вклю остоят ту сту	ой рабо чая гельнун дентов ъ (в ча	0 И	Формы текущего контроля успеваемости (по неделям семестра) Формы
П			тра	Лекции	Лаб-ные занятия	Практ. занятия	СР	тромежуточной аттестации (по семестрам)
1	Геометрическая оптика	4	1,2	-	8	2	2	Контрольная работа. Отчет по лаб. раб
2	Электромагнитные волны оптического диапазона. Поляризация света	4	1,2	4	8	2	2	Контрольная работа. Отчет по лаб. раб.
3	Отражение и преломление света	4	3-5	5	8	4	4	Контрольная работа. Отчет по лаб. раб.
4	Оптика анизотропных сред. Кристаллооптика	4	6-9	5	8	4	4	Контрольная работа. Отчет по лаб. раб.
5	Интерференция света	4	10-12	6	12	6	4	Контрольная работа. Отчет по лаб. раб.
6	Дифракция света	4	13-14	6	12	6	4	Контрольная работа. Отчет по лаб. раб.
7	Молекулярная оптика. Нелинейная оптика.	4	15	2	4	4	2	Контрольная работа.
8	Оптика движущихся сред	4	16	2	-	2	2	Контрольная работа.
	Итого:	4		30 60 30 24		24	Экзамен. Зачет	
7	Контроль	4		36				
8	Промежуточная	4						Зачет по

	аттестация				лабораторным работам. Экзамен
9	Общая трудоемкость	4		180	

4.2. Содержание дисциплины

- 1. <u>Введение.</u> Оптика в современной физике и технике. Краткая история развития оптики и основные разделы оптики: геометрическая, волновая, квантовая оптика, техническая оптика, физиологическая и биомедицинская оптика, фотоника.
 - 1. Электромагнитные волны оптического диапазона. Поляризация света
- 2. Оптический диапазон электромагнитных волн. Источники и приемники света. Уравнения Максвелла.

Самостоятельно: уравнения Максвелла в интегральной форме и их физическая интерпретация. Вывод волнового уравнения для электрического поля из уравнений Максвелла.

Волновое уравнение. Уравнение волны. Плоская и сферические волны. Основные характеристики колебаний и волн и их физический смысл (амплитуда, фаза, частота, круговая частота, длина волны, волновое число, волновой вектор, фазовая скорость, фронт волны, волновые поверхности).

Представление колебаний и волн в комплексной форме. Комплексная амплитуда.

- 3. Энергия электромагнитных волн.
 - Плотность потока энергии. Вектор Умова-Пойнтинга. Интенсивность света.
- 4. Немонохроматические волны. Модулированные колебания и волны.

Амплитудная, фазовая, частотная модуляции колебаний и волн.

Разложение волны по гармоническим составляющим.

Волновые цуги. Спектр волнового цуга. Соотношение между длиной цуга и шириной спектрального интервала. Время и длина когерентности волны.

Биения волн. Суперпозиция двух монохроматических волн различной частоты.

Групповая скорость волны. Формула Рэлея для групповой скорости.

5. <u>Поляризация электромагнитных волн.</u> Поперечность электромагнитной волны. Взаимная ориентация векторов электрического E, магнитного H и волнового вектора k в электромагнитной волне.

Самостоятельно: вывод ортогональности векторов E, H, k из уравнений Максвелла.

Линейно (плоско) поляризованная волна; плоскость поляризации.

Круговая (циркулярная) и эллиптическая поляризации.

Случайная (хаотическая) поляризация волны - естественный свет.

- 6. Стоячие электромагнитные волны.
 - Уравнение стоячей волны. Узлы и пучности в стоячей волне. Оптический лазерный резонатор.

Самостоятельно: Опыт Винера по фотографической записи стоячей волны света. Цветная фотография Липпмана. Объемная голограмма Денисюка.

2. Отражение и преломление света

7. Отражение и преломление света на плоской границе раздела двух изотропных диэлектриков.

Законы отражения и преломления.

Формулы Френеля.

Самостоятельно: Вывод формул Френеля для амплитудных коэффициентов отражения света.

8. Следствия из формул Френеля.

Изменение фазы волны на π при отражении.

Изменение состояния поляризации света при отражении и преломлении.

Линейная поляризация отраженного света при отражении под углом Брюстера.

9. Энергетические коэффициенты отражения и пропускания.

Закон сохранения энергии при отражении и преломлении света. Коэффициент отражения при произвольном азимуте линейной поляризации падающего света. Коэффициент отражения естественного и циркулярно поляризованного света.

10. Полное внутреннее отражение.

Предельный угол полного внутреннего отражения. Призмы полного внутреннего отражения. Волоконные и планарные световоды.

Неоднородная волна вблизи границы раздела сред при полном внутреннем отражении. Изменение состояния поляризации света при полном внутреннем отражении.

Самостоятельно: Вывод из формул Френеля выражений для сдвига фазы волны при полном внутреннем отражении. Преобразование линейно поляризованного света в циркулярно поляризованный при полном внутреннем отражении. Параллелепипед Френеля.

11. Самостоятельно: Отражение света поверхностью металлов. Коэффициент отражения металлов. Глубина проникновения преломленной волны. Изменение состояния поляризации линейно поляризованной волны при отражении поверхностью металлов.

3. Оптика анизотропных сред. Кристаллооптика

12. Распространение света в анизотропной среде.

Оптически анизотропные среды. Одноосные и двуосные кристаллы. Обыкновенная и необыкновенная волны в кристалле.

Поверхности лучевых скоростей обыкновенной и необыкновенной волн в одноосном кристалле.

Самостоятельно: Преломление света на границе анизотропной среды. Построения Гюйгенса для одноосных кристаллов.

13. Поляризационные устройства.

Кристаллические фазовые пластинки $\lambda/4$ и $\lambda/2$.

Призма Волластона.

Самостоятельно: призмы Николя, Рошона и Сенармона.

Дихроичные поляризаторы. Поляроиды. Закон Малюса.

Интенсивность света на выходе оптической системы «два поляризатора с кристаллической фазовой пластиной между ними».

Самостоятельно: Жидкие кристаллы и ЖК экраны.

14. Индуцированная оптическая анизотропия.

Самостоятельно: Фотоупругость. Электрооптические эффекты Керра и Поккельса. Оптический эффект Керра. Магнитооптический эффект Керра.

4. Интерференция света

15. Интерференция монохроматических волн.

Условия образования максимумов и минимумов интенсивности. Интерференционные полосы. Интерференционное уравнение. Контраст интерференционных полос.

Самостоятельно: Интерференция двух плоских волн – период полос в зависимости от угла схождения волн. Интерференция двух сферических волн.

16. Интерференция немонохроматических волн.

Взаимная некогерентность волн от физически разных источников. Получение взаимно когерентных волн в оптике – интерференционные устройства и интерферометры.

Интерферометры с делением волны по амплитуде и по волновому фронту. Оптическая разность хода волн в интерференционных устройствах и интерферометрах.

Связь разности фаз волн с их оптической разностью хода. Условия формирования светлых и темных интерференционных полос.

Уравнение интерференции немонохроматических световых волн. Степень взаимной когерентности волн и контраст интерференционных полос.

17. Временная когерентность света.

Соотношения между разностью хода волн и длиной временной когерентности при интерференции света. Интерференция белого света в тонких пленках.

Степень временной когерентности и ее связь со спектром оптического поля. Контраст интерференционных полос и степень временной когерентности.

18. Интерферометры с делением по амплитуде.

Интерферометры Майкельсона и Маха-Цендера.

Самостоятельно: Кольца Ньютона. Интерферометр Физо.

Интерферометры с делением по волновому фронту.

Интерферометр Юнга. Период интерференционных полос Юнга. Бипризма Френеля.

Самостоятельно: бизеркала Френеля, билинза Бийе, зеркало Ллойда. Вывод выражения для периода интерференционных полос Юнга.

19. Поперечная пространственная когерентность.

Роль конечных размеров источника света при интерференции. Длина (радиус) поперечной когерентности волн от протяженного источника.

Эффект поперечной декогерентности волн в интерферометре Юнга.

Звездный интерферометр Майкельсона и его современные модификации.

20. Многолучевая интерференция.

Интерферометр Фабри-Перо. Интенсивность света на выходе интерферометра Фабри-Перо в прошедшем и отраженном свете - формула Эйри.

Применение интерферометра Фабри-Перо в высокоразрешающей спектроскопии.

Лазерный оптический резонатор.

Самостоятельно: Интерференционные светофильтры. Многослойные диэлектрические зеркала. Просветление поверхностей оптических деталей. Фотография Липпмана в натуральных цветах. Голограммы Денисюка.

5. Дифракция света

21. <u>Дифракция света.</u> Принцип Гюйгенса и принцип Гюйгенса-Френеля. Дифракционный интеграл. Дифракция света на круглом отверстии и круглом экране. Зонная теория Френеля. Векторные диаграммы. Пятно Пуассона.

Амплитудная и фазовая зонные пластинки Френеля.

22. <u>Дифракция Фраунгофера - дифракция дальнего поля, дифракция в параллельных лучах.</u> Дифракция Фраунгофера на щели и на прямоугольном отверстии.

Распределение интенсивности в дифракционной картине.

Картина дифракция Фраунгофера на круглом отверстии.

Дифракционная расходимость световых пучков. Дифракционный предел разрешения оптических систем.

23. <u>Дифракционная решетка.</u> Распределение интенсивности в картине дифракции на щелевой дифракционной решетке. Фазовые дифракционные решетки. Отражающие дифракционные решетки. Дифракционный спектрограф.

Самостоятельно: Разрешающая способность дифракционной решетки и дифракционного спектрометра.

24. Объемные дифракционные решетки.

Дифракция Брегга-Вульфа. Дифракция света на акустических волнах.

25. Физические принципы оптической голографии.

Схема записи голограмм и восстановления с голограммы оптического волнового поля. Объектная и опорная волны в голографии.

Самостоятельно: Объемная голограмма Денисюка и восстановление голографического изображения в белом свете. Цифровая голография.

6. Молекулярная оптика. Нелинейная оптика.

26. Распространения света в изотропной диспергирующей среде.

Поляризация среды. Дисперсия света. Уравнение плоской монохроматической волны в поглощающей среде. Закон Бугера.

Волновые пакеты. Групповая скорость волны. Формула Рэлея.

27. Классическая электронная теория дисперсии. Уравнение движения осциллятора во внешнем поле. Дисперсия вдали от линии поглощения. Дисперсия в области линии поглощения - аномальная дисперсия. Дисперсионная кривая и спектральный контур поглощения.

Самостоятельно: Экспериментальные методы исследования аномальной дисперсии. Метод скрещенных призм. Интерференционный метод. Метод "крюков" Рождественского.

28. Эффект вращения направления (плоскости) поляризации при распространении света в веществе.

Естественное вращение плоскости поляризации. Самостоятельно: Опыт Френеля. Сахарометрия. Поляриметры.

Эффект вращения направления линейной поляризации в магнитном поле - эффект Фарадея.

29. Рассеяние света и его закономерности. Индикатриса рассеяния. Поляризация рассеянного света. Закон Рэлея. Молекулярное рассеяние. Объяснение цвета зари и неба.

Неупругое рассеяния света.

30. Нелинейная оптика. Генерация второй гармоники. Самофокусировка световых пучков.

7. Оптика движущихся тел

- 31. Самостоятельно: Скорость света и методы ее определения. Астрономические методы Ремера (по спутникам Юпитера) и Брадлея (метод аберраций).

 Лабораторные методы Физо (метод прерываний) и Фуко (метод вращающегося зеркала). Современные лабораторные методы определения скорости света.
- 32. <u>Проявление движения среды в интерференционных опытах. Опыт Физо. Эффект и интерферометр Саньяка. Оптический интерференционный гироскоп.</u>
 Попытка обнаружения движения Земли оптическим методом опыт Майкельсона.
- 33. <u>Эффект Доплера в оптике. Проявление эффекта Доплера в спектральных исследованиях (частотный сдвиг спектральных линий излучения звезд, доплеровское уширение спектральных линий).</u>

Проявление эффекта Доплера при интерференции и дифракции света. Сдвиг частоты света при дифракции на движущейся дифракционной решетке и на бегущей акустической волне.

ТЕОРЕТИЧЕСКИЙ МИНИМУМ ПО ВОЛНОВОЙ ОПТИКЕ

- 1. Законы отражения и преломления. Показатель преломления.
- 2. Полное внутреннее отражение. Предельный (критический) угол падения.
- 3. Уравнения плоской и сферической волн. Пространственный период волны (длина волны),

частота, волновой вектор, фаза волны.

- 4. Стоячая электромагнитная волна. Узлы и пучности стоячей волны, их период.
- 5. Поляризация света. Линейно поляризованная волна. Циркулярная и эллиптическая поляризации. Хаотически поляризованный свет естественный свет.
- 6. Способы получения линейно, циркулярно или эллиптически поляризованного света.
- 7. Формулы Френеля физический смысл. Следствия из формул Френеля.
- 8. Эффект Брюстера. Угол Брюстера.
- 9. Оптически анизотропная среды. Оптическая ось в анизотропной среде. Обыкновенная и необыкновенная волны в кристалле. Двойное лучепреломление.
- 10. Преобразование состояния поляризации света фазовыми кристаллическими пластинками.
- 11. Поляроиды. Закон Малюса. Поляризационные призмы.
- 12. Интерференция света. Уравнение интерференции монохроматических волн.
- 13. Когерентность света. Взаимная когерентность световых волн.
- 14. Временная когерентность света. Поперечная пространственная когерентность света.
- 15. Интерферометры. Оптическая разность хода. Связь разности фаз с разностью хода волн в интерферометре.
- 16. Интерферометр Юнга. Интерферометр Ньютона. Кольца Ньютона.
- 17. Интерферометр Майкельсона. Интерферометр Маха-Цендера.
- 18. Условия для образования светлых и темных интерференционных полос условия для разности фаз и для разности хода волн.
- 19. Дифракции света. Принцип Гюйгенса и принцип Гюйгенса-Френеля.
- 20. Дифракционная расходимость пучков света. Угол дифракции света на отверстии в непрозрачном экране.
- 21. Предельные поперечные размеры сфокусированного пучка света. Дифракционный предел разрешения оптических систем формирования изображения.
- 22. Амплитудная и фазовая дифракционные решетки. Уравнение для главных максимумов дифракции на дифракционной решетке.
- 23. Спектральные измерения с помощью дифракционной решетки. Дифракционный спектрометр. Разрешение спектральных линий.
- 24. Дифракция света на объемной дифракционной решетке. Уравнение Брегга-Вульфа.
- 25. Принципы оптической голографии.
- 26. Явление рассеяния света. Поляризация рассеянного света.
- 27. Закон Рэлея для рассеянного света. Причина голубой окраски неба и красной зари.
- 28. Дисперсия света. Дисперсия вещества.
- 29. Поглощение света. Закон Бугера.
- 30. Опыт Майкельсона по определению влияния движения Земли на скорость света.
- 31. Эффект и интерферометр Саньяка.
- 32. Эффект Доплера в оптике.

5. Образовательные технологии

При реализации дисциплины «Оптика» используются следующие виды учебных занятий: лекции, консультации, лабораторные работы, контрольные работы, самостоятельные работы.

В рамках лекционных занятий предусмотрены активные формы учебного процесса: разбор конкретных ситуаций, натурные демонстрации и обсуждение наблюдаемых оптических явлений и эффектов, компьютерные демонстрации с использованием современных цифровых систем изобразительной техники.

В рамках практических лабораторных занятий предусмотрены: детальный разбор физических основ основных разделов лекционного курса с решением физических задач по основным разделам содержания дисциплины, выполнением лабораторных работ и выполнение контрольных работ по всем разделам.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию без барьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве. При этом основной формой организации учебного процесса является интегрированное обучение лиц с ограниченными возможностями здоровья, т.е. все студенты обучаются в смешенных группах, имеют возможность постоянно общаться со сверстниками, благодаря чему легче адаптируются в социуме.

Удельный вес занятий, проводимых в интерактивных формах, (миссией) определяется целью программы, особенностью главной контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 30% аудиторных занятий. Занятия лекционного типа для соответствующих групп студентов не могут составлять более 50% аудиторных занятий в соответствии с образовательным стандартом федеральным государственным образования направлению 12.03.04 Биотехнические системы технологии.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

6.1. Виды самостоятельной работы студента:

- изучение теоретического материала по конспектам лекций и рекомендованным учебным пособиям, монографической учебной литературе, справочным источникам;
- изучение теоретического материала с использованием интернет- ресурсов видео лекций по оптике;

- самостоятельное изучение ряда теоретических вопросов, выделенных в программе дисциплины, нерассмотренных на лекциях;
- выполнение комплекса заданий теоретического характера, расчетных и графических по всем разделам дисциплины;
- решение рекомендованных задач из сборников задач по оптике;
- изучение теоретического материала по методическим руководствам к физическому практикуму по оптике.

6.2. Порядок выполнения и контроля самостоятельной работы студентов:

- предусмотрена еженедельная самостоятельная работа обучающихся по изучению теоретического лекционного материала; контроль выполнения этой работы предусмотрен на семинарах по данной дисциплине;
- самостоятельное изучение некоторых теоретических вопросов, выделенных в программе дисциплины и нерассмотренных на лекциях, предусматривается по мере изучения соответствующих разделов, в которых выделены эти вопросы для самостоятельного изучения; контроль выполнения этой самостоятельной работы предусмотрен в рамках промежуточного контроля экзамена по данной дисциплине;
- выполнение и письменное оформление комплекса заданий теоретического характера, расчетных и графических по всем разделам дисциплины предусмотрено фактически еженедельно по мере формулировки этих заданий на лекциях; предусматривается письменное выполнение этой самостоятельной работы с текстовым, включая формулы, и графическим оформлением; контроль выполнения этой самостоятельной работы предусмотрен при завершении изучения каждого раздела дисциплины по представленному в печатном виде отчету по этому виду самостоятельной работы;
- решение рекомендованных задач из сборников задач по оптике предполагается еженедельным при подготовке к семинарам и при усвоении теоретического лекционного материала; контроль выполнения этой работы предусмотрен на семинарах практических занятиях;
- изучение теоретического материала по методическим руководствам к физическому практикуму по оптике предусмотрен еженедельно с отчетом о проделанной работе на занятиях в физическом практикуме по оптике.

6.3. Задания и вопросы для самостоятельной работы студентов по дисциплине «Оптика»

Вопросы из разделов тематического содержания дисциплины:

- Уравнения Максвелла в интегральной форме и их физическая интерпретация.
- Уравнения Максвелла в дифференциальной форме.
- Вывод волнового уравнения для электрического поля из уравнений Максвелла.

- Вывод из уравнений Максвелла свойства ортогональности векторов Е, Н, к
- <u>Стоячие электромагнитные волны.</u> Регистрация стоячих электромагнитных волн: опыт Винера, цветная фотография Липпмана, объемная голограмма Денисюка.
- <u>Отражение и преломление света.</u> Вывод формул Френеля для амплитудных коэффициентов отражения света.
- <u>Полное внутреннее отражение.</u> Вывод из формул Френеля выражений для сдвига фазы волны при полном внутреннем отражении. Преобразование линейно поляризованного света в циркулярно поляризованный при полном внутреннем отражении. Параллелепипед Френеля.
- <u>Отражение света металлами.</u> Отражение света поверхностью металлов. Коэффициент отражения металлов. Глубина проникновения преломленной волны. Изменение состояния поляризации линейно поляризованной волны при отражении поверхностью металлов. Эллипсометрия.
- <u>Оптика анизотропных сред.</u> Преломление света на границе анизотропной среды. Построения Гюйгенса для одноосных кристаллов.
- <u>Поляризационные устройства.</u> Призмы Рошона и Сенармона. Жидкие кристаллы и ЖК экраны.
- <u>Индуцированная оптическая анизотропия.</u> Фотоупругость. Электрооптические эффекты Керра и Поккельса. Оптический эффект Керра. Магнитооптический эффект Керра.
- <u>Интерференция света. Интерферометры с делением по амплитуде.</u> Кольца Ньютона. Интерферометр Физо.
- <u>Интерферометры с делением по волновому фронту.</u> Бизеркала Френеля, билинза Бийе, зеркало Ллойда.
- Многолучевая интерференция. Интерференционные светофильтры. Многослойные диэлектрические зеркала. Просветление поверхностей оптических деталей. **Факультативно**: Фотография Липпмана в натуральных цветах. Голограммы Денисюка.
- <u>Дифракция света. Дифракционная решетка.</u> Разрешающая способность дифракционной решетки и дифракционного спектрометра.
- <u>Физические принципы оптической голографии.</u> Объемная голограмма Денисюка и восстановление голографического изображения в белом свете. Цифровая голография.

Перечень заданий для самостоятельной работы

Электромагнитные волны. Поляризация света

- 1. Записать уравнения Максвелла в интегральной форме, дать толкование физическим величинам, в него входящим, и объяснить физический смысл формул какие явления электромагнетизма они формально определяют.
- 2. С использованием теорем, правил и соотношений векторного анализа преобразовать интегральные уравнения Максвелла в дифференциальную форму.

- 3. Вывести из уравнений Максвелла в дифференциальной форме волновые уравнения для электрического $\vec{E}(\vec{r},t)$ и магнитного $\vec{H}(\vec{r},t)$ волновых полей.
- 4. Показать, что волновое возмущение плоской волны общего вида $\vec{E}(t,z) = \vec{E}(t-z/v)$, распространяющееся вдоль направления z, удовлетворяет волновому уравнению.
- 5. Показать, что уравнения гармонической плоской $\vec{E}(\vec{r},t) = \vec{E}_0 \cos(\omega t k\vec{r} + \phi_0)$ и сферической $\vec{E}(\vec{r},t) = \vec{j} A_0/r \cos(\omega t kr + \phi_0)$ волн являются решениями волнового уравнения.
- 6. Записать уравнение цилиндрической волны, распространяющейся перпендикулярно оси *х* лабораторной системы координат.
- 7. Получить уравнения Гельмгольца для комплексной амплитуды $\vec{U}(\vec{r})$ возмущения $\vec{E}(\vec{r},t) = \vec{U}(\vec{r}) \exp(i\omega_0 t)$ монохроматической волны.
- 8. Используя уравнения Максвелла получить выражение для вектора Умова-Пойнтинга $\vec{S} = \vec{E} \times \vec{H}$ плоской электромагнитной волны.
- 9. Показать, что из уравнений Максвелла следует поперечность электромагнитной волны, $\vec{E} \perp \vec{H} \perp \vec{k}$, и то, что вектора $\vec{E}, \vec{H}, \vec{k}$ составляют правую тройку.
- 10. Показать, что при сложении двух одночастотных линейно поляризованных в ортогональных направлениях волновых колебаний $E_x(z,t)=E_{x0}\cos(\omega t-kz+\phi_x)$ и $E_y(z,t)=E_{x0}\cos(\omega t-kz+\phi_y)$ результирующее колебание имеет эллиптическую поляризацию, если разность фаз колебаний $\Delta \phi_{xy}$ и отношение их амплитуд E_{x0}/E_{y0} имеют произвольные значения.
- 11. Показать, что при сложении взаимно некогерентных линейно поляризованных в ортогональных направлениях волновых колебаний результирующее суммарное колебание имеет хаотическую поляризацию, характерную для естественного света.
- 12. Показать, что ширина спектра волнового цуга Δv обратно пропорциональна временной длительности цуга τ_C , $\tau_c \approx 1/\Delta v$. Обобщить это соотношение ширины спектра Δv и длительности цуга τ_C на хаотическую последовательность волновых цугов и показать, что время когерентность света τ_C обратно пропорциональна ширине его спектра Δv , а длина когерентности света l_c определяется выражением $l_c \approx \lambda_0^2/\Delta \lambda$, где λ_0 средняя длина волны света, $\Delta \lambda$ ширина спектра света в шкале длин волн.

Отражение и преломление света

- 1. На основе принципа Гюйгенса вывести законы отражения $\alpha_1 = \alpha_2$ и преломления $n_1 \sin \alpha_1 = n_2 \sin \alpha_2$ лучей света на границе раздела двух диэлектрических сред.
- 2. Вывести формулы Френеля для амплитудных коэффициентов отражения света (электромагнитной волны) ρ^{\parallel} и ρ^{\perp} на границе раздела двух

диэлектриков. Рассмотреть случаи колебания электрического поля волны в плоскости падения $\rho^{\parallel}(\alpha_0,n_1,n_2)=\rho^{\parallel}(\alpha_0,\alpha_2)$ и перпендикулярно плоскости падения $\rho^{\perp}(\alpha_0,n_1,n_2)=\rho^{\perp}(\alpha_0,\alpha_2)$. Использовать граничные условия непрерывности электрического $\vec{E}(x,y)$ и магнитного $\vec{H}(x,y)$ волновых полей на границах раздела (x,y) сред.

- 3. Построить графики коэффициентов отражения света от границы раздела диэлектрических сред в зависимости от угла падения $\rho^{\parallel}(\alpha_0)$, $\rho^{\perp}(\alpha_0)$ при заданных коэффициентах преломления сред n_1 и n_2 . Рассмотреть случаи, когда $n_1 < n_2$ и когда $n_1 > n_2$. Сделать физические выводы из построенных графиков об изменении состояния поляризации света при отражении, о возникновении фазовых сдвигов, о полном внутреннем отражении.
- 4. Построить графики коэффициентов отражения и пропускания света по мощности пучка света энергетических коэффициентов отражения и пропускания, на границе раздела двух диэлектриков в зависимости от угла падения: $R^{\parallel}(\alpha_0)$, $T^{\parallel}(\alpha_0)$, $R^{\perp}(\alpha_0)$, $T^{\perp}(\alpha_0)$. Рассмотреть случаи $n_1 < n_2$ и $n_1 > n_2$. Построить графики энергетических коэффициентов отражения $R(\alpha_0)$ и пропускания $T(\alpha_0)$ для хаотически поляризованного света естественного света, и циркулярно поляризованного света.
- 5. Используя формулы Френеля, получить выражения для фазовых сдвигов линейно поляризованных волн, испытавших полное внутренне отражение, с направлениями колебаний параллельно и перпендикулярно плоскости падения: $\Delta \phi(\alpha_0) = \phi''(\alpha_0) \phi^{\perp}(\alpha_0)$, в зависимости от угла падения α_0 при заданных коэффициентах преломления сред n_1 и n_2 .
- 6. Изучить принципы распространения света в волоконных световодах на основе явления полного внутреннего отражения света. Вывести формулу для числовой апертуры оптического волокна $NA = n_0 \sin \alpha_0 = \sqrt{n_1^2 n_2^2}$, где n_0 показатель преломления окружающей волокно среды, α_0 угол падения луча света на поверхность торца световедущей сердцевины волокна, n_1 и n_2 показатели преломления сердцевины и оболочки волокна, соответственно.
- 7. Получить выражения для амплитуды колебаний $E_2(z)$ во второй среде при полном внутреннем отражении света в зависимости от расстояния z от границы раздела сред при заданном угле падения α_0 и показателях преломления сред n_1 и n_2 .

Оптика анизотропных сред

1. Используя принцип Гюйгенса и построения Гюйгенса показать ход обыкновенного и необыкновенного лучей света, преломленных на границе изотропной и анизотропной одноосной сред при различных ориентациях оптической оси анизотропной среды по отношению к плоскости падения и границе раздела сред.

- 2. Получить формулу для интенсивности света, прошедшего через систему (поляроид P1, фазовую пластину ФП, поляризатор P2) в зависимости от взаимной ориентации осей пропускания и поляризаторов P1 и P2 и оптической оси фазовой пластины ФП в зависимости от углов между всеми этими осями. Падающий пучок света имеет хаотическую поляризацию естественный свет. Потери на отражение от граней поляроидов и фазовой пластины не учитывать.
- 3. Изучить процесс прохождения и двойного лучепреломления света в призмах Волластона и Сенармона. Получить выражение для угла β между линейно поляризованными лучами на выходе той и другой призм в зависимости от показателей преломления обыкновенного n_o и необыкновенного n_e лучей света в призме и от угла α между делительной гипотенузной, и катетной гранями призм.

Интерференция света

- 1. Получить выражение для интенсивности колебаний в суммарном волновом поле при наложении и интерференции двух монохроматических волн с одинаковыми частотами и одинаковыми направлениями колебаний в зависимости от разности фаз этих волн, используя:
 - а) метод векторных диаграмм для сложения колебаний;
 - б) представление колебаний и волн в комплексной форме.
- 2. Рассмотреть два случая:
 - 1) Сложение скалярных колебаний колебания в складываемых волнах совершаются в одинаковых направлениях;
 - 2) Сложение векторных колебаний между направлениями колебаний в интерферирующих волнах есть некоторых угол β , $0 < \beta \le 90^{\circ}$.
- 3. Получить выражение для интенсивности интерференции монохроматических волн с разными частотами ω_1 и ω_2 . Определить, какой частотой срабатывания должен обладать фотодетектор для наблюдения картины (сигнала) интерференции волн с различными частотами.
- 4. Используя компьютерную математическую программу, например MathCad, построить график изменения интенсивности интерференции немонохроматических волн в зависимости от разности хода волн ∆ в интерференционной системе (интерферометре):
 - а) при заданном частотном спектре волн $g(\omega) = g_0 \exp(-(\omega \omega_0)^2/\Delta\omega^2)$;
 - б) при заданной функции временной когерентности волн $\gamma(\Delta) = \exp\left(-\Delta^2/l_c^2\right)$.
- 5. Используя компьютерную математическую программу, например MathCad, рассчитать и построить изображения интерференционной картины в опыте Ньютона кольца Ньютона:
 - а) в монохроматическом свете;
 - б) в полихроматическом свете (белом свете видимого диапазона) интерференционную картину представить в градациях серого и в цвете.

- 6. Используя формулу Эйри для интенсивности многолучевой интерференции в интерферометре Фабри-Перо и компьютерную математическую программу, например MathCad, построить графики зависимости интенсивности:
 - а) от разности фаз интерферирующих волн при различных коэффициентах отражения R зеркал интерферометра: R=0.09, R=0.1, R=0.5, R=0.8;
 - б) от длины волны λ при заданной разности хода волн в интерферометре.

Дифракция волн

- 1. Используя дифракционный интеграл Френеля-Кирхгофа и компьютерную математическую программу, например MathCad, построить график изменения интенсивности I(z) в поле дифракции света на круглом отверстии в непрозрачном экране вдоль оптической оси z в интервале $\Delta z = z_1 z_2$, соответствующим изменению числа зон Френеля в отверстии от 15 до 0.5: z_1 15 зон Френеля в пределах отверстия; z_2 0.5 первой зоны Френеля в пределах отверстия.
- 2. Используя компьютерную математическую программу, например MathCad, построить графики нормированной интенсивности света $I(\sin\alpha)/I(\sin\alpha=0)$ в картине дифракции Фраунгофера параллельного пучка света на амплитудной дифракционной решетке для различного числа щелей решетки: N=1, N=2, N=3, N=5, N=10, N=30, и т.д.
- 3. Используя графическое построение для распределения интенсивности света в картине дифракции Фраунгофера на дифракционной решетке провести исследование и определить необходимое число штрихов решетки для разрешения спектральных линий натриевого дублета во втором порядке дифракции.
- 4. Разработать и нарисовать с использованием компьютерного графического редактора, например CorelDraw, оптическую схему записи голограмм в сходящихся объектном и опорном пучках света. Определить необходимую пространственную разрешающую способность фотодетектора (фотопластинки, фототермопластика и т.д., матричного фотодетектора), используемого для записи голограммы по разработанной схеме с учетом углов падений пучков света на фоторегистратор.
- 5. Нарисовать схему восстановления с аналоговой голограммы объектной волны света и наблюдения мнимого изображений объекта.

Молекулярная оптика. Нелинейная оптика

- 1. Классическая электронная теория дисперсии. Самостоятельно: Экспериментальные методы исследования аномальной дисперсии. Метод скрещенных призм. Интерференционный метод. Метод "крюков" Рождественского.
- 2. Эффект вращения направления (плоскости) поляризации при распространении света в веществе.

- 3. Самостоятельно: Опыт Френеля. Сахарометрия. Поляриметры.
- 4. Оптика движущихся тел Самостоятельно: Скорость света и методы ее определения. Астрономические методы Ремера (по спутникам Юпитера) и Брадлея (метод аберраций). Лабораторные методы Физо (метод прерываний) и Фуко (метод вращающегося зеркала). Современные лабораторные методы определения скорости света.

6.4. Контрольные вопросы и задания для проведения текущего контроля 6.4.1. Вопросы для проведения текущего контроля по лекционным

занятиям Раздел 1: Электромагнитные волны оптического диапазона.

Поляризация света

- 1. Определение абсолютного показателя преломления. Связь $n \in \varepsilon$.
- 2. Волновое уравнение.
- 3. Уравнения плоской и сферической монохроматических волн.
- 4. Длина волны, частота, волновой вектор, фаза волны.
- 5. Запись уравнения волны в комплексном виде. Комплексная амплитуда.
- 6. Уравнение квазимонохроматической волны.
- 7. Графическое представление квазимонохроматических колебаний.
- 8. Спектральное представление колебаний. Интеграл Фурье.
- 9. Связь времени когерентности с шириной частотного спектра. Длина волнового цуга.
- 10. Объемная плотность энергии эл. магн. волны. Вектор Умова-Пойнтинга. Интенсивность света.
- 11. Дисперсия вещества. Групповая скорость света и ее связь с фазовой скоростью.
- 12. Взаимная ориентация векторов $\vec{E}, \vec{H}, \vec{k}$ электромагнитной волны.
- 13. Линейная, круговая, эллиптическая и хаотическая поляризация волн.
- 14. Условия получения линейной и круговой поляризации волны при наложении двух ортогонально линейно поляризованных волн.

Раздел 2: Отражение и преломление света

- 1. Граничные условия для падающего, отраженного и преломленного полей.
- 2. Законы отражения и преломления.
- 3. Предельный угол полного внутреннего отражения.
- 4. Физический смысл формул Френеля.
- 5. Графики для амплитудных коэффициентов отражения при $n_1 < n_2$.
- 6. Графики для амплитудных коэффициентов отражения при $n_1 > n_2$.
- 7. Значение амплитудного коэффициента отражения при нормальном падении при $n_1 = 1, n_2 = 2$.
- 8. Графики для энергетических коэффициентов отражения при $n_1 < n_2$.

- 9. Графики для энергетических коэффициентов пропускания при $n_1 < n_2$.
- 10. Условие Брюстера.
- 11. Коэффициент отражения при произвольном азимуте линейной поляризации.
- 12. Коэффициент отражения для естественного света.
- 13.Получение круговой поляризации при полном внутреннем отражении. Параллелепипед Френеля.
- 14. Поляризация света при отражении от металла. Эллипсометрия.

Раздел 3: Оптика анизотропных сред. Кристаллооптика

- 1. Анизотропная среда. Диэлектрическая проницаемость для анизотропной среды.
- 2. Оптическая ось, главное сечение кристалла.
- 3. Схематическое изображение волновых поверхностей точечного источника в одноосном кристалле.
- 4. Пример построения Гюйгенса на границе анизотропной среды.
- 5. Уравнение для фазовой скорости волны в одноосном кристалле.
- 6. Уравнение для лучевой скорости волны в одноосном кристалле.
- 7. Поляроид.
- 8. Фазовая пластинка $\lambda_0/4$.
- 9. Фазовая пластинка $\lambda_0/2$.
- 10. Закон Малюса.
- 11.Призма Николя.
- 12. Призма Волластона.
- 13. Фотоупругость.
- 14. Эффект Керра.

Раздел 4: Интерференция света

- 1. Уравнение интерференции монохроматических волн.
- 2. График интенсивности света в интерференционной картине в зависимости от разности хода волн.
- 3. Связь разности фаз и разности хода волн.
- 4. Условия для разности фаз и разности хода волн для max и min интерференции.
- 5. Схема интерферометра Майкельсона. Разность хода волн в интерферометре.
- 6. Схема интерферометра Маха-Цендера.
- 7. Схема интерферометра Юнга. Уравнение для периода полос Юнга.
- 8. Радиус пространственной когерентности света. Условие наблюдения полос Юнга.
- 9. Связь времени и длины когерентности света с параметрами его частотного спектра.
- 10.Соотношение между разностью хода волн и длиной когерентности для наблюдения явления интерференции света.
- 11.Схема интерферометра Фабри-Перо.

12. Уравнение Эйри для зависимости интенсивности в интерференционной картине от разности фаз интерферирующих лучей в интерферометре Фабри-Перо.

Раздел 5: Дифракция света

- 1. Принцип Гюйгенса. Принцип Гюйгенса-Френеля.
- 2. Интеграл Френеля-Кирхгофа формальное выражение принципа Гюйгенса-Френеля.
- 3. Формула для радиуса m-ой зоны Френеля.
- 4. Сколько зон Френеля укладывается в пределах круглого отверстия для определенного положения точки наблюдения Р картины дифракции ближнего поля.
- 5. Нарисовать векторную диаграмму для амплитуды поля в дифракционной картине Френеля на круглом отверстии для 5 открытых зон Френеля.
- 6. Условие для min в дифракционной картине Фраунгофера на щели.
- 7. Выражение для угловой расходимости пучка света.
- 8. Условие главных тах дифракции света на дифракционной решетке.
- 9. Разрешающая способность дифракционной решетки.
- 10. Оптическая схема записи голограммы.
- 11. Условие Бреггов-Вульфа для дифракционного порядка дифракции света на объемной дифракционной решетке.

Раздел 6: Молекулярная оптика

- 1. Уравнение движения электрона в атоме в поле световой волны.
- 2. Дисперсионная кривая $n(\omega)$ для газа.
- 3. Формула Коши.
- 4. Формула Лоренц-Лорентца.
- 5. Закон Бугера.
- 6. Уравнение плоской волны в поглощающей среде.
- 7. Формула Релея для интенсивности света, рассеянного в мутной среде.
- 8. Эффект Фарадея.
- 9. Молекулярное рассеяние.
- 10. Объяснение голубого цвета неба.
- 11. В каком направлении рассеянный в мутной среде свет линейно поляризован.
- 12. Выражение для нелинейной поляризации среды в поле световой волны.
- 13. Генерация второй гармоники.
- 14. Причины эффекта самофокусировки света в нелинейной среде.

Раздел 7: Оптика движущихся сред

- 1. Скорость света и методы ее измерения лабораторные и астрономические.
- 2. Проявления эффекта движения среды в интерференционных опытах. Опыт Физо. Эффект Саньяка. Опыт Майкельсона.
- 3. Эффект Допера в оптике.
- 4. Проявление эффекта Доплера в при интерференции и дифракции света.

6.4.2. Контрольные вопросы и задания для проведения текущего контроля по <u>лабораторным</u> занятиям

Геометрическая оптика

- 1. Напишите без вывода общую формулу тонкой линзы и поясните смысл всех величин, входящих в нее.
- 2. Рассмотрите различные случаи построения хода лучей в собирающих и рассеивающих линзах.
- 3. Какими методами определяются фокусные расстояния линз в настоящей работе?
- 4. Какие виды аберраций существуют?
- 5. Как будет вести себя параллельный пучок немонохроматического света, проходя через тонкую линзу?
- 6. Будут ли пересекаться в одной точке параллельно падающие на реальную линзу лучи? Какие из лучей пересекутся ближе к линзе: более удаленные от главной оптической оси или менее удаленные?
- 7. Что изменится у тонкой линзы, если с одной стороны ее находится воздух, а с другой вода?
- 8. Построить ход лучей в идеальной линзе в случаях, когда изображение будет: 1) увеличенным; 2) уменьшенным; 3) прямым; 4) перевернутым; 5) действительным; 6) мнимым. Как расположены при этом друг относительно друга предмет, линза и ее фокусы?
- 9. Как их оценить по данным измерений радиусы кривизны поверхностей линзы?
- 10.Оцените углы между оптической осью и лучами в вашем эксперименте. Можно ли считать такие лучи параксиальными? Примите во внимание кривизну поверхностей линз.
- 11. Каковы основные отличия идеальной оптической системы от реальной? Какие из них вы наблюдали на опыте?
- 12. Каким образом возникают действительные изображения в оптических системах?
- 13.В чем сущность теории идеальной оптической системы? Какими параметрами характеризуется идеальная оптическая система?
- 14. Приведите пример графического построения изображений в оптической системе, используя ее кардинальные точки.
- 15. Какой метод определения кардинальных точек рекомендуется в предлагаемой лабораторной работе?
- 16.Поясните, каким образом явление дифракции света ограничивает разрешающую способность оптических систем.
- 17. Какую величину принимают в качестве меры разрешающей способности оптических систем?
- 18.В чем состоит метод практического определения разрешающей способности оптической системы?

- 19.С помощью каких формул можно вычислить увеличение объективов зрительной трубы и микроскопа, а также увеличение окуляра?
- 20. Где располагается выходной зрачок в зрительной трубе и в микроскопе?
- 21.0т каких параметров зависит увеличение зрительной трубы и микроскопа?
- 22. Как может быть измерено расстояние наилучшего зрения?
- 23. Какими методами измеряется увеличение зрительной трубы и микроскопа?
- 24. Как измеряется поле зрения зрительной трубы?
- 25. Постройте ход лучей в зрительной трубе и микроскопе?
- 26.Сформулировать закон преломления и пояснить физический смысл относительного и абсолютного показателей преломления.
- 27. Сформулировать условия, при которых наблюдается полное внутреннее отражение. Получить формулу для определения предельного угла полного внутреннего отражения. Объяснить зависимость величины предельного угла от длины волны.
- 28. Построить ход лучей в рефрактометре ИРФ-22 при монохроматическом освещении. Какую роль играет в приборе компенсатор дисперсии?
- 29. Как формируется изображение в фокальной плоскости зрительной трубы при освещении белым светом?
- 30.Почему в рефрактометре нельзя вести измерения предельного угла без зрительной трубы? Какова ее роль?
- 31. Что такое компенсатор дисперсии, в чем состоит его действие?

Спектроскопия

- 1. Построить ход лучей в спектрогониометре.
- 2. Объяснить автоколлимационный способ установки зрительной трубы на бесконечность.
- 3. Объяснить методику измерения угла наименьшего отклонения.
- 4. Пояснить смысл угловой дисперсии призмы. Чем определяется расстояние между спектральными линиями?
- 5. Что такое разрешающая сила спектрального прибора? Чем определяется разрешающая сила приборов с призмой?
- 1. На чем основан качественный спектральный анализ?
- 2. Постулаты Бора, схема уровней энергии атома. Переходы с излучением и поглощением.
- 3. Оптическая схема спектрального прибора и назначение отдельных узлов.
- 4. Как формируется изображение входной щели в фокальной плоскости объектива камеры?
- 5. Каково назначение призмы?
- 6. Основные характеристики спектрального прибора: дисперсия, разрешающая способность, светосила.
- 7. Оптическая схема монохроматора УМ-2. Действие призмы постоянного угла отклонения (призма Аббе).

Интерференция света

1. Дать определение интерференции.

- 2. Основные характеристики колебаний и волн и их физический смысл (частота, период, круговая частота, волновое число, скорость распространения волны, длина волны, амплитуда, фаза).
- 3. Сложение гармонических колебаний. Условия максимума и минимума энергии суммарного колебания.
- 4. Вывод формулы, связывающей разность фаз с разностью хода.
- 5. Построить векторную диаграмму для сложения двух гармонических колебаний.
- 6. Какова оптическая схема и методика интерференционного контроля качества оптических деталей?
- 7. Что такое пробное стекло и каким требованиям оно должно удовлетворять?
- 8. Получите математическое условие интерференции световых лучей в воздушном зазоре между пробным стеклом и испытуемой деталью.
- 9. Дайте определение общей и местной ошибок и поясните порядок их нахождения на конкретных примерах
- 10.Вывод формулы для разности хода интерферирующих лучей в схеме наблюдения колец Ньютона.
- 11. Объяснение формы наблюдаемых интерференционных полос и их окраски.
- 12. Что такое время разрешения фотоприемника?
- 13. Что такое время и длина когерентности?
- 14. Построить ход лучей в интерференционной схеме Юнга.
- 15.Получить разность хода от двух когерентных источников.
- 16. Сформулировать условия максимума и минимума интенсивности в интерференционной картине.
- 17. Почему при использовании в схеме Юнга лазера, первого отверстия S не нужно?
- 18. Что такое радиус пространственной когерентности?
- 19.Получить формулу для расчета разности хода от двух когерентных источников света.
- 20.Сформулировать условия максимумов и минимумов интенсивности света в интерференционной картине.
- 21.Получить формулу для определения периода схемы Юнга.
- 22.Почему при освещении щелей в схеме Юнга светом с взаимно ортогональной поляризацией интерференция отсутствует?
- 23.Чем ограничивается число наблюдаемых полос в двухлучевой интерференционной картине?
- 24. Чем вызываются смещения интерференционных полос?

Дифракция света

- 1. Запишите условие максимумов интенсивности в случае дифракции Фраунгофера на дифракционной решетке.
- 2. Чем определяется число максимумов, практически наблюдаемых в случае двух щелей?

- 3. Чем определяется контрастность дифракционной картины в случае квазимонохроматического облучения от протяженного источника? Как она связана со степенью когерентности волн, приходящих от разных шелей?
- 4. Чем определяется величина вводимой компенсатором разности хода?
- 5. На чем основан принцип действия прибора ЛИР-2? Какие величины могут быть измерены с помощью этого прибора?
- 6. Каким образом осуществляется наблюдение дифракционной картины в данной работе? Каково назначение цилиндрического окуляра?
- 7. Дифракционная решетка как спектральный прибор. Условие главных максимумов, интенсивность света в главных максимумах, расстояние между главными максимумами для света с различными длинами волн.
- 8. Какова амплитуда суммарной волны, приходящей от одной щели в произвольную точку экрана? Как складываются волны от разных щелей?
- 9. Изобразите графически распределение интенсивности при дифракции света на решетке с известным числом щелей и заданным отношением периода решетки к ширине щели.
- 10.Предельная ширина главного максимума. Условие разрешения близких спектральных линий. Разрешающая способность дифракционной решетки.
- 11.Вывести формулы для радиуса зоны и ее площади.
- 12. Сравнить интенсивности света в точке Р при полностью открытом отверстии и при открытой половине первой зоны.
- 13. Как будет влиять на результаты измерений увеличение диаметра точечной диафрагмы в фокальной плоскости коллиматора?
- 14. Оценить погрешность из-за предположений о малости фокусного расстояния f_2 и величины AB относительно b.

Поляризация света

- 1. Поясните принцип действия призмы Николя. Какая часть энергии падающего света проходит через призму Николя, если падающий свет: а) линейно поляризован, б) циркулярно поляризован, в) естественный?
- 2. Нарисуйте ход лучей в полутеневом сахариметре (с указанием направления колебаний электрического вектора). Как поле зрения разделяется на две части?
- 3. Как объясняется в теории Френеля явление вращения плоскости поляризации света в оптически активных веществах?
- 4. Выведите формулу для угла поворота плоскости поляризации в оптически активной среде.
- 5. Дайте определение линейно поляризованного, естественного и частично поляризованного света. Каким образом можно выделить линейно поляризованный свет из естественного?
- 6. Дайте определение эллиптически поляризованного света. Как возникает и какими параметрами характеризуется эллиптически поляризованный свет?

- 7. Как изменяется эллипс поляризации: а) при изменении сдвига фаз исходных колебаний δ ; б) при изменении отношения амплитуд исходных колебаний B/A.
- 8. Чем определяется направление вращения вектора \vec{E} в эллиптически поляризованной волне?
- 9. Какие характеристики эллипса поляризации можно определить методом вращающегося анализатора?
- 10. Объясните, как действует пластинка $\lambda/4$ в качестве компенсатора сдвига фаз.
- 8. Опишите схему экспериментальной установки и назначение отдельных ее элементов.

Искусственная анизотропия

- 1. Нарисовать схему для измерения эффекта Керра.
- 2. Написать формулу, связывающую постоянную Керра с разностью фаз обыкновенного и необыкновенного лучей.
- 3. Как отличить эффект Керра от искусственной анизотропии при механических деформациях.
- 4. Теория Ланжевена.
- 5. Зависимость постоянной Керра от температуры.
- 6. Теория Борна.
- 7. Чем объясняются различия в значениях постоянной Керра для веществ, имеющих близкие значения постоянных моментов и поляризуемостей.
- 8. Объяснить опыты по измерению длительности существования эффекта Керра.
- 9. Применение эффекта Керра.

Поглощение света

- 1. Сделайте вывод закона Бугера. Поясните физический смысл и границы применимости дифференциального и интегрального законов поглощения света.
- 2. Во сколько раз ослабляется поток света в слое вещества, если оптическая плотность равна D?
- 3. Нарисуйте оптическую схему и объясните принцип действия прибора ФЭК-56ПМ (ФМ-56). Каким методом в приборе ФМ-56 поле зрения делится на две части?

Фотометрия

- 1. Назовите основные фотометрические величины сила света, световой поток, освещенность, яркость и их единицы.
- 2. Какие источники света подчиняются закону Ламберта?
- 3. Сформулируйте закон Ламберта.
- 4. Объясните принцип работы фотометров Жоли и Люммера Бродхуна.
- 5. Нарисуйте схему линейного фотометра.

6.5. Контрольные вопросы и задания для проведения промежуточной аттестации по итогам освоения дисциплины - перечень экзаменационных вопросов:

- 1. Уравнения Максвелла. Волновое уравнение. Уравнение волны. Плоская монохроматическая волна. Основные характеристики колебаний и волн и их физический смысл.
- 2. Уравнения плоской, сферической и цилиндрической волн. Гауссов пучок света.
- 3. Представление монохроматических волн в комплексном виде. Комплексная амплитуда волнового поля. Уравнение Гельмгольца.
- 4. Поперечность электромагнитной волны. Взаимная ориентация волнового вектора, векторов электрического и магнитного полей в плоской волне.
- 5. Поляризация плоской монохроматической электромагнитной волны. Типы поляризации электромагнитных волн. Линейно поляризованная волна. Круговая и эллиптическая поляризации.
- 6. Естественный и частично поляризованный свет. Степень поляризации.
- 7. Энергия электромагнитных волн. Плотность потока энергии. Вектор Умова-Пойнтинга. Интенсивность света.
- 8. Стоячие электромагнитные волны. Уравнение стоячей волны. Оптический резонатор.
- 9. Регистрация стоячих электромагнитных волн. Опыт Винера. Цветная фотография Липпмана и объемная голограмма Денисюка.
- 10. Квазимонохроматические волны. Излучение дипольного осциллятора. Разложение по гармоническим составляющим. Временной спектр.
- 11. Модулированные волны. Амплитудная и фазовая модуляции. Волновой цуг конечной длительности. Соотношение между длиной цуга и шириной спектрального интервала.
- 12.Суперпозиция двух плоских монохроматических волн различной частоты. Биения.
- 13. Групповая скорость. Формула Рэлея. Дисперсия света.
- 14. Отражение и преломление света на плоской границе раздела двух изотропных диэлектриков. Вывод законов отражения и преломления.
- 15. Соотношения амплитуд падающей, отраженной и преломленной волн. Вывод формул Френеля. Следствия из формул Френеля.
- 16. Изменение параметров волны при отражении и преломлении. Изменение фазы волны при отражении. Зависимость коэффициента отражения от угла падения. Изменение азимута колебаний линейно поляризованной волны при отражении и преломлении.
- 17.Поляризация света при отражении под углом Брюстера. Брюстеровские окна в газовом лазере.
- 18. Степень поляризации отраженного и преломленного света. Стопа Столетова.
- 19. Энергетические коэффициенты отражения и пропускания. Закон сохранения энергии. Коэффициент отражения при произвольном азимуте линейной поляризации. Коэффициент отражения для естественного света.

- 20.Полное внутреннее отражение. Оптические элементы и приборы, работающие на полном внутреннем отражении. Волоконные и планарные световоды. Волоконная оптика. Неоднородная волна вблизи границы раздела сред. Нарушенное полное внутреннее отражение.
- 21.Изменение состояния поляризации света при полном внутреннем отражении. Параллелепипед Френеля.
- 22.Отражение света поверхностью металлов. Коэффициент отражения металлов. Глубина проникновения преломленной волны. Изменение состояния поляризации линейно поляризованной волны при отражении поверхностью металлов. Эллипсометрия.
- 23. Распространение света в анизотропной среде. Тензор диэлектрической проницаемости. Одноосные и двуосные оптические кристаллы.
- 24.Плоская монохроматическая волна в анизотропной среде. Взаимная ориентация векторов электромагнитного поля. Фазовая скорость волны в анизотропной среде. Обыкновенные и необыкновенные волны.
- 25. Уравнения для лучевых скоростей в одноосном кристалле. Поверхности лучевых скоростей обыкновенной и необыкновенной волн в одноосном кристалле.
- 26.Преломление света на границе анизотропной среды. Построения Гюйгенса для одноосных кристаллов.
- 27.Поляризационные устройства. Кристаллические пластинки. Компенсаторы. Призмы Николя, Волластона. Закон Малюса.
- 28. Дихроичные пластинки, поляроиды.
- 29. Искусственная анизотропия. Фотоупругость. Электрооптические эффекты Керра и Поккельса.
- 30.Интерференция света. Взаимная когерентность волновых процессов. Интенсивность результирующего поля при суперпозиции двух световых волн. Интерференционное уравнение. Условия образования максимумов и минимумов интенсивности.
- 31.Интерференция монохроматических волн точечных источников. Основное уравнение интерференции монохроматических волн (вывод уравнения с использованием векторной диаграммы и комплексной формы записи для уравнения световой волны). Пространственное распределение интенсивности в интерференционной картине. Контраст (видность) интерференционных полос.
- 32.Интерференция плоских волн. Пространственный период полос.
- 33.Интерференция сферических волн. Схема наблюдения полос Юнга и схема наблюдения колец Ньютона. Оптический путь, оптическая разность хода. Связь разности фаз волн с их оптической разностью хода. Условия формирования светлых и темных интерференционных полос. Общая схема интерференции волн точечных источников.
- 34.Интерференция монохроматических волн различной частоты. Зависимость наблюдаемой картины от постоянной времени фотоприемника.
- 35.Интерферометр Майкельсона. Интерферометр Маха-Цендера.

- 36.Интерференция квазимонохроматических волн. Функция взаимной когерентности. световых волн.
- 37. Временная когерентность световых волн. Длина волнового цуга. Время и длина временной когерентности. Соотношения между временем когерентности и шириной спектрального интервала.
- 38.Зависимость видности интерференционных полос от степени временной когерентности. Предельная разность хода и полное число наблюдаемых интерференционных полос.
- 39.Спектральная интерференция (интерференция при больших разностях хода). Фурье-спектроскопия.
- 40.Интерференция квазимонохроматических волн протяженных источников света.
- 41. Пространственная когерентность. Роль конечных размеров источника света. Интерферометр Юнга. Зависимость радиуса пространственной когерентности от угловых размеров источника света.
- 42. Звездный интерферометр Майкельсона и его современные модификации.
- 43.Интерферометр Рэлея. Интерференционные опыты с делением волнового фронта (бипризма Френеля, зеркала Френеля, билинза Бийе, зеркало Ллойда).
- 44.Интерференционные полосы равного наклона и равной толщины. Оптическая разность хода лучей света при отражении от границ плоского прозрачного слоя. Полосы равного наклона. Оптический клин. Полосы равной толщины. Интерференционный опыт Ньютона, кольца Ньютона.
- 45.Влияние временной и пространственной когерентности света при интерференции в тонких пленках.
- 46. Просветление оптики. Интерференционные зеркала.
- 47.Интерференция поляризованных волн. Интерференция ортогонально поляризованных плоских волн. Кристаллическая пластинка между двумя поляроидами.
- 48. Многолучевая интерференция. Интерферометр Фабри-Перо. Распределение интенсивности в интерференционных картинах в проходящем и отраженном излучении. Разность фаз и разность хода лучей в интерферометре Фабри-Перо.
- 49. Лазерный резонатор. Интерференционные светофильтры. Многослойные диэлектрические интерференционные зеркала. Фотография Липпмана в натуральных цветах. Голограммы Денисюка.
- 50. Дифракция света. Принципы Гюйгенса и Гюйгенса-Френеля. Зоны Френеля. Дифракция Френеля на круглом отверстии и круглом экране. Пятно Пуассона. Распределение освещенности в дифракционной картине в поперечном направлении и вдоль оси отверстия.
- 51. Зонная пластинка и ее сравнение с линзой. Линза Френеля.
- 52. Дифракция Фраунгофера. Дифракция Фраунгофера на прямоугольном и круглом отверстии. Дифракционная расходимость световых пучков. Лазерные гауссовы пучки. Дифракционная расходимость излучения полупроводникового лазера.

- 53. Дифракционный предел разрешения оптических систем.
- 54. Дифракционная решетка. Амплитудные и фазовые дифракционные решетки.
- 55. Дифракционная решетка как спектральный прибор. Разрешающая способность дифракционной решетки.
- 56. Физические принципы голографии. Голографические схемы записи и восстановления световых полей.
- 57. Объемные дифракционные решетки. Дифракция Бреггов-Вульфа. Дифракция света на акустических волнах.
- 58. Проявление эффекта Доплера при интерференции и дифракции света.

6.7. Лабораторные работы физического практикума по оптике

Геометрическая оптика

Лабораторная работа № 1. Измерение фокусных расстояний линз при помощи малой оптической скамьи.

Лабораторная работа № 2. Измерение параметров фотообъектива при помощи большой оптической скамьи.

Рефрактометрия, фотометрия, спектральный анализ

Лабораторная работа №1. Определение показателя преломления жидкости при помощи рефрактометра ИРФ-22.

Лабораторная работа №2. Основы фотометрии.

Лабораторная работа №3. Изучение поглощения света с помощью фотометров ФЭК-56ПМ и ФМ-56.

Лабораторная работа № 4. Изучение дисперсии света с помощью спектрогониометра.

Лабораторная работа №5. Качественный спектральный анализ с помощью монохроматора УМ-2.

Поляризация света

Лабораторная работа № 1. Изучение эффекта вращения плоскости поляризации.

Лабораторная работа № 2. Исследование эллиптически поляризованного света.

Интерференция света

Лабораторная работа № 1. Определение качества поверхности оптических деталей методом пробных стекол.

Лабораторная работа № 2. Определение длины волны света при наблюдении колец Ньютона.

Лабораторная работа №3. Изучение интерференции света от двух щелей. Измерение концентрации и показателя преломления растворов с помощью интерферометра ЛИР-2.

Лабораторная работа № 4. Изучение интерференции света от двух отверстий.

Лабораторная работа № 5. Изучение пространственной когерентности света в интерференционной схеме Юнга.

Лабораторная работа № 6. Интерферометр Майкельсона с лазерным источником света.

Дифракция света

Лабораторная работа № 1. Определение длины волны с помощью дифракционной решетки.

Лабораторная работа № 2. Изучение дифракции света на круглом отверстии.

Лабораторная работа № 3. Дифракция света на объемной дифракционной решетке.

7. Данные для учета успеваемости студентов в БАРС

Таблица 2.1. Таблица максимальных баллов по видам учебной деятельности

1	2	3	4	5	6	7	8	9
Семестр	Лек- ции	Лаборат орные занятия	RILE	Самостоятел ьная работа	DATITUDE	Другие виды учебной деятельности	чная	Итого
4 экзамен	20	0	30	20	0	0	30	100
4 зачет	0	40	0	40	0	0	20	100

Лекции

Баллы 0-20.

Посещаемость – 0-10 баллов.

Критерии оценки:

- посещение менее 50% занятий 0 баллов
- посещение от 50% до 70% занятий 2 балла
- посещение от 71% до 80% занятий 4 балла
- посещение от 81% до 90% занятий 6 баллов
- посещение от 91% до 100% занятий 10 баллов

Ответы на контрольные вопросы - 0-10 баллов.

Критерии оценки:

- ответы на контрольные вопросы по 1-2 лекциям 1 балл;
- по 3-4 лекциям 2 балла;
 - по 5-6 лекциям 3 балла;
 - по 7 лекциям 4 балла;
 - по 9-10 лекциям 6 баллов;
 - по 11-12 лекциям -7-8 баллов
 - по 13-14 лекциям 9 баллов
 - по 15 лекциям 10 баллов
 - в остальных случаях— 0 баллов;

Практические занятия

Баллы 0-30.

Посещаемость 0-10 баллов.

Критерии оценки:

- посещение менее 60% занятий 0 баллов
- посещение от 60% до 70% занятий 2 балла
- посещение от 71% до 80% занятий 4 балла
- посещение от 81% до 90% занятий 6 баллов
- посещение от 91% до 100% занятий 10 баллов

Выполнение домашних заданий 0-10 баллов.

Критерии оценки:

- при полностью правильном выполнении студентом домашних заданий – 10 баллов;
- при частично правильном выполнении (правильно выполненных заданий не менее 70%) 7 баллов;
- при частично правильном выполнении (правильно выполненных заданий не менее 40%) 4 балла;
- в остальных случаях -0 баллов.

Выполнение контрольных работ 0-10 баллов.

Критерии оценки:

- не выполнение контрольных работ 0 баллов
- выполнение 1-ой контрольной работы 2 балла;
- 2-х контрольных работ 4 балла;
- 3-х контрольных работ 6 баллов.
- 4-х контрольных работ 8 баллов
- 5-и контрольных работ -10 баллов.

Самостоятельная работа по лекционным занятиям

Баллы 0-20.

Выполнение заданий для самостоятельной работы и оформление отчета по ним в рукописной и печатной формах с представлением численных расчетов, графиков, результатов компьютерного моделирования, рисунков, фотографий - 0-20.

Критерии оценки:

- не выполнение заданий для самостоятельной работы 0 баллов
- выполнение 1-го задания 3 балла;
- 2-х заданий 6 баллов;
- 3-х заданий 9 баллов;
- 4-х заданий 12 баллов;
- 5-ти заданий 16 баллов.
- 6-ти заданий 20 баллов.

Автоматизированное тестирование

Оценивание не предусмотрено.

Другие виды учебной деятельности

Оценивание не предусмотрено

Промежуточная аттестация

Баллы 0-30.

Промежуточная аттестация проходит в форме или устного, или письменного экзамена в виде ответов на два вопроса экзаменационных билетов и двух дополнительных вопросов из перечня контрольных вопросов для проведения промежуточной аттестации. В билетах содержатся 2 вопроса из перечня контрольных вопросов для проведения промежуточной аттестации.

При дистанционном режиме проведения промежуточной аттестации экзамен проходит письменной форме. В билетах содержится два теоретических вопроса и две задачи из разных разделов содержательной части дисциплины.

Критерий оценки ответа на каждый вопрос при проведении промежуточной аттестации:

- на вопрос дан правильный, полный, развернутый ответ (допускаются незначительные погрешности) 12-15 баллов;
- на вопрос дан правильный, но неполный ответ (например, при выводе формулы, изложении метода отсутствуют отдельные логические шаги; допущена ошибка при вычислении; имеются другие неточности) 8-11 баллов;
- на вопрос дан краткий ответ, содержащий только верно сформулированные факты (допускаются незначительные погрешности) 4-5 баллов;
- на вопрос дан краткий ответ, содержащий ошибочные представления и суждения 1-3 балла;
- в остальных случаях -0 баллов.

Таким образом, максимально возможная сумма баллов за лекционные и практические занятия студента за семестр по дисциплине «Оптика» составляет 100 баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине «Оптика» в оценку (экзамен):

80 - 100 баллов	«отлично»
60 – 79 баллов	«хорошо»
30 - 59 баллов	«удовлетворительно»
0 - 30 баллов	«неудовлетворительно»

Лабораторные занятия

Баллы 0-40.

Сдача устного и письменного отчета по лабораторной работе.

Критерии оценки: ответы на четыре теоретических вопроса по данной лабораторной работе при правильном выполнении экспериментальной части лабораторной работы и обработки результатов экспериментов, 0-8 баллов.

- отсутствие ответов на вопросы -0 баллов;
- ответ на один контрольный вопрос 1 балла;
- ответ на два контрольных вопроса 2 балла;
- ответ на три контрольных вопроса 3 баллов;
- ответ на четыре контрольных вопроса 5 баллов.

Предусмотрено выполнение 7-8 лабораторных работ. Максимальное количество баллов -40.

Самостоятельная работа

Баллы 0-40.

Изучение теоретических основ лабораторных работ, проведение экспериментов, обработка результатов экспериментов, оформление отчетов по лабораторным работам в рукописной и/или печатной форме с представлением численных расчетов, графиков, результатов компьютерного моделирования, рисунков, фотографий - 0-40 баллов.

Критерии оценки:

Правильность оформление отчета.

- \bullet отчет оформлен с грубым нарушением предъявляемых требований -0 баллов;
- отчет оформлен с незначительными нарушениями предъявляемых требований 3 балла;
- \bullet отчет оформлен в соответствии с предъявляемыми требованиями 5 баллов.

Промежуточная аттестация

Баллы 0-20.

Промежуточная аттестация проводится по совокупности всех выполненных лабораторных работ.

Критерии оценки:

Количество зачтенных лабораторных работ. За одну зачтенную лабораторную работу выставляется 4 балла.

При наличии 5 зачтенных лабораторных работ сумма баллов составляет максимальное число 20 баллов.

Таким образом, максимально возможная сумма баллов за лабораторные занятия студента за семестр по дисциплине «Оптика» составляет 100 баллов.

Таблица 2.1. Таблица пересчета полученной студентом суммы баллов по дисциплине «Оптика» (лабораторные занятия) в оценку (зачет):

60 баллов и более	«зачтено»
59 баллов и менее	«не зачтено»

- 8. Учебно-методическое и информационное обеспечение дисциплины «Оптика»
- а) литература:
- 8. Учебно-методическое и информационное обеспечение дисциплины «Оптика»
- а) литература:
- 1. Бутиков, Е. И. Оптика: учебное пособие / Е. И. Бутиков. 3-е изд., доп. Санкт-Петербург: Лань, 2021. 608 с. ISBN 978-5-8114-1190-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168365 (дата обращения: 09.02.2022).
- 2. Стафеев, С. К. Основы оптики: учебное пособие / С.К. Стафеев, К.К. Боярский, Г.Л. Башнина. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2021. 336 с. ISBN 978-5-8114-1495-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/169379 (дата обращения: 09.02.2022).
- 3. Калитеевский, Н. И. Волновая оптика: учебное пособие / Н. И. Калитеевский. 5-е изд. Санкт-Петербург: Лань, 2021. 480 с. ISBN 978-5-8114-0666-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/167685 (дата обращения: 09.02.2022).
- 4. Рябухо, В. П. Волновая оптика. Сборник задач: учебное пособие для вузов / В. П. Рябухо. Санкт-Петербург: Лань, 2022. 156 с. ISBN 978-5-8114-8870-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/200372 (дата обращения: 09.02.2022).

б) Интернет-ресурсы:

- 1. Видео лекции: Физика. Оптика. Видеолекции Физгеха: лекторий МФТИ. Лекции С.М. Козела. http://lectoriy.mipt.ru/course/Physics-Optics-SMK-Lects/ http://optics.sgu.ru/lectorium/optics_kozel
- 2. Видео лекции: «Физика. Оптика». Видеолекции Физтеха: лекторий МФТИ. Овчинкин В.А. Дополнительные семинары. http://lectoriy.mipt.ru/course/Physics-Optics-VAO-AdSems/
- 3. Общий физический практикум. Оптика. http://optics.sgu.ru/library/education/laboptics
- 4. Рябухо В.П. Сборник задач по общему курсу физики. Волновая оптика. СГУ. Кафедра оптики и биофотоники. 2011. 100 с. http://optics.sgu.ru/library/education http://library.sgu.ru/uch_lit/51.pdf
- 5. Учебно-методические материалы по оптике, размещенные на Интернет-сайте кафедры оптики и биофотоники http://optics.sgu.ru/library/education
 - 1) Изучение эффекта проявления пространственной когерентности света в интерференционной схеме Юнга в демонстрационном и лабораторном эксперименте, В.П. Рябухо, О.А. Перепелицына, А.А. Чаусский. http://optics.sgu.ru/ media/library/education/pros coher.pdf
 - 2) О локализации интерференционных полос в частично когерентном свете, В.П. Рябухо, О.А. Перепелицына http://optics.sgu.ru/_media/library/education/lowcohinterf.pdf
 - 3) О графических формах отображения состояния поляризации оптических волн, В.П. Рябухо http://optics.sgu.ru/_media/library/education/graph_polarization.pdf
 - 4) О поляризации колебаний оптического поля и поляризации пучка света, В.П. Рябухо http://optics.sgu.ru/_media/library/education/field_polarization.pdf
 - 5) Когерентный и некогерентный свет, С.А. Козлов. http://optics.sgu.ru/_media/library/education/coherence.pdf

программное обеспечение:

- 1. Веб-обозреватели: Microsoft Internet Explorer; Google Chrome; Mozilla Firefox; Opera; Safari, Yandex Browser.
- 2. Средства просмотра текстовых файлов: Adobe Reader; Foxit Reader; Djvureader.
- 3. Графические редакторы: Inkscape, Irfan View, ImageJ, OpenOffice Draw.
- 4. Инженерные расчеты, построения графиков, обработка изображений: GNU Octave, QtiPlot.

рекомендуемая литература:

- 1. Бутиков Е.И. Оптика. С.-Петербург: Невский Диалект: БХВ-Петербург. 2003. 480 с.
- 2. Ландсберг Г.С. Оптика. Издание 5-е. М.: Наука, 1976. 928 с. Издание 6-е. М.: Наука, 2006 928 с.
- 3. Ахманов С.А., Никитин С.Ю. Физическая оптика: Учебник. М.: Изд-во Моск. ун-та, 2004. 656 с. ISBN 5-211-04858-X
- 4. Савельев И. В. Курс общей физики. В 3-х т. Т.2.Электричество и магнетизм. Волны. Оптика. 9-е изд. Уч-е пос-е в 3х томах/И.В. Савельев; М: Астрель АСТ 2005, 2007 336 с:
- 5. Стафеев С.К., Боярский К.К., Башнина Г.Л. Основы оптики. Издательство: С.-П. Изд-во «Питер», 2006. 336 с.
- 6. Сивухин Д. В. Общий курс физики. Учеб. пособие. В 5-ти томах. Т.4. Оптика Учебное пособие для ВУЗ в 5ти томах/ Д.В. Сивухин М; ФИЗМАТЛИТ, 2005-2006 792 с.
- 7. Сборник задач по общему курсу физики. Оптика. / Под ред. Д.В. Сивухина, изд. 4. М.: Наука, 1977. 320 с.
- 8. Горелик Г.С. Колебания и волны. Введение в акустику, радиофизику и оптику. 3-е изд. М.: Φ ИЗМАТЛИТ, 2008. 656 с. ЭБС АЙСБУКС
- 9. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения, пер. с англ. В 2 т. М.: Издво «Интеллект», 2012. Т.1. 760 с. Т2. 784 с.
- 10. Матвеев А.Н. Оптика. М.: Высшая школа, 1985. 351 с.
- 11. Ильичева Е.Н., Кудеяров Ю.В., Матвеев А.Н. Методика решения задач оптики. /Под ред. А.Н.Матвеева. М.: Изд-во Моск. ун-та, 1981. 232 с.
- 12. Федосов И.В. Геометрическая оптика (учебное пособие). Саратов: Сателлит. 2008. 92 с. http://optics.sgu.ru/library/education/geomoptics
- 13. Дитчберн Р. Физическая оптика. M.: Hayka, 1965. 631 с.

9. Материально-техническое обеспечение дисциплины «Оптика»

9.1. Лекционное материально-техническое обеспечение

Комплекс приборов и устройств для физических демонстраций по оптике, кодоскоп для демонстраций оптических явлений и, компьютер и мультимедийный проектор, цифровая камера.

Лекционный демонстрационный комплекс кафедры оптики и биофотоники:

ЛДК-1.	Геометрическая оптика с лазерным пучком света. Расходящийся,
	сходящийся, параллельный, гомоцентрический пучки света.
	Собирающая и рассеивающие линзы. Отражение и преломление
	лазерного пучка. Полное внутреннее отражение. Прямоугольная
	призма, пентапризма и уголковый отражатель.
ЛДК-2.	Поперечность световой волны. Поляроид. Линейная поляризация пучка
	света He-Ne лазера.
ЛДК-3.	Изменение состояния поляризации лазерного пучка света при
	отражении от диэлектрика. Отражение линейно поляризованного
	лазерного пучка под углом Брюстера. Изменение состояния
	поляризации лазерного пучка при полном внутреннем отражении.
	Превращение циркулярно поляризованного пучка в эллиптически
	поляризованный. Частичная и полная поляризация света при
	отражении от поверхности диэлектрика. Угол Брюстера.
ЛДК-4.	Преобразование линейно поляризованного лазерного пучка в
	циркулярно поляризованный пучок. Кристаллическая фазовая
	пластинка $\lambda/4$. Пластинка $\lambda/2$.
ЛДК-5.	Поляризационные призмы Николя, Волластона. Поляроид.
ЛДК-6.	Интерференция поляризованных волн. Анизотропные пластины между
	поляроидами. Наведенная анизотропия. Фотоупругость.
ЛДК-7.	Интерференция света. Интерферометр Майкельсона с
	монохроматическим (лазерным) источником света. Интерференция
	сферических и плоских монохроматических волн. Полосы равной
	толщины и равного наклона в лазерном излучении.
ЛДК-8.	Интерферометр Майкельсона с протяженным источником белого света.
	Эффекты пространственной локализации полос. Влияние временной и
	пространственной когерентности.
ЛДК-9.	Интерференционный опыт Юнга с лазерным и протяженным тепловым
	источниками света. Влияние пространственной когерентности.
	(Использование специального дифракционного оптического элемента).
ЛДК-10.	
	Френеля и Фраунгофера (дифракция ближнего и дальнего полей).
	Зонная пластинка Френеля. Линза Френеля.
ЛДК-11.	
	Фраунгофера). Дифракционные решетки в красном и зеленом лазерных
	пучках света. Амплитудные, фазовые и отражающие дифракционные
	решетки. Одномерные и двухмерные дифракционные решетки.
	Объемная дифракционная решетка. Дифракция Бреггов-Вульфа.

ЛДК-12.	Дифракционные оптические элементы. Пропускающие голограммы.
	Голограммы Денисюка. Радужные голограммы. Голографическая
	интерферометрия.
ЛДК-13.	Дисперсия света и вещества. Разложение пучка белого света на
	спектральные составляющие. Преломление красного и зеленого
	лазерных пучков света.
ЛДК-14.	Рассеяние света мутными средами. Рассеяние линейно
	поляризованного лазерного пучка. Поляризация рассеянного света.

Лекционный демонстрационный комплекс по оптике в коллекции института физики:

ЛД4.1.	Поляризаторы и анализаторы.
ЛД4.2.	Двойное лучепреломление в кристаллах исландского шпата.
ЛД4.3.	Двойное лучепреломление в некристаллических телах.
ЛД4.4.	Полное внутреннее отражение.
ЛД4.5.	Хроматическая поляризация.
ЛД4.6.	Искусственная анизотропия.
ЛД4.7.	Бипризма Френеля.
ЛД4.8.	Полосы равной толщины (кольца Ньютона, мыльные пленки).
ЛД4.10.	Дифракция от одной щели.
ЛД4.11.	Дифракция на краю экрана.
ЛД4.12.	Дифракционные решетки.
ЛД4.13.	Голограмма.

9.2. Лабораторное материально-техническое обеспечение

Практикум по оптике занимает помещение в 70 м². В практикуме размещены 22 установки для выполнения 22 лабораторных работ по фотометрии, физической и геометрической оптике. В установках используется как классическое оптическое оборудование, так и современные оптические устройства и приборы (фотографии установок и приборов размещены в учебно-методических руководствах к лабораторным работам http://optics.sgu.ru/library/education/laboptics).

Количество установок и площадь помещения не позволяют реализовать фронтальное выполнение работ по темам содержания дисциплины «Оптика». Поэтому реализуется одновременное выполнение работ по различным разделам дисциплины. Такая возможность обеспечивается достаточно подробным и исчерпывающим теоретическим описанием В методических руководствах содержания всех лабораторных работ практикума. Все методические руководства к лабораторным работам имеются в электронном формате и доступны на сайте кафедры оптики биофотоники, реализующей дисциплину данную (http://optics.sgu.ru/library/education/laboptics).

Лабораторные установки и приборы физического практикума по оптике Приборы и установки по геометрической оптике

Большая оптическая скамья с большим коллиматором — 2 установки. Малая оптическая скамья — 3 установки. Зрительная труба. Микроскоп.

Приборы и установки по рефрактометрии

Рефрактометр ИРФ-22.

Интерферометр ЛИР-2

Приборы и установки по спектроскопии

Спектрогониометр.

Монохроматора УМ-2.

Приборы и установки для изучения интерференции света

Пробные (эталонные) стекла

Микроскоп с устройством для наблюдения и измерения интерференционных колец Ньютона

Интерферометр Юнга с полупроводниковым лазером на малой оптической скамье. Интерферометр Юнга с протяженным источником белого света с дифракционным оптическим элементом с двойной микроструктурой.

Интерферометр Майкельсона с полупроводниковым лазером

Приборы и установки для изучения дифракции света

Малая оптическая скамья для изучения дифракции света на амплитудных и фазовых дифракционных решетках.

Установка для изучения дифракции Френеля и Фраунгофера на круглом отверстии. Установка с полупроводниковым лазером и объемной голографической дифракционной решеткой

Приборы и установки для изучения поляризации света

Поляриметр.

Установка для исследования эллиптически поляризованного света.

Приборы и установки для изучения поглощения света

Фотометр Φ ЭК-56ПМ и Φ М-56.

Фотометр ФМ-56.

Практическая подготовка в рамках занятий осуществляется на кафедре оптики и биофотоники СГУ.

Программа составлена в соответствии с требованиями ФГОС ВО для направления подготовки бакалавриата 12.03.04 Биотехнические системы и технологии (профиль "Медицинская фотоника")

Программа утверждена на заседании кафедры оптики и биофотоники от 14 сентября 2021 года, протокол №13/21.

Программа актуализирована и одобрена на заседании кафедры оптики и биофотоники от 22 мая 2023 года, протокол №05/23.