МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Механико-математический факультет

УТВЕРЖДАЮ

Декан механико-математического факультета

Захаров А.М.

11 30

200 г.

Рабочая программа дисциплины

ТЕОРИЯ ЧИСЕЛ

Направление подготовки бакалавриата 02.03.01 – Математика и компьютерные науки

Профиль подготовки бакалавриата Математические основы компьютерных наук

Квалификация (степень) выпускника Бакалавр

> Форма обучения *очная*

> > Саратов, 2019

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Кривобок В.В.	Extens	30.08.2019 =
Председатель НМК	Тышкевич С.В.	7	30.08.2019
Заведующий кафедрой	Водолазов А.М.	Begonagol	30.08.2019-
Специалист Учебного управления	1		3,

1. Цели освоения дисциплины «Теория чисел»

Целями освоения дисциплины «Теория чисел», реализуемого в первом семестре, являются овладение студентами элементарной теории чисел, теорией сравнений и начальными сведениями в области аналитической теории чисел в объёме, необходимом для изучения всех последующих специальных курсов по кафедре компьютерной алгебры и теории чисел. Во втором семестре целями освоения дисциплины являются овладение студентами знаниями в области аналитической теории чисел, в объёме, необходимом для изучения всех последующих специальных курсов по кафедре компьютерной алгебры и теории чисел.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Теория чисел» включена в часть, формируемую участниками образовательных отношений блока 1 «Дисциплины (модули)» ООП бакалавриата. На ее изучение отводится 216 часов (87 часов аудиторной работы, 1 час КСР, 93 часа СР, 36 часов контроль). Согласно учебному плану направления и профиля подготовки данный курс в шестом семестре заканчивается зачетом, в седьмом семестре заканчивается экзаменом.

Дисциплина «Теория чисел» является специальным курсом. Изучение курса требует знания математики в объеме средней общеобразовательной школы, математического анализа и теории функций комплексной переменной. В свою очередь, знание в области теории чисел в той или иной степени необходимо для всех специальных курсов кафедры компьютерной алгебры и теории чисел и для подготовки бакалавров по направлению 020301.

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование	Результаты обучения
компетенции	индикатора (индикаторов)	
	достижения компетенции	
УК-1	1.1_Б.УК-1. Анализирует	Знать:
Способен осуществлять	задачу, выделяя ее базовые	– постановку основных
поиск, критический анализ и	составляющие.	задач теории чисел;
синтез информации,	Осуществляет	– основные этапы решения и
применять системный	декомпозицию задачи.	исследования задач теории
подход для решения		чисел.
поставленных задач		Уметь:
		– анализировать задачи,
		выделяя ее базовые
		составляющие;
		– осуществлять
		декомпозицию задачи.
		Владеть:
		– навыками анализа задачи с
		выделением ее базовых
		составляющих.
	2.1_Б.УК-1. Находит и	Знать:

T	
критически анализирует	- основные источники
информацию, необходимую	информации по теории
для решения поставленной	чисел;
задачи.	– способы извлечения
	необходимой научно-
	технической информации из
	электронных и бумажных
	носителей теории чисел.
	Уметь:
	 находить и критически
	анализировать информацию,
	необходимую для решения
	поставленной задачи.
	Владеть:
	 навыками критического
	анализа информации по
	применению теории чисел к
	различным задачам.
3.1_Б.УК-1. Рассматривает	Знать:
различные варианты	– основные аналитические
решения задачи, оценивая	методы решения задач
их достоинства и	теории чисел.
недостатки.	Уметь:
	 – оценить достоинства и
	недостатки различных
	вариантов решения задач
	при применении методов
	теории чисел.
	Владеть:
	– навыками выбора
	оптимального решения для
	поставленной задачи.
4.1_Б.УК-1. Грамотно,	Знать:
логично, аргументированно	 – основные факты теории
формирует собственные	чисел и направления их
суждения и оценки.	применения к различным
Отличает факты от мнений,	задачам.
интерпретаций, оценок и	Уметь:
т.д. в рассуждениях других	– грамотно, логично,
участников деятельности.	аргументированно
	формировать собственные
	суждения и оценки в
	области применения
	аппарата теории чисел;
	– отличать факты от мнений,
	интерпретаций, оценок и т.д.
	в рассуждениях других
	участников деятельности.
	Владеть:
	– навыками формирования
	собственных суждений и
	оценок в области
	оценок в ооласти

	5.1_Б.УК-1. Определяет и оценивает практические последствия возможных решений задачи.	применения методов теории чисел; — навыками грамотного, логичного и аргументированного изложения своей позиции по вопросам применения методов теории чисел. Знать: — основные методы решения задач теории чисел. Уметь: — определить практические последствия решения задач с помощью методов теории чисел; — оценить практические последствия решения задач с помощью методов теории чисел; — оценить практические последствия решения задач с помощью методов теории чисел. Владеть: — навыками определения и оценивания практических последствий возможных решений задач с помощью методов теории чисел.
ПК-1. Способен демонстрировать базовые знания математических и естественных наук, основ программирования и информационных технологий.	1.1_Б.ПК-1. Понимает основные концепции, принципы, теории и факты, связанные с математикой, естественными науками и информационными технологиями. 2.1_Б.ПК-1. Формулирует и решает стандартные задачи в собственной научно-исследовательской	Знать: - основные концепции, принципы, теории и факты, связанные с теорией чисел. Уметь: - находить основные концепции, принципы, теории и факты, связанные с теорией чисел. Владеть: - основные концепциями, принципами, теорией и фактами, связанными с теорией чисел. Знать: - основные методы теории чисел для решения задач в собственной научно-
	деятельности.	исследовательской деятельности. Уметь: — применять методы теории чисел для решения задач в собственной научно-исследовательской

решения задач в собственной научно- исследовательской деятельности. 3.1_Б.ПК-1. Способен проводить научно- исследовательскую деятельность в математике и информатике. 3.1_Б.ПК-1. Способен проведения научно- исследовательскую деятельности при помощи задач теории чисел. Уметь: — проводить научно- исследовательскую деятельность при помощи задач теории чисел. Владеть: — навыками научно- исследовательской

4. Структура и содержание дисциплины. Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 часов.

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	вкл	Виды уче почая са работу рудоемк	мост студе	оятельн ентов и	ую	Формы текущего контроля успеваемости (по неделям
		Сем	Неделя с	Лекции	Практиче ские занятия	KCP	CP	Контроль	семестра) Формы промежуточной аттестации (по семестрам)
					1		T	ı	
1.	Понятие делимости целых чисел. Основная теорема арифметики.	6	1,2	2	2		8		Опрос Консультация
2.	Теоретико- числовые функции.	6	3-6	4	4		8		Консультация
3.	Понятие сравнения целых чисел.	6	7,8	2	2		8		Консультация

4.	Сравнения с одним неизвестным.	6	9-12	4	4		8		Контрольная работа
5.	Сравнения второй степени.	6	13-16	4	4		8		Консультация
	Промежуточная аттестация								Зачет
	Итого за 6 семестр			16	16	0	40	0	72
6.	Асимптотический закон распределения простых чисел.	7	1-3	3	6		4		Консультация
7.	5 -функция РиманаСвойства.	7	4,5	2	4		7		Консультация
8.	Теоремы Дирихле о простых в арифметических прогрессиях.	7	6-8	3	6		7		Консультация
9.	L-функция Дирихле. Свойства.	7	9,10	2	4	0,5	7		Консультация
10	Характеры Дирихле.	7	11	1	2		7		Коллоквиум
11	числа.	7	12-14	3	6		7		Консультация Контрольная работа
12	Приближение действительных чисел рациональными числами.	7	15,16	2	4	0,5	7		Консультация
13	Транспанциянсти	7	17,18	2	4		7		Консультация
	Промежуточная							36	Экзамен
	аттестация			10	26	4	5 2		O ILOMITECIA
	Итого за 7 семестр			18	36	1	53	26	216
	Итого			34	52	1	93	36	216 ч.

6 семестр.

Делимость целых чисел. Понятие делимости целых чисел. Свойства делимости. Теорема о делении с остатком. Наибольший общий делитель двух целых чисел. Алгоритм Евклида. Наименьшее общее кратное. Рекуррентная формула. Связь НОД и НОК двух целых чисел. Постулат Бертрана.

Теоретико-числовые функции. Целая часть действительного числа. Основные свойства и график. Теорема о количестве натуральных делителей числа, не превосходящих данного натурального. Дробная часть действительного числа. Основные свойства и график. Лемма о показателе, с которым входит простое число в разложение n!. Следствие из него. Мультипликативные функции. Примеры мультипликативных функций.

Свойства. Количество и сумма натуральных делителей натурального числа. Функция Мёбиуса. Свойства функции Мёбиуса, формулы обращения. Функция Эйлера. Свойства функции Эйлера. Формулы сложения и умножения.

Сравнение целых чисел. Понятие сравнения целых чисел по натуральному модулю. Свойства сравнений. Классы вычетов по модулю *т*. Полная система вычетов. Свойства полных систем вычетов. Приведённая система вычетов. Свойства приведённых систем вычетов. Теоремы Эйлера и Ферма (малая).

Сравнения с одним неизвестным первой степени. Понятие сравнения с одним неизвестным, его степень. Решение сравнений. Равносильные сравнения. Теорема о сравнении первой степени. Метод Эйлера. Китайская теорема об остатках, дополнение к ней. Число решений сравнения по простому модулю. Критерий простоты числа.

Сравнения с одним неизвестным второй степени. Понятие сравнения с одним неизвестным второй степени. Квадратичные вычеты и невычеты по p. Теорема о числе квадратичных вычетов и невычетов. Сравнения второй степени с одним неизвестным, сводящиеся к сравнениям первой степени с одним неизвестным. Символ Лежандра и его свойства. 2 леммы Гаусса. Символ Якоби и его свойства. Теорема о наименьшем квадратичном невычете по простому модулю для сравнения второй степени с одним неизвестным.

7 семестр

Асимптотический закон распределения простых чисел (АЗРПЧ). Функция $\pi(x)$, формулировка АЗРПЧ. Теорема Чебышева. Лемма о связи функций $\theta(x)$, $\psi(x)$, и $\pi(x)$. Лемма о вычислении интеграла $\frac{1}{2\pi i}\int\limits_{a-i\infty}^{a+i\infty}\frac{b^s}{s^2}ds$. Лемма о функции $\omega(x)$. Лемма о связи функций $\omega(x)$ и R(x). Доказательство АЗРПЧ.

 ζ -функция Римана. ζ -функция Римана, ее простейшие свойства. Лемма об абсолютной сходимости в полуплоскости $\sigma>1$. Нули ζ -функции Римана в полуплоскости $\sigma>1$. Тождество Эйлера. Нетривиальные нули ζ -функции Римана. Лемма о нулях ζ -функции на прямой Re s=1. Лемма об оценке модуля логарифмической производной ζ -функции. Гипотеза Римана для ζ -функции Римана.

Теоремы Дирихле о простых в арифметических прогрессиях. Простейшие случаи теоремы Дирихле. Характеры Дирихле: определение и простейшие свойства, примеры характеров. Теорема о сумме значений характера. Теорема о сумме характеров. Теорема о числе характеров по заданному модулю. Лемма об оценке сумматорной функции. Доказательство теоремы Дирихле.

L-функция Дирихле. Определение L-функции Дирихле и простейшие случаи. Основные свойства L-функции Дирихле. Представление L-функции в виде эйлеровского произведения. Следствие. Неравенство нулю L-функции в

точке s=1. Лемма о логарифмической производной L-функции. Расширенная гипотеза Римана. Связь расширенной и обычной гипотез Римана.

Алгебраические и трансцендентные числа. Понятие алгебраического и трансцендентного чисел. Поле алгебраических чисел. Понятие степени алгебраического числа. Понятие минимального многочлена. Свойства минимального многочлена. Теорема о минимальном многочлене.

Приближение действительных чисел рациональными числами. Симметрические многочлены, элементарные симметрические многочлены. Теорема Дирихле. Приближение действительных чисел рациональными дробями с заданным ограничением для знаменателей. Рациональные приближения алгебраических чисел. Цепные дроби. Подходящие дроби, их свойства. Разложение действительных чисел в цепную дробь. Отыскание наилучших приближений с помощью цепных дробей.

Трансцендентность чисел e и π . Теорема о трансцендентности числа e. Теорема о квадратичной иррациональности числа e. Тождество Эрмита. Трансцендентность числа π . Теорема Линдемана.

Практические занятия

6 семестр.

Делимость целых чисел. Теорема о делении с остатком. Отыскание НОД и НОК двух целых чисел. Алгоритм Евклида. Простые и составные числа.

Понятие сравнения. Свойства сравнений. Классы вычетов. Функция Эйлера. Теоремы Эйлера и Ферма.

Сравнения с одним неизвестным. Системы сравнений с одним неизвестным первой степени.

Контрольная работа №1.

7 семестр.

Сравнения второй степени. Квадратичные вычеты. Символ Лежандра. Решение сравнений второй степени с одним неизвестным.

Непрерывные дроби. Основные понятия. Сходимость непрерывной бесконечной дроби. Квадратичные иррациональности и периодические дроби.

Алгебраические и трансцендентные числа. Теорема Лиувилля. Теорема Линдемана.

Контрольная работа №2.

5. Образовательные технологии, применяемые при освоении дисциплины

При проведении лекционных и практических занятий предусматривается использование информационных технологий, включающих пакеты стандартных статистических программ: Statistica, SPSS и др. Использование информационных технологий осуществляется, в частности, в процессе реализации активных и интерактивных форм проведения занятий.

При чтении лекций в качестве материала, иллюстрирующего возможности математического моделирования в различных ситуациях, активно используются примеры из практики обработки данных в процессе исследований в предметной области. Информационные и интерактивные технологии используются при обсуждении проблемных и неоднозначных вопросов, требующих выработки решения в ситуации неопределенности.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 30 % аудиторных занятий.

Особенности проведения занятий для инвалидов и граждан с ОВЗ

При обучении лиц с ограниченными возможностями используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения.

Для студентов с ограниченными возможностями здоровья предусмотрены следующие формы организации учебного процесса и контроля знаний:

-для слабовидящих:

обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения контрольных заданий при необходимости предоставляется увеличивающее устройство;

задания для выполнения, а также инструкция о порядке выполнения контрольных заданий оформляются увеличенным шрифтом (размер 16-20);

- для глухих и слабослышащих:
- обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости студентам предоставляется звукоусиливающая аппаратура индивидуального пользования;
- для лиц с тяжелыми нарушениями речи, глухих, слабослышащих все контрольные задания по желанию студентов могут проводиться в письменной форме.

Основной формой организации учебного процесса является интегрированное обучение инвалидов, т.е. все студенты обучаются в смешанных группах, имеют возможность постоянно общаться со сверстниками, легче адаптируются в социуме.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Примерный перечень вопросов по дисциплине.

- 1. Понятие делимости целых чисел. Свойства делимости.
- 2. Простые и составные числа. Теорема Евклида.
- 3. Основная теорема арифметики. Каноническое разложение числа.

- 4. Целая и дробные части действительного числа. Их графики и свойства.
- 5. Лемма о показателе, с которым входит простое число в разложение n!. Следствие из него.
- 6. Мультипликативные функции. Примеры мультипликативных функций. Свойства.
- 7. Количество и сумма натуральных делителей натурального числа.
- 8. Функция Мёбиуса. Свойства функции Мёбиуса, формулы обращения.
- 9. Функция Эйлера. Свойства функции Эйлера. Формулы сложения и умножения.
- 10. Теорема Чебышева.
- 11. Лемма о показателе, с которым входит простое число в разложение n!. Следствие из него.
- 12. Теорема Чебышева.
- 13. Лемма о связи функций $\theta(x)$, $\psi(x)$, и $\pi(x)$.
- 14. Понятие сравнимости целых чисел. Свойства сравнений. Классы вычетов по модулю m.
- 15. Полная система вычетов. Свойства полных систем вычетов.
- 16. Приведённая система вычетов. Свойства приведённых систем вычетов.
- 17. Теоремы Эйлера и Ферма (малая).
- 18. Сравнения с одним неизвестным, его степень. Решение сравнений. Равносильные сравнения.
- 19. Теорема о сравнении первой степени. Метод Эйлера.
- 20. Китайская теорема об остатках, дополнение к ней.
- 21. Число решений сравнения по простому модулю. Критерий простоты числа.
- 22. Квадратичные вычеты и невычеты по p. Теорема о числе квадратичных вычетов и невычетов.
- 23. Символ Лежандра и его свойства. 2 леммы Гаусса. Символ Якоби.
- 24. ζ -функция Римана, леммы об абсолютной сходимости и нули в полуплоскости $\sigma > 1$.
- 25. Тождество Эйлера.
- 26. Нули ≤ -функции.
- 27. Лемма о нулях ζ -функции на прямой Re s=1.
- 28. Лемма об оценке модуля логарифмической производной ζ -функции.
- 29. Доказательство асимптотического закона распределения простых чисел.
- 30. Лемма о вычислении интеграла $\frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \frac{b^s}{s^2} ds$.
- 31. Лемма о функции $\omega(x)$.
- 32. Лемма о связи функций $\omega(x)$ и R(x).
- 33. Простейшие случаи теоремы Дирихле.
- 34. *L*-функция Дирихле: определение и простейшие случаи.
- 35. Характеры Дирихле: определение и свойства, примеры характеров.
- 36. Теорема о числе характеров по заданному модулю.
- 37. Теорема о сумме характеров.
- 38. Лемма об оценке сумматорной функции.

- 39. Свойства *L*-функции Дирихле.
- 40. Представление L-функции в виде эйлеровского произведения. Следствие.
- 41. Неравенство нулю L-функции в точке s=1.
- 42. Лемма о логарифмической производной L-функции.
- 43. Доказательство теоремы Дирихле.
- 44. Поле алгебраических чисел.
- 45. Симметрические многочлены, элементарные симметрические многочлены.
- 46. Приближение действительных чисел рациональными числами.
- 47. Теорема Дирихле.
- 48. Теорема о бесконечности множества неравенства $\left| \alpha \frac{p}{q} \right| < \frac{1}{q^2}$.
- 49. Теорема Лиувилля.
- 50. Теорема о бесконечности множества неравенства $\left| \alpha \frac{p}{q} \right| < \frac{1}{q^k}$.
- 51. Теорема о трансцендентности числа e.
- 52. Теорема о квадратичной иррациональности числа e.
- 53. Тождество Эрмита.
- 54. Трансцендентность числа π .
- 55. Теорема Линдемана.

Самостоятельная работа студентов предполагает индивидуальную работу с учебно-методической литературой: учебниками, методическими пособиями.

Контрольно-самостоятельная работы Индивидуальные задания

В **шестом семестре** студентам выдаются следующие индивидуальные самостоятельные задания по темам «Конечные поля», «Распределение простых чисел», «Алгебраические и иррациональные числа», «Сравнения второй степени». Соответствующая методическая литература в достаточном количестве имеется на кафедре. Самостоятельная работа оформляется в виде реферата и докладывается на практических занятиях.

- 1. Конечные поля. Арифметика в конечных полях.
- 2. Решение систем линейных сравнений по простому модулю.
- 3. Оценки числа решений систем сравнений по простому модулю.
- 4. Теорема Зигеля.
- 5. О наименьшем простом числе в арифметической прогрессии.
- 6. Критерии иррациональности числа.
- 7. Метод решета А. Сельберга.
- 8. Теоремы Вильсона и Шевалье.
- 9. Вертикальное распределение нулей L-функции.
- 10.Степенные вычеты.
- 11. Закон взаимности для символа Лежандра.
- 12. Первообразные корни по простому модулю.
- 13. Длина периода десятичной дроби.
- 14. Первообразные корни по составным модулям.

15.Разложение числа e в цепную дробь.

В седьмом семестре студентам выдаются следующие индивидуальные самостоятельные задания по темам «конечные поля», «Цепные дроби», «Трансцендентные числа», «Распределение простых чисел», «Диофантовы уравнения». Соответствующая методическая литература в достаточном количестве имеется на кафедре. Самостоятельная работа оформляется в виде реферата и докладывается на практических занятиях.

- 1. Приближение действительных чисел подходящими дробями.
- 2. Приближение действительных чисел рациональными дробями.
- з. Наилучшие приближения.
- 4. Последовательности Фарея.
- 5. Трансцендентные числа Лиувилля.
- 6. Индексы и их свойства. Индексы по простому модулю.
- 7. Индексы по составному модулю.
- в. Некоторые диофантовы уравнения.
- 9. Представление натуральных чисел в виде суммы четырех квадратов.
- 10. Проблема Варинга.
- 11. Неопределенное уравнение Ферма.
- 12. Проблема Ферма.
- 13. Простые числа-близнецы.
- 14. Уравнения Пелля.
- 15. Десятая проблема Гильберта.

Консультации лектора помогают усвоению материала. Контроль за успеваемостью также осуществляется в форме бесед учебного и творческого характера, опроса, индивидуальных заданий, контрольных работ.

Примеры контрольных работ

Контрольная работа №1 (**Темы**: Разложение на множители. Мультипликативные функции. Сравнения первой степени)

- Вариант1.
- 1. Доказать, что числа вида $4^n+15n-1$ (n=1,2,...) кратны 9.
- 2. Найти такое простое число p, чтобы числа $4p^2+1$ и $6p^2+1$ оба были простыми.
- 3. Решить уравнение $\varphi(x) = 120$, где $x = p_1 p_2$ и $p_1 p_2 = 2$.
- 4. При каких целых значениях x следующие функции принимают целочисленные значения: 1) $f(x) = \frac{9x-1}{7}$; 2) $f(x) = \frac{7x-1}{15}$?
- 5. Решить систему сравнений $\begin{cases} 3x 2y \equiv 5 \\ 5x + 2y \equiv 1 \end{cases}$ (mod10).

Вариант 2.

- 1. Доказать, что (a,b)=(5a+3b,13a+8b).
- 2. Если числа p и $8p^2+1$ простые, доказать что тогда и число $8p^2+2p+1$ тоже простое.
- 3. Решить уравнения 1) $\varphi(5^x) = 100, 2) 1) \varphi(3^x \cdot 5^x) = 600.$

- 4. При каких целых значениях x следующая функция принимает целочисленные значения: $f(x) = \frac{5x-3}{11}$?
- 5. Решить систему сравнений $\begin{cases} 5x y \equiv 3 \\ 2x + 2y \equiv -1 \end{cases}$ (mod 6).

<u>Контрольная работа №2 (**Тема**: Сравнения второй степени)</u> Bapuahm1.

- 1. Решить сравнение, предварительно приведя его к двучленному: $2x^2+4x-1 \equiv 0 \pmod 5$.
- 2. Найти целые точки, через которые проходят следующие кривые: $4x^2$ -5y=6, $11y=5x^2-7$.
- 3. Найти остаток от деления числа 2^{64} на 360.
- 4. Установить какие из следующих сравнений разрешимы, и найти соответствующие решения: $1)x^2 \equiv 7 \pmod{27}$; $2)x^2 \equiv 59 \pmod{125}$.

Вариант 2.

- 1. Решить сравнение, предварительно приведя его к двучленному: $2x^2-2x-1 \equiv 0 \pmod{7}$.
- 2. Найти целые точки, через которые проходят следующие кривые: $15x^2$ - $7y^2$ =9, 13y= x^2 -21x+110.
- 3. Найти остаток от деления числа 1532^5 -1 на 9.
- 4. Установить какие из следующих сравнений разрешимы, и найти соответствующие решения: $1)x^2 \equiv 3 \, \text{I}(\text{mod}24)$; $2)x^2 \equiv 1 \, 3 \, \text{(mod}105)$.

Контрольная работа №2 (**Темы**: Цепные дроби. Алгебраические и трансцендентные числа) (Альтернативный вариант)

Вариант1.

- 1. Разложить в непрерывную дробь $\sqrt{x^2+1}$.
- 2. Доказать, что иррациональность вида \sqrt{m} (m натуральное число) разлагается в непрерывную дробь, период которой начинается со второго неполного частного.
- 3. Найти с точностью до 0,0001 наилучшее приближение корней уравнения $x^2 5x + 2 = 0$.
- 4. Доказать, что число $\alpha = \frac{1}{10^{1!}} + \frac{1}{10^{2!}} + \frac{1}{10^{3!}} + \dots$ (число Лиувилля) является трансцендентным.
- 5. С помощью теоремы Гельфонда доказать трансцендентность чисел: 1) $lg 2; 2) log_2 10; 3) ln 5.$

Вариант 2.

- 1. Разложить в непрерывную дробь $\sqrt{a^4 + 2a}$.
- 2. Доказать, что если положительная квадратичная иррациональность разлагается в чистую периодическую непрерывную дробь, то сопряженная ей иррациональность принадлежит интервалу (-1;0).
- 3. Найти с точностью до 0,0001 наилучшее приближение корней уравнения $4x^2 + 20x + 23 = 0$.
- 4. Найти порядок алгебраических чисел: 1) $\sqrt[3]{3}$; 2) $\sqrt[3]{2}$ –1; 3) $\sqrt{2}$ $\sqrt{3}$.

5. Доказать, что корни уравнения $x^5 - 3x^2 + 12x - 6 = 0$ есть алгебраические числа пятого порядка.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1. Таблица максимальных баллов по видам учебной деятельности.

1		2	3	4	5	6	7	8	9
Семес	стр	плеки	Лаборат орные занятия	еские	Самостоя тельная работа	Автоматиз ированное тестирован ие	Другие виды учебной деятельн ости	аттестан	Итого
6		5	0	15	10	0	30	40	100
7		5	10	5	10		30	40	100

Программа оценивания учебной деятельности студента

6 семестр

Лекции

Посещаемость, опрос, активность и др. от 0 до 5 баллов.

Лабораторные занятия

Не предусмотрены.

Практические занятия

Самостоятельность и правильность при выполнении работы — от 0 до 5 баллов, активность работы в аудитории — от 0 до 5 баллов, уровень подготовки к занятиям — от 0 до 5 баллов.

Самостоятельная работа

Контроль качества и количества выполненных домашних работ — от 0 до 5 баллов, правильность выполнения — от 0 до 5 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Контрольная работа – от 0 до 30 баллов.

Промежуточная аттестация

при проведении промежуточной аттестации ответ на «отлично» оценивается от 36 до 40 баллов; ответ на «хорошо» оценивается от 31 до 35 баллов;

ответ на «удовлетворительно» оценивается от 25 до 30 баллов; ответ на «неудовлетворительно» оценивается от 0 до 24 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента по дисциплине «Теория чисел» составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «**Теория чисел**» в оценку (зачет):

60 – 100 баллов	«зачтено»
0 – 59 баллов	«не зачтено»

7 семестр

Лекции

Посещаемость, опрос, активность и др. от 0 до 5 баллов.

Лабораторные занятия

Самостоятельность и правильность при выполнении работы — от 0 до 5 баллов, уровень подготовки к занятиям — от 0 до 5 баллов.

Практические занятия

Самостоятельность и правильность при выполнении работы, активность работы в аудитории — от 0 до 5 баллов.

Самостоятельная работа

Контроль качества и количества выполненных домашних работ — от 0 до 5 баллов, правильность выполнения — от 0 до 5 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

1. Контрольная работа - от 0 до 30 баллов.

Промежуточная аттестация

при проведении промежуточной аттестации ответ на «отлично» оценивается от 36 до 40 баллов; ответ на «хорошо» оценивается от 31 до 35 баллов; ответ на «удовлетворительно» оценивается от 25 до 30 баллов; ответ на «неудовлетворительно» оценивается от 0 до 24 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента по дисциплине «Теория чисел» за 7 семестр составляет 100 баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине «**Теория чисел**» в оценку (экзамен) :

90 – 100 баллов	«отлично»
75 – 89 баллов	«хорошо»
60 – 74 баллов	«удовлетворительно»
0 – 59 баллов	«не удовлетворительно»

8. Учебно-методическое и информационное обеспечение дисциплины «Теория чисел»

Литература

- 1. Виноградов И.М. Основы теории чисел СПб.; М.; Краснодар: Лань, 2004.
- 2. Галочкин А.И., Нестеренко Ю.В., Шидловский А.Б. Введение в теорию чисел. М., 1995.
- 1. Дэвенпорт Γ . Высшая арифметика. Введение в теорию чисел.-М., 1965.
- 2. Михелович Ш.Х. Теория чисел. М.: Высшая школа, 1967.
- 3. Оре О. Приглашение в теорию чисел. М.: Наука, 1980.
- 4. Елистратов И.В., Каменский В.Г. Сборник задач по теории чисел. Издво СГУ, 1988 г.
- 5. Окунев Л.Я. Краткий курс теории чисел. М.: Учпедгиз, 1956.
- 6. Дэвенпорт Γ . Высшая арифметика. Введение в теорию чисел.-M., 1965.
- 9. Постников М.М. Введение в теорию алгебраических чисел.-М.: Наука, 1982.
- 10. Хинчин А.Я. Цепные дроби. М.: Наука, 1989.
- 11. Оре О. Приглашение в теорию чисел. М.: Наука, 1980.
- 12. Воронин С.М., Карацуба А.А. Дзета-функция Римана. Физматгиз, 1994.
- 13. Карацуба А.А. Основы аналитической теории чисел. М.: Наука, 1975.
- 14. Титчмарш Е. Теория функций. М.: Наука, 1980.
- 15. Чудаков Н.Г. Введение в теорию L-функции Дирихле. М.: Наука, 1948.
- 16. Виноградов И.М. Основы теории чисел СПб.; М.; Краснодар: Лань, 2006.
- 17. Бухштаб А.А. Теория чисел. М.: Просвещение, 1966. Интернет-ресурсы:
 - 1. Саратовской государственный университет им. Н.Г. Чернышевского. Режим доступа: www.sgu.ru/
 - 2.Зональная научная библиотека им. В.А. Артисевич Саратовского государственного университета им. Н.Г. Чернышевского. Режим доступа: http://library.sgu.ru/

Каталог образовательных Интернет-ресурсов. – Режим доступа:

http://window.edu.ru/

9. Материально-техническое обеспечение дисциплины «Теория чисел»

Учебная аудитория с обязательным наличием специализированной доски, мела (маркера), проектора, с возможностью размещения всех обучающихся по данной дисциплине.

Программа составлена в соответствии с требованиями ФГОС по направлению 02.04.01 «Математика и компьютерные науки» и профилю подготовки «Математические основы компьютерных наук».

доцент, к.ф.-м.н., доцент кафедры компьютерной алгебры и теории чисел В.В. Кривобок

Программа одобрена на заседании кафедры компьютерной алгебры и теории чисел от 30 августа 2019 года, протокол № 1.