мИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Механико-математический факультет

УТВЕРЖДАЮ

Декан

механико-математического факультета

Захаров А.М.

20 2/ г.

Рабочая программа дисциплины

ТЕОРИЯ ЧИСЕЛ

Направление подготовки бакалавриата 02.03.01 – Математика и компьютерные науки

Профиль подготовки бакалавриата Математические основы компьютерных наук

> Квалификация (степень) выпускника Бакалавр

> > Форма обучения *очная*

> > > Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Кривобок В.В.	BAT.	12.11.2021
Председатель НМК	Тышкевич С.В.	2	12.11.2021
Заведующий кафедрой	Водолазов А.М.	Sugarof	12.11.2021
Специалист Учебного управления			

1. Цели освоения дисциплины «Теория чисел»

Целями освоения дисциплины «Теория чисел», реализуемого в первом семестре, являются овладение студентами элементарной теории чисел, теорией сравнений и начальными сведениями в области аналитической теории чисел в объёме, необходимом для изучения всех последующих специальных курсов по кафедре компьютерной алгебры и теории чисел. Во втором семестре целями освоения дисциплины являются овладение студентами знаниями в области аналитической теории чисел, в объёме, необходимом для изучения всех последующих специальных курсов по кафедре компьютерной алгебры и теории чисел.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Теория чисел» включена в часть, формируемую участниками образовательных отношений блока 1 «Дисциплины (модули)» ООП бакалавриата. На ее изучение отводится 216 часов (87 часов аудиторной работы, 18 часов лабораторные занятия, из них 18 часов практическая подготовка, 1 час КСР, 93 часа СР, 36 часов контроль). Согласно учебному плану направления и профиля подготовки данный курс в шестом семестре заканчивается зачетом, в седьмом семестре заканчивается экзаменом.

Дисциплина «Теория чисел» является специальным курсом. Изучение курса требует знания математики в объеме средней общеобразовательной школы, математического анализа и теории функций комплексной переменной. В свою очередь, знание в области теории чисел в той или иной степени необходимо для всех специальных курсов кафедры компьютерной алгебры и теории чисел и для подготовки бакалавров по направлению 020301.

3. Результаты обучения по дисциплине

Код и наименование компетенции	Код и наименование инди- катора (индикаторов) до-	Результаты обучения
X/IC 1	стижения компетенции	2
УК-1	1.1_Б.УК-1. Анализирует	Знать:
Способен осуществлять	задачу, выделяя ее базовые	– постановку основных задач
поиск, критический анализ и	составляющие. Осуществля-	теории чисел;
синтез информации, приме-	ет декомпозицию задачи.	– основные этапы решения и
нять системный подход для		исследования задач теории
решения поставленных за-		чисел.
дач		Уметь:
		– анализировать задачи, вы-
		деляя ее базовые состав-
		ляющие;
		– осуществлять декомпози-
		цию задачи.
		Владеть:
		– навыками анализа задачи с
		выделением ее базовых
		составляющих.
	2.1_Б.УК-1. Находит и	Знать:
	критически анализирует	– основные источники

T	1
информацию, необходимую для решения поставленной задачи.	информации по теории чисел; — способы извлечения необходимой научно-технической информации из электронных и бумажных носителей теории чисел. Уметь: — находить и критически анализировать информацию, необходимую для решения поставленной задачи. Владеть: — навыками критического анализа информации по применению теории чисел к различным задачам.
3.1_Б.УК-1. Рассматривает различные варианты решения задачи, оценивая их достоинства и недостатки.	личным задачам. Знать: — основные аналитические методы решения задач теории чисел. Уметь: — оценить достоинства и недостатки различных вариантов решения задач при применении методов теории чисел. Владеть: — навыками выбора оптимального решения для поставленной задачи.
4.1_Б.УК-1. Грамотно, логично, аргументированно формирует собственные суждения и оценки. Отличает факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности.	Знать: - основные факты теории чисел и направления их применения к различным задачам. Уметь: - грамотно, логично, аргументированно формировать собственные суждения и оценки в области применения аппарата теории чисел; - отличать факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности. Владеть: - навыками формирования собственных суждений и оценок в области применения методов теории чисел; - навыками грамотного, логичного и аргументированного изложения своей пози-

		***** #0 po## 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		ции по вопросам применения
	51 F.W. 1 O	методов теории чисел.
	5.1_Б.УК-1. Определяет и	Знать:
	оценивает практические по-	– основные методы решения
	следствия возможных реше-	задач теории чисел.
	ний задачи.	Уметь:
		– определить практические
		последствия решения задач с
		помощью методов теории чи-
		сел;
		– оценить практические по-
		следствия решения задач с
		помощью методов теории чи-
		сел.
		Владеть:
		– навыками определения и
		оценивания практических по-
		следствий возможных реше-
		ний задач с помощью мето-
		дов теории чисел.
ПК-1. Способен демонстри-	1.1 Б.ПК-1. Понимает	Знать:
ровать базовые знания	основные концепции,	– основные концепции,
математических и естествен-	принципы, теории и факты,	принципы, теории и факты,
ных наук, основ программи-	связанные с математикой,	связанные с теорией чисел.
рования и информационных	естественными науками и	Уметь:
технологий.	информационными техно-	– находить основные
	логиями.	концепции, принципы, тео-
		рии и факты, связанные с
		теорией чисел.
		Владеть:
		– основные концепциями,
		принципами, теорией и фак-
		тами, связанными с теорией
		чисел.
	2.1 Б.ПК-1. Формулирует и	Знать:
	решает стандартные задачи	– основные методы теории
	в собственной научно- ис-	чисел для решения задач в
	следовательской деятельно-	собственной научно- иссле-
	сти.	довательской деятельности.
		Уметь:
		– применять методы теории
		чисел для решения задач в
		собственной научно- иссле-
		довательской деятельности.
		– обрабатывать и анализиро-
		вать научно-техническую
		информацию для постановки
		и решения задач.
		Владеть:
		– навыками применения ме-
		тодов теории чисел для реше-
		ния задач в собственной на-
		ния задач в собственной на-

	учно- исследовательской дея-
	тельности.
3.1_Б.ПК-1. Способен про-	Знать:
водить научно-исследо-	– основные методы проведе-
вательскую деятельность в	ния научно-исследо-
математике и информатике.	вательской деятельности при
	помощи задач теории чисел.
	Уметь:
	– проводить научно-исследо-
	вательскую деятельность при
	помощи задач теории чисел.
	Владеть:
	навыками научно-исследо-
	вательской деятельности с
	применением задач теории
	чисел.

4. Структура и содержание дисциплины.

Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 часов.

№ Раздел дисциплины п/ п				остоя	чебной ітельную рудоемк	- о раб	оту с	гуден		Формы текущего контроля успева- емости (по неделям
	Семестр	Неделя семестра			. заня- гия					семестра) Формы промежу- точной аттестации (по семестрам)
	3	Недел	Лекции	Общая тру-	Из них прак- тическая	Практиче-	KCP	CP	Контроль	
Понятие делимости целых чисел. Основная теорема арифметики.	6	1,2	2			2		8		Опрос Консультация
2. Теоретико-числовые функции.	6	3-6	4			4		8		Консультация
3. Понятие сравнения целых чисел.	6	7,8	2			2		8		Консультация
4. Сравнения с одним неизвестным.	6	9- 12	4			4		8		Контрольная работа
5. Сравнения второй степени.	6	13- 16	4			4		8		Консультация
Промежуточная ат- тестация										Зачет
Итого за 6 семестр			16			16	0	40	0	72

Итого			34	18	18	52	1	93	36	216 ч.
Итого за 7 семестр			18	18	18	36	1	53		
Промежуточная ат- тестация									36	Экзамен
$13^{\text{Трансцендентность}}_{\text{чисел } e \text{ и } \mathcal{T}}$	7	17, 18	2	2	2	4		7		Отчет по практиче- ской подготовке. Консультация
Приближение дей- 12ствительных чисел ра- циональными чис- лами.	7	15, 16	2	2	2	4	0,5	7		Консультация
Алгебраические и 1 Ітрансцендентные числа.	7	12- 14	3	2	4	6		7		Консультация Контрольная работа
10Характеры Дирихле.	7	11	1	2	2	2		7		Коллоквиум
9. <i>L</i> -функция Дирихле. Свойства.	7	9, 10	2	2	4	4	0,5	7		Консультация
Теоремы Дирихле о 8. простых в арифметических прогрессиях.	7	6-8	3	2	2	6		7		Консультация
7. <i>5</i> -функция Римана Свойства.	7	4,5	2	4	4	4		7		Консультация
Асимптотический 6. закон распределения простых чисел.	7	1-3	3	2	2	6		4		Консультация

6 семестр.

Делимость целых чисел. Понятие делимости целых чисел. Свойства делимости. Теорема о делении с остатком. Наибольший общий делитель двух целых чисел. Алгоритм Евклида. Наименьшее общее кратное. Рекуррентная формула. Связь НОД и НОК двух целых чисел. Постулат Бертрана.

Теоретико-числовые функции. Целая часть действительного числа. Основные свойства и график. Теорема о количестве натуральных делителей числа, не превосходящих данного натурального. Дробная часть действительного числа. Основные свойства и график. Лемма о показателе, с которым входит простое число в разложение n!. Следствие из него. Мультипликативные функции. Примеры мультипликативных функций. Свойства. Количество и сумма натуральных делителей натурального числа. Функция Мёбиуса. Свойства функции Мёбиуса, формулы обращения. Функция Эйлера. Свойства функции Эйлера. Формулы сложения и умножения.

Сравнение целых чисел. Понятие сравнения целых чисел по натуральному модулю. Свойства сравнений. Классы вычетов по модулю m. Полная система вычетов. Свойства полных систем вычетов. Приведённая система вычетов. Свойства приведённых систем вычетов. Теоремы Эйлера и Ферма (малая).

Сравнения с одним неизвестным первой степени. Понятие сравнения с одним неизвестным, его степень. Решение сравнений. Равносильные сравнения. Теорема о сравнении первой степени. Метод Эйлера. Китайская теорема об

остатках, дополнение к ней. Число решений сравнения по простому модулю. Критерий простоты числа.

Сравнения с одним неизвестным второй степени. Понятие сравнения с одним неизвестным второй степени. Квадратичные вычеты и невычеты по mod *p*. Теорема о числе квадратичных вычетов и невычетов. Сравнения второй степени с одним неизвестным, сводящиеся к сравнениям первой степени с одним неизвестным. Символ Лежандра и его свойства. 2 леммы Гаусса. Символ Якоби и его свойства. Теорема о наименьшем квадратичном невычете по простому модулю для сравнения второй степени с одним неизвестным.

7 семестр

Асимптотический закон распределения простых чисел (АЗРПЧ). Функция $\pi(x)$, формулировка АЗРПЧ. Теорема Чебышева. Лемма о связи функций $\theta(x), \psi(x)$, и $\pi(x)$. Лемма о вычислении интеграла $\frac{1}{2\pi i} \int\limits_{a-i\infty}^{a+i\infty} \frac{b^s}{s^2} ds$. Лемма о функции $\omega(x)$. Лемма о связи функций $\omega(x)$ и R(x). Доказательство АЗРПЧ.

 \mathcal{E} -функция Римана. \mathcal{E} -функция Римана, ее простейшие свойства. Лемма об абсолютной сходимости в полуплоскости \mathcal{E} -1. Нули \mathcal{E} -функции Римана в полуплоскости \mathcal{E} -1. Тождество Эйлера. Нетривиальные нули \mathcal{E} -функции Римана. Лемма о нулях \mathcal{E} -функции на прямой Re \mathcal{E} -1. Лемма об оценке модуля логарифмической производной \mathcal{E} -функции. Гипотеза Римана для \mathcal{E} -функции Римана.

Теоремы Дирихле о простых в арифметических прогрессиях. Простейшие случаи теоремы Дирихле. Характеры Дирихле: определение и простейшие свойства, примеры характеров. Теорема о сумме значений характера. Теорема о сумме характеров. Теорема о числе характеров по заданному модулю. Лемма об оценке сумматорной функции. Доказательство теоремы Дирихле.

L-функция Дирихле. Определение L-функции Дирихле и простейшие случаи. Основные свойства L-функции Дирихле. Представление L-функции в виде эйлеровского произведения. Следствие. Неравенство нулю L-функции в точке s=1. Лемма о логарифмической производной L-функции. Расширенная гипотеза Римана. Связь расширенной и обычной гипотез Римана.

Алгебраические и трансцендентные числа. Понятие алгебраического и трансцендентного чисел. Поле алгебраических чисел. Понятие степени алгебраического числа. Понятие минимального многочлена. Свойства минимального многочлена. Теорема о минимальном многочлене.

Приближение действительных чисел рациональными числами. Симметрические многочлены, элементарные симметрические многочлены. Теорема Дирихле. Приближение действительных чисел рациональными дробями с заданным ограничением для знаменателей. Рациональные приближения алгебраческих чисел. Цепные дроби. Подходящие дроби, их свойства. Разложение действительных чисел в цепную дробь. Отыскание наилучших приближений с помощью цепных дробей.

Трансцендентность чисел e и π . Теорема о трансцендентности числа e. Теорема о квадратичной иррациональности числа e. Тождество Эрмита. Трансцендентность числа π . Теорема Линдемана.

Темы лабораторных занятий (практической подготовки) 7 семестр

Практическое занятие № 1.

Асимптотический закон распределения простых чисел Рассмотрение всех подходов, оценок и доказательств вспомогательных лемм для доказательства асимптотического закона распределения простых чисел. Оценки П.Л. Чебышева.

Практическое занятие № 2.

💆 -функция Римана. Свойства.

Поведение дзета-функции Римана в критической полосе. Рассмотрение попыток сужения критической полосы. Теоремы А.А. Карацубы и Ю.В. Линника. Ошибочные доказательства гипотезы Римана.

Практическое занятие № 3-4.

Теоремы Дирихле о простых в арифметических прогрессиях. L-функция Дирихле

Применение теоремы Дирихле о простых числах в арифметических прогрессиях в геометрии и при решении элементарных задач. Характеры Дирихле. Основные аналитические свойства L-функция Дирихле, расширенная гипотеза Римана.

Практическое занятие № 5-6.

Характеры Дирихле. Алгебраические и трансцендентные числа.

Примеры характеров Дирихле по составным и простым модулям, нахождение L-функций Дирихле по данным модулям. Примеры алгебраических чисел, примеры трансцендентных чисел. Поле алгебраических чисел. Доказательства трансцендентности значений дзета-функции Римана.

Практическое занятие № 7-8.

Приближение действительных чисел рациональными числами. Трансцендентность чисел е и $^{\mathcal{T}}$.

Применение теоремы Лиувилля к элементарным задачам приближений в теории чисел. Связь с подходящими дробями. Различные подходы к доказательству трансцендентности чисел e и $\mathcal T$.

Практические занятия

6 семестр.

Делимость целых чисел. Теорема о делении с остатком. Отыскание НОД и НОК двух целых чисел. Алгоритм Евклида. Простые и составные числа.

Понятие сравнения. Свойства сравнений. Классы вычетов. Функция Эйлера. Теоремы Эйлера и Ферма.

Сравнения с одним неизвестным. Системы сравнений с одним неизвестным первой степени.

7 семестр.

Сравнения второй степени. Квадратичные вычеты. Символ Лежандра. Решение сравнений второй степени с одним неизвестным.

Непрерывные дроби. Основные понятия. Сходимость непрерывной бесконечной дроби. Квадратичные иррациональности и периодические дроби.

Алгебраические и трансцендентные числа. Теорема Лиувилля. Теорема Линдемана.

Контрольная работа №2.

5. Образовательные технологии, применяемые при освоении дисциплины

При проведении лекционных и практических занятий предусматривается использование информационных технологий, включающих пакеты стандартных статистических программ: Statistica, SPSS и др. Использование информационных технологий осуществляется, в частности, в процессе реализации активных и интерактивных форм проведения занятий.

Практическая подготовка осуществляется путем проведения лабораторных занятий, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

Обучающиеся продолжают формировать профессиональные умения и навыки по обработке и анализу научной информации и результатов исследований, полученные при прохождении Практики по получению базовых навыков. Часть 1, 2, 3, Исследовательской практики, практической подготовки по Дисциплинам по выбору Б1.В.ДВ.05.02.

Прохождение практической подготовки в рамках лабораторных занятий формирует способность проводить исследовательскую деятельность в математике, формулировать и решать стандартные задачи в исследовательской деятельности. Обучающиеся продолжат формировать профессиональные умения и навыки при прохождении *Производственной практики* (Научно-исследовательская работа), при написании бакалаврских работ.

Примеры профессиональных действий: умение работать с литературой, сравнивать изложение одних и тех же вопросов в различных источниках; решение задач аналитического характера; самостоятельное доказательство отдельных фактов; оформление результатов научно-исследовательских работ.

Примеры задач. При проведении практической подготовки студенты решают задачи, направленные на формирование исследовательских умений и навыков в использовании аппарата аналитической для решения математических задач, применении элементов теории чисел при решении практических задач.

При чтении лекций в качестве материала, иллюстрирующего возможности математического моделирования в различных ситуациях, активно используются примеры из практики обработки данных в процессе исследований в предметной области. Информационные и интерактивные технологии используются при обсуждении проблемных и неоднозначных вопросов, требующих выработки решения в ситуации неопределенности.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 30 % аудиторных занятий.

Особенности проведения занятий для инвалидов и граждан с ОВЗ

При обучении лиц с ограниченными возможностями используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения.

Для студентов с ограниченными возможностями здоровья предусмотрены следующие формы организации учебного процесса и контроля знаний: -для слабовидящих:

обеспечивается индивидуальное равномерное освещение не менее 300 люкс;

для выполнения контрольных заданий при необходимости предоставляется увеличивающее устройство;

задания для выполнения, а также инструкция о порядке выполнения контрольных заданий оформляются увеличенным шрифтом (размер 16-20);

- для глухих и слабослышащих:
- обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости студентам предоставляется звукоусиливающая аппаратура индивидуального пользования;
- *для лиц с тяжелыми нарушениями речи, глухих, слабослышащих* все контрольные задания по желанию студентов могут проводиться в письменной форме.

Основной формой организации учебного процесса является интегрированное обучение инвалидов, т.е. все студенты обучаются в смешанных группах, имеют возможность постоянно общаться со сверстниками, легче адаптируются в социуме.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Примерный перечень вопросов по дисциплине.

- 1. Понятие делимости целых чисел. Свойства делимости.
- 2. Простые и составные числа. Теорема Евклида.
- 3. Основная теорема арифметики. Каноническое разложение числа.
- 4. Целая и дробные части действительного числа. Их графики и свойства.
- 5. Лемма о показателе, с которым входит простое число в разложение n!. Следствие из него.
- 6. Мультипликативные функции. Примеры мультипликативных функций. Свойства.
- 7. Количество и сумма натуральных делителей натурального числа.
- 8. Функция Мёбиуса. Свойства функции Мёбиуса, формулы обращения.
- 9. Функция Эйлера. Свойства функции Эйлера. Формулы сложения и умножения.
- 10. Теорема Чебышева.

- 11. Лемма о показателе, с которым входит простое число в разложение n!. Следствие из него.
- 12. Теорема Чебышева.
- 13. Лемма о связи функций $\theta(x)$, $\psi(x)$, и $\pi(x)$.
- 14. Понятие сравнимости целых чисел. Свойства сравнений. Классы вычетов по модулю m.
- 15. Полная система вычетов. Свойства полных систем вычетов.
- 16. Приведённая система вычетов. Свойства приведённых систем вычетов.
- 17. Теоремы Эйлера и Ферма (малая).
- 18. Сравнения с одним неизвестным, его степень. Решение сравнений. Равносильные сравнения.
- 19. Теорема о сравнении первой степени. Метод Эйлера.
- 20. Китайская теорема об остатках, дополнение к ней.
- 21. Число решений сравнения по простому модулю. Критерий простоты числа.
- 22. Квадратичные вычеты и невычеты по p. Теорема о числе квадратичных вычетов и невычетов.
- 23. Символ Лежандра и его свойства. 2 леммы Гаусса. Символ Якоби.
- 24. ζ -функция Римана, леммы об абсолютной сходимости и нули в полуплоскости $\sigma > 1$.
- 25. Тождество Эйлера.
- 26. Нули ≤ -функции.
- 27. Лемма о нулях ζ -функции на прямой Re s=1.
- 28. Лемма об оценке модуля логарифмической производной ζ -функции.
- 29. Доказательство асимптотического закона распределения простых чисел.
- 30. Лемма о вычислении интеграла $\frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \frac{b^s}{s^2} ds$.
- 31. Лемма о функции $\omega(x)$.
- 32. Лемма о связи функций $\omega(x)$ и R(x).
- 33. Простейшие случаи теоремы Дирихле.
- 34. *L*-функция Дирихле: определение и простейшие случаи.
- 35. Характеры Дирихле: определение и свойства, примеры характеров.
- 36. Теорема о числе характеров по заданному модулю.
- 37. Теорема о сумме характеров.
- 38. Лемма об оценке сумматорной функции.
- 39. Свойства L-функции Дирихле.
- 40. Представление L-функции в виде эйлеровского произведения. Следствие.
- 41. Неравенство нулю L-функции в точке s=1.
- 42. Лемма о логарифмической производной L-функции.
- 43. Доказательство теоремы Дирихле.
- 44. Поле алгебраических чисел.
- 45. Симметрические многочлены, элементарные симметрические многочлены.
- 46. Приближение действительных чисел рациональными числами.
- 47. Теорема Дирихле.
- 48. Теорема о бесконечности множества неравенства $\left| \alpha \frac{p}{q} \right| < \frac{1}{q^2}$.

- 49. Теорема Лиувилля.
- 50. Теорема о бесконечности множества неравенства $\left| \alpha \frac{p}{q} \right| < \frac{1}{q^k}$.
- 51. Теорема о трансцендентности числа е.
- 52. Теорема о квадратичной иррациональности числа е.
- 53. Тождество Эрмита.
- 54. Трансцендентность числа π .
- 55. Теорема Линдемана.

Самостоятельная работа студентов предполагает индивидуальную работу с учебно-методической литературой: учебниками, методическими пособиями.

Контрольно-самостоятельная работы Индивидуальные задания

В **шестом семестре** студентам выдаются следующие индивидуальные самостоятельные задания по темам «Конечные поля», «Распределение простых чисел», «Алгебраические и иррациональные числа», «Сравнения второй степени». Соответствующая методическая литература в достаточном количестве имеется на кафедре. Самостоятельная работа оформляется в виде реферата и докладывается на практических занятиях.

- 1. Конечные поля. Арифметика в конечных полях.
- 2. Решение систем линейных сравнений по простому модулю.
- 3. Оценки числа решений систем сравнений по простому модулю.
- 4. Теорема Зигеля.
- 5. О наименьшем простом числе в арифметической прогрессии.
- 6. Критерии иррациональности числа.
- 7. Метод решета А. Сельберга.
- 8. Теоремы Вильсона и Шевалье.
- 9. Вертикальное распределение нулей L-функции.
- 10.Степенные вычеты.
- 11. Закон взаимности для символа Лежандра.
- 12. Первообразные корни по простому модулю.
- 13. Длина периода десятичной дроби.
- 14. Первообразные корни по составным модулям.
- 15. Разложение числа e в цепную дробь.

В **седьмом семестре** студентам выдаются следующие индивидуальные самостоятельные задания по темам «конечные поля», «Цепные дроби», «Трансцендентные числа», «Распределение простых чисел», «Диофантовы уравнения». Соответствующая методическая литература в достаточном количестве имеется на кафедре. Самостоятельная работа оформляется в виде реферата и докладывается на практических занятиях.

- 1. Приближение действительных чисел подходящими дробями.
- 2. Приближение действительных чисел рациональными дробями.
- 3. Наилучшие приближения.
- 4. Последовательности Фарея.
- 5. Трансцендентные числа Лиувилля.
- 6. Индексы и их свойства. Индексы по простому модулю.

- 7. Индексы по составному модулю.
- 8. Некоторые диофантовы уравнения.
- 9. Представление натуральных чисел в виде суммы четырех квадратов.
- 10. Проблема Варинга.
- 11. Неопределенное уравнение Ферма.
- 12.Проблема Ферма.
- 13. Простые числа-близнецы.
- 14. Уравнения Пелля.
- 15. Десятая проблема Гильберта.

Консультации лектора помогают усвоению материала. Контроль за успеваемостью также осуществляется в форме бесед учебного и творческого характера, опроса, индивидуальных заданий, контрольных работ.

Примеры контрольных работ

Контрольная работа №1 (**Темы**: Разложение на множители. Мультипликативные функции. Сравнения первой степени)

Вариант1.

- 1. Доказать, что числа вида $4^n+15n-1$ (n=1,2,...) кратны 9.
- 2. Найти такое простое число p, чтобы числа $4p^2+1$ и $6p^2+1$ оба были простыми.
- 3. Решить уравнение $\varphi(x) = 120$, где $x = p_1 p_2$ и p_1 $p_2 = 2$.
- 4. При каких целых значениях x следующие функции принимают целочисленные значения: 1) $f(x) = \frac{9x-1}{7}$; 2) $f(x) = \frac{7x-1}{15}$?
- 5. Решить систему сравнений $\begin{cases} 3x 2y \equiv 5 \\ 5x + 2y \equiv 1 \end{cases}$ (mod 10).

Вариант 2.

- 1. Доказать, что (a,b)=(5a+3b,13a+8b).
- 2. Если числа p и $8p^2+1$ простые, доказать что тогда и число $8p^2+2p+1$ тоже простое.
- 3. Решить уравнения 1) $\varphi(5^x) = 100, 2) 1) \varphi(3^x \cdot 5^x) = 600.$
- 4. При каких целых значениях x следующая функция принимает целочисленные значения: $f(x) = \frac{5x-3}{11}$?
- 5. Решить систему сравнений $\begin{cases} 5x y \equiv 3 \\ 2x + 2y \equiv -1 \end{cases}$ (mod 6).

<u>Контрольная работа №2 (**Тема**: Сравнения второй степени)</u> *Вариант*1.

- 1. Решить сравнение, предварительно приведя его к двучленному: $2x^2+4x-1\equiv 0 \pmod 5$.
- 2. Найти целые точки, через которые проходят следующие кривые: $4x^2$ -5y=6, 11y=5 x^2 -7.
- 3. Найти остаток от деления числа 2^{64} на 360.
- 4. Установить какие из следующих сравнений разрешимы, и найти соответствующие решения: $1)x^2 \equiv 7 \pmod{27}$; $2)x^2 \equiv 59 \pmod{125}$.

Вариант 2.

- 1. Решить сравнение, предварительно приведя его к двучленному: $2x^2-2x-1 \equiv 0 \pmod{7}$.
- 2. Найти целые точки, через которые проходят следующие кривые: $15x^2$ - $7y^2$ =9, 13y= x^2 -21x+110.
- 3. Найти остаток от деления числа 1532⁵-1 на 9.
- 4. Установить какие из следующих сравнений разрешимы, и найти соответствующие решения: $1)x^2 \equiv 31 \pmod{24}$; $2)x^2 \equiv 13 \pmod{105}$.

<u>Контрольная работа №2 (Темы: Цепные дроби. Алгебраические и трансцендентные числа) (Альтернативный вариант)</u>

Вариант1.

- 1. Разложить в непрерывную дробь $\sqrt{x^2 + 1}$.
- 2. Доказать, что иррациональность вида \sqrt{m} (m натуральное число) разлагается в непрерывную дробь, период которой начинается со второго неполного частного.
- 3. Найти с точностью до 0,0001 наилучшее приближение корней уравнения x^2 5x + 2 = 0.
- 4. Доказать, что число $\alpha = \frac{1}{10^{1!}} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \dots$ (число Лиувилля) является трансцендентным.
- 5. С помощью теоремы Гельфонда доказать трансцендентность чисел: 1) $lg 2; 2) log_2 10; 3) ln 5.$

Вариант 2.

- 1. Разложить в непрерывную дробь $\sqrt{a^4 + 2a}$.
- 2. Доказать, что если положительная квадратичная иррациональность разлагается в чистую периодическую непрерывную дробь, то сопряженная ей иррациональность принадлежит интервалу (-1;0).
- 3. Найти с точностью до 0,0001 наилучшее приближение корней уравнения $4x^2 + 20x + 23 = 0$.
- 4. Найти порядок алгебраических чисел: 1) $\sqrt[3]{3}$; 2) $\sqrt[3]{2}$ 1; 3) $\sqrt{2}$ $\sqrt{3}$.
- 5. Доказать, что корни уравнения x^5 $3x^2$ + 12x 6 = 0 есть алгебраические числа пятого порядка.

Оценочные средства по практической подготовке в рамках лабораторных занятий

Семестр 7

По итогам *практической подготовки* составляется письменный отчет. Студенты представляют на кафедру отчеты о практической подготовке в печатной и электронной форме, оформленные в соответствии с правилами и требованиями, установленными Университетом. После проверки и предварительной оценки этих отчетов руководителями практической подготовки (с их подписью) студенты устно отчитываются по практике. Основными целями отчета являются:

- краткое изложение теоретических и практических основ изученных ранее результатов, использованных в ходе прохождения практической подготовки;

- формализация и детальное изложение разработок, осуществленных студентом в ходе прохождения практической подготовки;
- выводы, полученные в результате выполнения работ по практической подготовке.

Типовой отчет по практике включает следующие разделы:

- 1. титульный лист с наименованием темы работы, выполненной на практике;
- 2. введение с обоснованием актуальности изучаемой задачи, формулировкой целей работы, ее кратким содержанием и возможных применений;
- 3. постановка задачи, построение ее математической модели и теоретическое обоснование решения задачи;
- 4. разработка алгоритма решения рассматриваемой задачи;
- 5. реализация алгоритма на одном из языков программирования и проверка правильности программы на конкретном примере;
- 6. список литературы, использованной при работе и цитированной в отчете;
- 7. приложения с основными текстами программы и результатами выполнения программы (если они есть).

7. Данные для учета успеваемости студентов в БАРС

Таблица 1. Таблица максимальных баллов по видам учебной деятельности.

-									
	1	2	3	4	5	6	7	8	9
	Семестр	Лекц ии	Лабора- торные занятия	ческие	Самостоя- тельная работа	Автомати- зированное тестирова- ние	Другие виды учебной деятельности	Промеж уточная аттеста- ция	Итого
	6	5	0	15	10	0	30	40	100
Ī	7	5	10	5	10		30	40	100

Программа оценивания учебной деятельности студента

6 семестр

Лекции

Посещаемость, опрос, активность и др. от 0 до 5 баллов.

Лабораторные занятия

Не предусмотрены.

Практические занятия

Самостоятельность и правильность при выполнении работы — от 0 до 5 баллов, активность работы в аудитории — от 0 до 5 баллов, уровень подготовки к занятиям — от 0 до 5 баллов.

Самостоятельная работа

Контроль качества и количества выполненных домашних работ — от 0 до 5 баллов, правильность выполнения — от 0 до 5 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Контрольная работа – от 0 до 30 баллов.

Промежуточная аттестация

при проведении промежуточной аттестации ответ на «отлично» оценивается от 36 до 40 баллов; ответ на «хорошо» оценивается от 31 до 35 баллов; ответ на «удовлетворительно» оценивается от 25 до 30 баллов; ответ на «неудовлетворительно» оценивается от 0 до 24 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента по дисциплине «Теория чисел» составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине **«Теория чисел»** в оценку (зачет):

60 – 100 баллов	«зачтено»
0 – 59 баллов	«не зачтено»

7 семестр

Лекции

Посещаемость, опрос, активность и др. от 0 до 5 баллов.

Лабораторные занятия

Письменный отчет по практической подготовке. Устный отчет студента включает раскрытие целей и задач практической подготовки, описание выполненной работы с указанием примененных методов и средств, ее количественных и качественных характеристик, выводы.

Анализ результатов практической подготовки проводится по следующим параметрам:

- 1. объем и качество выполненной работы;
- 2. качество аналитического отчета, выводов и предложений;
- 3. соблюдение сроков выполнения работы;
- 4. самостоятельность, инициативность, творческий подход к работе;
- 5. своевременность представления и качество отчетной документации. (от 0 до 15 баллов)

Критерии оценки:

8. менее 25% – 0 баллов;

- 9. от 25% до 50% 5 баллов;
- 10. от 51% до 75% 10 баллов; от 76% до 100% 15 баллов.

Практические занятия

Самостоятельность и правильность при выполнении работы, активность работы в аудитории – от 0 до 5 баллов.

Самостоятельная работа

Контроль качества и количества выполненных домашних работ — от 0 до 5 баллов, правильность выполнения — от 0 до 5 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

1. Контрольная работа — от 0 до 25 баллов.

Промежуточная аттестация

при проведении промежуточной аттестации ответ на «отлично» оценивается от 36 до 40 баллов; ответ на «хорошо» оценивается от 31 до 35 баллов; ответ на «удовлетворительно» оценивается от 25 до 30 баллов; ответ на «неудовлетворительно» оценивается от 0 до 24 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента по дисциплине «Теория чисел» за 7 семестр составляет 100 баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине **«Теория чисел»** в оценку (экзамен) :

90 – 100 баллов	«отлично»
75 – 89 баллов	«хорошо»
60 – 74 баллов	«удовлетворительно»
0 – 59 баллов	«не удовлетворительно»

Учебно-методическое и информационное обеспечение дисциплины 8. «Теория чисел»

а) литература

1. Виноградов И.М. Основы теории чисел - СПб.; М.; Краснодар: Лань, 2004.

- 2. Галочкин А.И., Нестеренко Ю.В., Шидловский А.Б. Введение в теорию чисел. 🗸 4 M., 1995.
- 3. Елистратов И.В., Каменский В.Г. Сборник задач по теории чисел. Изд-во СГУ, 1988 г.
- 4. Постников М.М. Введение в теорию алгебраических чисел.-М.: Наука, 1982.

5. Карацуба А.А. Основы аналитической теории чисел. М.: Наука, 1975.

6. Титчмарш Э.. Теория функций. М.: Наука, 1980.

7. Чудаков Н.Г. Введение в теорию L-функции Дирихле. М.: Наука, 1947.

8. Виноградов И.М. Основы теории чисел - СПб.; М.; Краснодар: Лань, 2006. Vasc Lane

9. Бухштаб А.А. Теория чисел. - М.: Просвещение, 1966.

б) программное обеспечение и Интернет-ресурсы:

1. Информационная система "Единое окно доступа к образовательным ресурсам" предоставляет свободный доступ к полнотекстовой электронной учебно-методической библиотеке для профессионального образования.

2. Научная электронная библиотека http://elibrary.ru/defaultx.asp.

3. Каталог образовательных Интернет-ресурсов. - Режим доступа: http://window.edu.ru/

Лицензионное программное обеспечение:

OC Microsoft Windows 7, OC Microsoft Windows 8, Microsoft Office 2007.

9. Материально-техническое обеспечение дисциплины «Теория чисел»

Учебная аудитория с обязательным наличием специализированной доски, мела (маркера), проектора, с возможностью размещения всех обучающихся по данной дисциплине.

Практическая подготовка в рамках лабораторных занятий проводится на кафедре компьютерной алгебры и теории чисел и в других структурных подразделениях университета: научно-образовательный математический центр «Математика технологий будущего», Образовательно-научный институт наноструктур и биосистем, Управление цифровых и информационных технологий.

Программа составлена в соответствии с требованиями ФГОС по направлению 02.04.01 «Математика и компьютерные науки» и профилю подготовки «Математические основы компьютерных наук».

Автор: доцент, к.ф.-м.н., доцент кафедры КАиТЧ В.В. Кривобок

Программа одобрена на заседании кафедры компьютерной алгебры и теории числе от 12 ноября 2021 года, протокол \mathbb{N} 4.