МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Механико-математический факультет

УТВЕРЖДАЮ

Декан механико-математического

факультета

Захаров А.М.

2021 г.

Рабочая программа дисцинлины

СПЕЦКУРС 10.2 АРИФМЕТИЧЕСКИЕ ВОПРОСЫ КРИПТОГРАФИИ

Направление подготовки бакалавриата 02.04.01 – Математика и компьютерные науки

Профиль подготовки бакалавриата Математические основы компьютерных наук

> Квалификация (степень) выпускника Магистр

> > Форма обучения

Саратов, 2021

Course	ФИО	Подпись	Дата
Статус Преподаватель- разработчик	Сецинская Е.В.		1211.2021
Председатель НМК	Тышкевич С.В.	//	1211 2021
Заведующий кафедрой	Водолазов А.М.	Bagarago	1211.2021
Специалист Учебного управления			

1. Цели освоения дисциплины

Целями освоения дисциплины «Спецкурс 10.2» являются: познакомить студентов механико-математического факультета с некоторыми понятиями и методами алгебраической геометрии; привить навыки применения этих методов для решения отдельных задач; познакомить с основными задачами и методами их решений, встречающихся в теории криптографии.

2. Место дисциплины в структуре ООП

Дисциплина «Спецкурс 10.2» включена в часть, формируемую участниками образовательных отношений блока 1 «Дисциплины (модули)» ООП магистратуры. На ее изучение отводится 252 часа (72 часа аудиторной работы, 180 часов СР). Согласно учебному плану направления и профиля подготовки данный курс в третьем и четвертом семестрах заканчивается зачетом.

В курсе излагается теория конечных полей, дается понятие открытого ключа, приводятся методы проверки чисел на простоту и факторизации. Даются основные понятия теории эллиптических кривых и методы использования эллиптических кривых в криптографии.

Освоение данной дисциплины необходимо для написания выпускных квалификационных работ (магистерских работ).

3. Результаты обучения по дисциплине

Код и наименование компетенции	Код и наименование индикатора (индикаторов) достижения компетенции	Результаты обучения
УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	1.1_М.УК-1. Анализирует проблемную ситуацию как систему, выявляя ее составляющие и связи между ними.	Знать: - постановку основных задач криптографии; - основные этапы проведения работ по обработке и анализу научно-технической информации и результатов исследований. Уметь: - анализировать проблемные ситуации, выделяя ее базовые составляющие; - выявлять связи между составляющими проблемной ситуации. Владеть: - навыками анализа проблемных ситуаций с выделением ее базовых составляющих.

1.2_М.УК-1. Осуществляет
поиск алгоритмов решения
поставленной проблемной
ситуации на основе
доступных источников
информации. Определяет в
рамках выбранного
алгоритма вопросы
(задачи), подлежащие
дальнейшей детальной
разработке. Предлагает
способы их решения.

Знать:

- основные алгоритмы криптографии на эллиптических кривых и их применение;
- способы решения задач,
 определенных в рамках
 выбранного алгоритма
 решения проблемной
 ситуации.

Уметь:

находить и критически анализировать информацию, необходимую для решения поставленной проблемной ситуации.

Владеть:

навыками поиска алгоритмов решения поставленной проблемной ситуации

2.1 М.УК-1. Разрабатывает стратегию достижения поставленной цели как последовательность шагов, предвидя результат каждого из них и оценивая их влияние на внешнее окружение планируемой деятельности на взаимоотношения участников этой деятельности.

Знать:

- основные методы разработки стратегий достижения поставленной цели.

Уметь:

оценить достоинства и недостатки различных вариантов решения задач при применении методов теории кодирования на эллиптических кривых.

Владеть:

навыками выбора оптимального решения для поставленной задачи.

ПК-1

Способен демонстрировать фундаментальные знания математических и естественных наук, программмирования и информационных технологий.

1.1_М.ПК-1. Понимает основные концепции, принципы, теории и факты, в области математических и (или) естественных наук, программирования и информационных технологий.

Знать:

- основные концепции,
принципы, теории и факты,
связанные с
эллиптическими кривыми и
криптографией.

Уметь:

использовать основные концепции, принципы, теории и факты, связанные с эллиптическими кривыми и криптографией.

Владеть:

– основными навыками,принципами, теорией и

	фактами, связанными с
	эллиптическими кривыми и
	криптографией.
2.1 М.ПК-1. Формулирует	Знать:
и решает стандартные	– основные методы теории
задачи в собственной	эллиптических кривых и
научно- исследовательской	криптографии для решения
деятельности.	задач в собственной
	научно- исследовательской
	деятельности.
	Уметь:
	– применять методы теории
	эллиптических кривых и
	криптографии для решения
	задач в собственной
	научно- исследовательской
	деятельности.
	– обрабатывать и
	анализировать научно-
	техническую информацию
	для постановки и решения
	задач. Владеть:
	– навыками применения
	методов теории эллипти-
	ческих кривых и крипто-
	графии для решения задач в
	собственной научно- иссле-
	довательской деятельности.
3.1_М.ПК-1. Проводит на-	Знать:
учно-исследовательские	– основные методы
работы в области	проведения научно-
математики и компьютер-	исследовательской
ных наук.	деятельности при помощи
	задач теории
	эллиптических кривых и
	криптографии.
	Уметь:
	– проводить научно-
	исследовательскую
	деятельность при помощи
	задач теории
	эллиптических кривых и криптографии.
	Владеть:
	Бладеть.
	— навыками намичо-
	- навыками научно- исследовательской
	исследовательской
	исследовательской деятельности с
	исследовательской деятельности с применением задач теории
	исследовательской деятельности с

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 часа.

1	2	3	4	5	6	8	9	10
№ п/п	Раздел дисциплины	d	естра	Формы текущего контроля успеваемости (по неделям семестра) Формы промежуточной аттестации (по семестрам)				
		Семестр	Неделя семестра	Лекции	Практические	CP	Контроль	
1	Конечные поля. Квадратичные вычеты и закон взаимности	3	1-6	6	6	24		Консультация, опрос
2	Некоторые простые криптосистемы, шифрующие матрицы	3	7-12	6	6	24		Консультация, опрос
3	Криптография с открытым ключом	3	13-18	6	6	24		Консультация, опрос
	Промежуточная аттестация	3						Зачет
	Итого за 3 семестр – 108 ч.			18	18	72	0	
4	Методы проверки чисел на простоту и факторизации чисел	4	1-9	6	6	36		Консультация, опрос
5	Криптосистемы на эллиптических кривых	4	10-18	6	6	36		Консультация, опрос
	Промежуточная аттестация	4						Зачет
	Итого за 4 семестр – <i>144 ч</i> .			18	18	108	0	
	Общая трудоемкость дисциплины				1	l		1

Содержание дисциплины

1. Конечные поля. Квадратичные вычеты и закон взаимности.

Существование мультипликативных образующих конечных полей. Существование и единственность конечных полей с числом элементов, равным степени простого числа. Явные построения. Корни из единицы. Квадратичные вычеты. Символ Лежандра. Символ Якоби. Квадратные корни в кольце вычетов по модулю p.

2. Некоторые простые криптосистемы, шифрующие матрицы.

Примеры простых криптосистем. Преобразования биграмм. Линейная алгебра по модулю N. Примеры. Шифрующие аффинные преобразования. Примеры.

3. Криптография с открытым ключом.

Основные понятия и обозначения в криптографии. Некоторые примеры простых криптосистем. Биграммы и их преобразования. Действия с матрицами по модулю N. Шифрующие матрицы. Шифрующие аффинные преобразования. Основные принципы шифрования с открытым ключом. Классическая криптосистема с открытым ключом. Аутентификация отправителя. Хеш-функции. Обмен ключами. Вероятностное шифрование. Криптосистема RSA. Примеры. Задача дискретного логарифмирования. Система Диффи-Хеллмана обмена ключами. Криптосистема Мэсси-Омуры для передачи сообщений. Криптосистема Эль-Гамаля. Стандарты цифровой подписи. Алгоритм дискретного логарифмирования в конечных полях. Индексный алгоритм дискретного логарифмирования. Задача о рюкзаке. быстрорастущим рюкзаке c набором. Криптосистемы, Задача использующие задачу о рюкзаке. Протоколы с нулевым разглашением и скрытая передача.

4. Методы проверки чисел на простоту и факторизации чисел

Псевдопростые числа. Критерии псевдопростоты. Число Кармайкла, его свойства. Эйлеровы псевдопростые числа. Тесты на псевдопростоту числа. Ро-метод факторизации Полларда. Примеры. Факторизация Ферма. Примеры. Факторные базы, их алгоритм. Эвристическая временная оценка. Цепные дроби. Алгоритм разложения на множители с помощью цепных дробей. Метод квадратичного решета. Примеры. Алгоритм решета в числовом поле.

6. Криптосистемы на эллиптических кривых

Кратные точки эллиптической кривой. Представление открытого текста точками эллиптической кривой. Задача дискретного логарифмирования на эллиптической кривой. Аналог ключевого обмена Диффи-Хеллмана. Аналог системы Мэсси-Омуры. Аналог системы Эль-Гамаля. Критерий простоты, использующий эллиптические кривые. Методы разложения на множители при помощи эллиптических кривых: p-1-метод Полларда, метод Ленстры. Примеры.

5. Образовательные технологии, применяемые при освоении дисциплины

Для реализации компетентностного подхода в учебном процессе применяются следующие образовательные технологии:

- 1) при проведении лекционных занятий: информационные лекции, проблемные лекции, лекции беседы, лекции дискуссии, лекции с заранее запланированными ошибками;
- 2) при проведении практических занятий: традиционные занятия, занятия исследования, проблемные ситуации, ситуации с ошибкой;

3) при организации самостоятельной работы студентов: поиск и обработка информации, в том числе с использованием информационнотелекоммуникационных технологий; исследование проблемной ситуации; постановка и решение задач из предметной области; отработка навыков применения стандартных методов к решению задач предметной области.

Успешное освоение материала курса предполагает большую самостоятельную работу студентов и руководство этой работой со стороны преподавателей. Применяются следующие формы контроля: устный опрос, проверка решения практических задач.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуального обучения, применение соответствующих методик по работе с инвалидами, использование дистанционного общения, проведение средств индивидуальных консультаций изучаемым дополнительных теоретическим вопросам и практическим занятиям, оказание помощи при подготовке к промежуточной и итоговой аттестации. Подготовка, при необходимости, учебных и контрольно-измерительных материалов в формах, доступных для изучения студентами с особыми образовательными потребностями (для студентов с нарушениями зрения учебные материалы подготавливаются с применением укрупненного шрифта, используются аудиозаписи занятий; для студентов с нарушением слуха предоставляются электронные лекции, печатные раздаточные материалы с заданиями для самостоятельной работы).

При необходимости, для подготовки к ответу на практическом занятии, студентам с инвалидностью и студентам с ограниченными возможностями здоровья среднее время увеличивается в 1,5–2 раза по сравнению со средним временем подготовки обычного студента.

Для студентов с инвалидностью или с ограниченными возможностями здоровья форма промежуточной аттестации устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно на бумаге, письменно на компьютере, в форме тестирования и т.п.). Промежуточная аттестация по дисциплине может проводиться в несколько этапов в форме рубежного контроля по завершению изучения отдельных тем дисциплины.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Самостоятельная внеаудиторная работа студентов проводится в форме изучения и анализа лекционного материала, изучения отдельных теоретических вопросов по предлагаемой литературе, подбора дополнительных источников для извлечения научно-технической информации, связанной с проблемами, изучаемыми в рамках данной

дисциплины и решения задач с дальнейшим их разбором или обсуждением на аудиторных занятиях, подготовки к промежуточной аттестации.

Самостоятельная аудиторная работа студентов проводится в форме самостоятельного решения задач на практических занятиях с дальнейшим их разбором и обсуждением; поиска решений проблемных ситуаций, предложенных на лекциях и практических занятиях; поиска и устранения ошибок, заложенных в представлении материала преподавателем и допущенных другими студентами.

Текущий контроль усвоения дисциплины «Спецкурс 10.2» проводится в форме устных опросов на лекционных и практических занятиях, разбора и обсуждения решаемых задач на практических занятиях, контрольных работ.

Промежуточная аттестация по дисциплине «Спецкурс 10.2» проводится в форме *зачета*. Контрольные вопросы готовятся к каждому разделу.

Перечень вопросов для проведения зачета в 3 семестре.

- 1. Существование мультипликативных образующих конечных полей.
- 2. Существование и единственность конечных полей с числом элементов, равным степени простого числа.
 - 3. Явные построения.
 - 4. Корни из единицы.
 - 5. Квадратичные вычеты.
 - 6. Символ Лежандра.
 - 7. Символ Якоби.
 - 8. Квадратные корни в кольце вычетов по модулю p.
 - 9. Примеры простых криптосистем.
 - 10. Преобразования биграмм.
 - 11. Линейная алгебра по модулю N. Примеры.
 - 12. Шифрующие аффинные преобразования. Примеры.
 - 13. Основные принципы шифрования с открытым ключом.
 - 14. Классическая криптосистема с открытым ключом.
 - 15. Аутентификация отправителя.
 - 16. Хеш-функции.
 - 17. Обмен ключами.
 - 18. Вероятностное шифрование.
 - 19. Криптосистема RSA. Примеры.
 - 20. Задача дискретного логарифмирования.
 - 21. Система Диффи-Хеллмана обмена ключами.
 - 22. Криптосистема Мэсси-Омуры для передачи сообщений.
 - 23. Криптосистема Эль-Гамаля.
 - 24. Стандарты цифровой подписи.
 - 25. Алгоритм дискретного логарифмирования в конечных полях.
 - 26. Индексный алгоритм дискретного логарифмирования.
 - 27. Задача о рюкзаке. Задача о рюкзаке с быстрорастущим набором.
 - 28. Криптосистемы, использующие задачу о рюкзаке.

29. Протоколы с нулевым разглашением и скрытая передача.

Перечень вопросов для проведения зачета в 4 семестре.

- 30. Псевдопростые числа. Критерии псевдопростоты.
- 31. Число Кармайкла, его свойства.
- 32. Эйлеровы псевдопростые числа.
- 33. Тесты на псевдопростоту числа.
- 34. Ро-метод факторизации Полларда. Примеры.
- 35. Факторизация Ферма. Примеры.
- 36. Факторные базы, их алгоритм.
- 37. Эвристическая временная оценка.
- 38. Цепные дроби. Алгоритм разложения на множители с помощью цепных дробей.
 - 39. Метод квадратичного решета. Примеры.
 - 40. Алгоритм решета в числовом поле.
 - 41. Кратные точки эллиптической кривой.
 - 42. Представление открытого текста точками эллиптической кривой.
 - 43. Задача дискретного логарифмирования на эллиптической кривой.
 - 44. Аналог ключевого обмена Диффи-Хеллмана.
 - 45. Аналог системы Мэсси-Омуры.
 - 46. Аналог системы Эль-Гамаля.
 - 47. Критерий простоты, использующий эллиптические кривые.
- 48. р-1-метод Полларда разложения на множители при помощи эллиптических кривых Примеры.
- 49. Метод Ленстры разложения на множители при помощи эллиптических кривых. Примеры.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекци и	Лаборатор ные занятия	Практичес кие занятия	Самостоятел ьная работа	ваппос	Другие виды учебной деятельнос ти	Промежут очная аттестация	Итого
3	20	0	20	20	0	0	40	100
4	20	0	20	20	0	0	40	100

Программа оценивания учебной деятельности студента

1 семестр

Лекции

Посещаемость, опрос, активность и др. от 0 до 20 баллов.

Лабораторные занятия

Не предусмотрены.

Практические занятия – от 0 до 20 баллов

Самостоятельность и правильность при выполнении работы — от 0 до 10 баллов, активность работы в аудитории — от 0 до 5 баллов, уровень подготовки к занятиям — от 0 до 5 баллов.

Самостоятельная работа – от 0 до 20 баллов

Контроль качества и количества выполненных домашних работ – от 0 до 10 баллов, правильность выполнения – от 0 до 10 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Не предусмотрено.

Промежуточная аттестация – зачет – от 0 до 40 баллов

при проведении промежуточной аттестации

ответ на «отлично» оценивается от 36 до 40 баллов;

ответ на «хорошо» оценивается от 31 до 35 баллов;

ответ на «удовлетворительно» оценивается от 25 до 30 баллов;

ответ на «неудовлетворительно» оценивается от 0 до 24 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 3 семестр по дисциплине «Спецкурс 10.2» составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Спецкурс 10.2» в оценку (зачет):

60 – 100 баллов	«зачтено»
0 – 59 баллов	«не зачтено»

4 семестр

Лекции

Посещаемость, опрос, активность и др. от 0 до 20 баллов.

Лабораторные занятия

Не предусмотрены.

Практические занятия – от 0 до 20 баллов

Самостоятельность и правильность при выполнении работы — от 0 до 10 баллов, активность работы в аудитории — от 0 до 5 баллов, уровень подготовки к занятиям — от 0 до 5 баллов.

Самостоятельная работа – от 0 до 20 баллов

Контроль качества и количества выполненных домашних работ – от 0 до 10 баллов, правильность выполнения – от 0 до 10 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Не предусмотрено.

Промежуточная аттестация – зачет – от 0 до 40 баллов

при проведении промежуточной аттестации

ответ на «отлично» оценивается от 36 до 40 баллов;

ответ на «хорошо» оценивается от 31 до 35 баллов;

ответ на «удовлетворительно» оценивается от 25 до 30 баллов;

ответ на «неудовлетворительно» оценивается от 0 до 24 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 4 семестр по дисциплине «Спецкурс 10.2» составляет **100** баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Спецкурс 10.2» в оценку (зачет):

60 – 100 баллов	«зачтено»
0 – 59 баллов	«не зачтено»

обеспечение информационное И 8. Учебно-методическое дисциплины

а) литература:

- Фаддеев Д.К.. Лекции по алгебре. СПб.; М.; Краснодар: Лань, 2007 1.
- Виноградов И.М. Основы теории чисел. СПб.; М.; Краснодар: Лань, 2006 2.
- Гурвиц А., Курант Р. Теория функций. М: «Наука», 1968. 3.
- Коблиц Н. Введение в эллиптические кривые и модулярные формы. М: 16 «Мир», 1988.
- Ленг С. Эллиптические функции. М: «Наука», 1984.

б) программное обеспечение и Интернет-ресурсы:

Лицензионное программное обеспечение:

- Операционная система Windows 7, или более поздняя версия
- Microsoft Office PowerPoint

Интернет-ресурсы:

- 1. Саратовской государственный университет им. Н.Г. Чернышевского.
 - Режим доступа: www.sgu.ru/
- 2. Зональная научная библиотека им. В.А. Артисевич Саратовского государственного университета им. Н.Г. Чернышевского. - Режим доступа: http://library.sgu.ru/
- 3. Каталог образовательных Интернет-ресурсов. Режим доступа: http://window.edu.ru/

9. Материально-техническое обеспечение дисциплины

Учебная аудитория с обязательным наличием специализированной доски, мела (маркера), проектора, с возможностью размещения всех обучающихся по данной дисциплине.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 02.04.01 – «Математика и компьютерные науки» и профилю подготовки «Математические основы компьютерных наук».

Автор:

доцент, к.ф.-м.н., доцент кафедры КАиТЧ Е.В. Сецинская

Программа одобрена на заседании кафедры компьютерной алгебры и теории чисел от 12 ноября 2021 года, протокол № 4.