МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Биологический факультет

УТВЕРЖДАЮ

Декан биологического факультета

О.И. Юдакова

"07" 09

2021 г.

Рабочая программа дисциплины

Молекулярно-генетические исследования живых организмов

Направление подготовки магистратуры

06.04.01 Биология

Профиль подготовки магистратуры

Общая биология

Квалификация (степень) выпускника

Магистр

Форма обучения

очная

Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель-	Кашин Александр Степанович	100	
разработчик			02.09.217
Председатель	Юдакова Ольга Ивановна	600	6
НМК		Week	01.09.212
Заведующий	Юдакова Ольга Ивановна	0000	2100,012
кафедрой		Week	02 09 212
Специалист			1 01 2
Учебного		/	
управления			

1. Цели освоения дисциплины

Целью освоения дисциплины «Молекулярно-генетические исследования живых организмов» является изучение студентами современных методов и приемов молекулярно-генетических исследований микроорганизмов, растений и животных, включая различные методы анализа результатов молекулярно-генетических исследований для филогенетических построений, генезиса и расселения популяций и видов, моделирование потенциальных ареалов и т.п. Задачи дисциплины: привитие знания теоретических основ молекулярно-генетических исследований; формирование навыков самостоятельного анализа результатов молекулярно-генетических исследований с информационных технологий и различных программных продуктов; новых знаний и умений области молекулярно-генетических использование В исследований в практической деятельности.

2. Место дисциплины в структуре ООП

Дисциплина «Молекулярно-генетические исследования живых организмов» (Б1.В.01) относится к обязательным дисциплинам вариативной части Блока 1. Дисциплины (модули) учебного плана ООП и изучается в 1 семестре.

Для освоения дисциплины обучающиеся используют знания по дисциплинам бакалавриата «Теория эволюции», «Молекулярная биология», «Биологическая химия», «Генетика», «Микробиология и вирусология», «Информатика и современные информационные технологии», «Математические методы в биологии».

Освоение данной дисциплины необходимо для дальнейшего изучения дисциплин технологии математическое моделирование «Компьютерные И В биологии», «Использование биоинформационных методов в биологических и медицинских исследованиях», «Молекулярная иммунология», «Микробиологические методы в лабораторной «Молекулярно-генетические диагностике», основы коммуникации организмов», «Основы организации научно-исследовательской работы», «Экологическая генетика», «Экологическая генетика», «Медицинская генетика», а также для успешного прохождения специальной практики и подготовки выпускной квалификационной работы.

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование	Результаты обучения		
компетенции	индикатора (индикаторов)			
	достижения компетенции			
ПК-1 Способен применять	1.1_М.ПК-1 Понимает	Знать:		
знание принципов структурно	современные проблемы	- определения основные		
- функциональной	биологии и использует	понятия в области		
организации биологических	фундаментальные	молекулярно-генетических		
объектов, выбирать и	биологические представления	исследований;		
использовать основные	в сфере профессиональной	- основные методы и понятия		
физиологические,	деятельности для постановки и	молекулярной генетики;		
цитологические,	решения новых задач;	- направления использования		
биохимические,	способен осуществлять сбор,	методов молекулярной		
биофизические, молекулярно-	обработку, анализ и	генетики в биологических и		
генетические, геоботанические	систематизацию научной	биомедицинских		
и зоологические методы	информации по биологии,	исследованиях.		
исследования экосистемы и ее	биомедицине и экологии	Уметь:		

компонентов для решения профессиональных задач в области биологии и экологии

- 2.1_М.ПК-1 Способен описывать проблемы и ситуации профессиональной деятельности, представлять известные и собственные научные результаты, используя язык и аппарат биологической науки
- 3.1 M.ПК-1 Самостоятельно анализирует имеющуюся информацию, выявляет фундаментальные проблемы, ставит задачу и выполняет биологические исследования при решении конкретных задач с использованием современной аппаратуры и вычислительных средств, демонстрирует ответственность за качество работ научную И достоверность результатов
- 4.1 М.ПК-1 Применяет физиологические, цитологические, биохимические. биофизические, молекулярногенетические методы исследования биосистем, осуществляет контроль качества клинических лабораторных исследований третьей категории сложности

аналитическом

постаналитическом этапах

преаналитическом,

- применять знания и методы молекулярной генетики в области филогении, изучении биоразнообразия и биомедицины;
- понимать значение методов молекулярной генетики в области медицинских и природоохранных биотехнологий;
- прогнозировать последствия своей профессиональной деятельности;
- эксплуатировать современную аппаратуру и оборудование при выполнении научно-исследовательских работ.

Владеть:

- навыками самостоятельной работы со специальной литературой;
- методологией работы с объектами молекулярногенетических исследований для осуществления биомедицинской диагностики, изучения биоразнообразия, филогенетических построений, селекции;
- анализом результатов экспериментальной работы, методами статистической обработки результатов и требованиями правильного оформления работы.

ПК-4 Способен использовать основные теории, концепции и принципы в избранной области профессиональной деятельности, способен к системному мышлению, умеет планировать и реализовывать профессиональные мероприятия

- 1.1 М.ПК-4 Знает И использует основные теории, концепции И принципы избранной области профессиональной деятельности, способен системному мышлению, умеет планировать и реализовывать профессиональные мероприятия;
- 4.1 **М.**ПК-4 Способен участвовать разработке В процедур мониторинга параметров окружающей среды в местах проведения исследований и хранения их материалов разрабатывать и реализовывать проекты ПО экологической оценке,

Знать:

- основы современных достижений молекулярной генетики;
- современные методы и приемы молекулярногенетических исследований растений и животных;
- возможности использования методов молекулярногенетических исследований в научно-исследовательской работе и решении прикладных задач в филогении, селекции и биомедицине.

Уметь:

использовать мониторингу методы восстановлению нарушенных молекулярно-генетических экосистем (покомпонентно и исследований научнодля всей системы в целом) и к исследовательской работе; участию в мероприятиях по - использовать достижения в экологическому мониторингу области молекулярной и охране окружающей среды. генетики решения Демонстрирует готовность к составлению биологических эволюционных, медицинских обоснований рационального сельскохозяйственных использования биоресурсов проблем; 6.1 М.ПК-4 Демонстрирует разрабатывать протоколы проведению готовность проведения молекулярнолабораторных исследований в генетических исследований в соответствии профилем области природоохранных лаборатории; способен внутрилабораторной мероприятий, селекции валидации результатов биомедицины. клинических лабораторных Владеть: третьей исследований представлениями об категории сложности; основных методах молекулярно-генетических исследований; молекулярнометодами генетических исследований в области филогении, селекции и биомедицины; методами методами молекулярно-генетических исследований при решении

4. Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 часов.

эволюционных, селекционных и биомедицинских задач.

№ п/п	Раздел дисциплины	Семе -стр	Неде- ля семе- стра					успеваемости (по неделям семестра)
				ции	Общая трудоем- кость	Из них – практичес- кая подго- товка	работа	Формы промежуточной аттестации (по семестрам)
1	Выделение ДНК. Количественный и качественный анализ выделенной ДНК.	1	1	2	2	2	5	Опрос, рефераты
2	Полимеразная цепная реакция: практическое применение и перспективы развития метода	1	2	0	4	2	5	Опрос, рефераты

3	Электрофорез и визуализации продуктов амплификации нуклеиновых кислот	1	3	0	4	2	10	Опрос, рефераты
4	Молекулярные методы, базирующиеся на анонимном полиморфизме ДНК	1	4	2	4	2	10	Опрос, рефераты
5	Методы секвенирования ДНК, в том числе методы секвенирования нового поколения.	1	6	0	4		10	Опрос, рефераты
6	Таргетное ДНК- секвенирование. Примеры использования методов, базирующихся на таргетном секвенировании	1	7	2	4		10	Опрос, рефераты
7	Полногеномное секвенирование. Методы сборки полного генома.	1	8	2	2		10	Опрос, рефераты
8	Транскриптом. Экзом. Анализ экспрессии генов.	1	5	2	2		5	Опрос, рефераты
9	Методы филогенетического анализа: фенетические и кладистические методы	1	9	2	2	0	10	Опрос, рефераты
10	Современные компьютерные программы и базы данных в области молекулярной генетики. Моделирование данных.	1	10	2	2	2	5	Опрос, рефераты
11	Анализ структуры хромосом с использованием молекулярно- цитогенетических маркёров	1	11	2	2	2	5	Опрос, рефераты
12	Проточная цитометрия и её применение использованием для оценки размера генома, гибридности, плоидности, анеу- и миксоплоидии,	1	12	2	2		5	Опрос, рефераты
	Промежуточная аттестация	1					36	Экзамен
	Итого по дисциплине		1-12	18	36	12	126	216

Содержание дисциплины

Тема 1. Выделение ДНК. Количественный и качественный анализ выделенной ДНК. Материал для выделения, особенности выделения ДНК из различных объектов. Очистка ДНК. Протоколы выделения ДНК из растительной ткани: СТАБ-метод, SDS-метод быстрого выделения и др. Спектрофотометрическое измерение концентрации нуклеиновых кислот. Оценка качества и количества ДНК И РНК при помощи электрофореза в агарозном геле. Протоколы определения концентрации ДНК.

<u>Тема 2. Полимеразная цепная реакция: практическое применение и перспективы развития метода.</u>

Суть метода ПЦР. Основные компоненты ПЦР-смеси. Разведение и подготовка прапймеров к работе. Программы амплификации. Оптимизация ПЦР-реакции. Протоколы амплификации ДНК. Модификации метода ПЦР: мультиплексная ПЦР, вложенная (nested) ПЦР, «long-time» ПЦР, терминирующая ПЦР. Преимущества ПЦР перед другими методами, Практическое применение и перспективы развития метода ПЦР.

Тема 4. Молекулярные методы, базирующиеся на анонимном полиморфизме ДНК.

RAPD — случайно амплифицированный полиморфизм ДНК; AFLP — амплифицированный полиморфизм длины фрагментов; SCAR — амплифицированный регион с известной последовательностью; CAPS — расщеплённый полиморфизм амплифицированных последовательностей; SSR-маркеры — микросателлиты; ISSR — межмикросателлиты. Идентификация генотипов сортов. Молекулярно-генетические изменения растений при микроклональном и вегетативном размножении (сомаклональная изменчивость). Популяционно-генетические исследования. Исследование филогенетических процессов. Генетическое картирование Сохранение генетического разнообразия.

Тема 5. Методы секвенирования ДНК, в том числе методы секвенирования нового поколения. Секвенирование ДНК по Максаму и Гилберту: метод химической деградации; Секвенирование ДНК по Сэнгеру: «плюс-минус» метод; Секвенирование ДНК по Сэнгеру: метод «терминаторов»; Автоматическое секвенирование ДНК; Методы секвенирования нового поколения: Illumina — секвенирование путём синтеза, РасВіо — одноцепочечное секвенирование в реальном времени, Oxford Nanopore — нанопоровое секвенирование и другие альтернативные методы.

<u>Тема 6. Таргетное ДНК-секвенирование.</u> Выбор целевых участков ДНК и конструирование праймеров для апмлификации этих участков. Экзоны, интроны, межгенные спейсеры. Консервативные области генов. Проблемы подбора праймеров: шпилечные структуры и Г-Ц-богатые участки. Примеры использования методов, базирующихся на таргетном секвенировании.

<u>Тема 7. Полногеномное секвенирование.</u> <u>Методы сборки полного генома.</u> «Риды» и «контиги». Комбинация разных методов секвенирования для получения полногеномной последовательности. Методы сборки полного генома: сборка на референс и сборка *de novo*. Сборка полногеномных последовательностей в хромосомы.

<u>Тема 8. Транскриптом. Экзом.</u> Анализ экспрессии генов. Методы выделения РНК. Обратная транскрипция.

<u>Тема 9. Методы филогенетического анализа:</u> фенетические (UPGMA, метод «ближайшего соседа», дисперсионный анализ AMOVA) и кладистические методы (метод максимальной экономии, метод максимального правдоподобия, метод Байеса).

Тема 10. Современные компьютерные программы и базы данных в области молекулярной генетики. Моделирование данных. Программы обработки двоичных матриц: POPGENE, PAST, Arlequin, STRUCTURE, NEW HYBRIDS. Программы обработки нуклеотидных последовательностей: BioEdit, MEGA, SplitsTree, TCS. Программы для работы с мегаданными и сборки геномов: Ugene, Geneious.

Международная база генетических данных NCBI GenBank. Проверка и конвертация генетических данных с помощью BLAST. Регистрация генетических данных.

Тема 11. Анализ структуры хромосом с использованием молекулярнощитогенетических маркёров. Основные принципы гибридизации нуклеиновых кислот in situ. Методы селективного хромосомного анализа: ДНК-пробы (хромосомные нумераторы) для выявления численных хромосомных аномалий, ДНК-пробы для выявления микроделеций и транслокаций хромосом. Производство хромосомо-, плече- и районоспецифических ДНК-проб. Понятие о флуоресцентной гибридизации in situ (FISH). Метод сравнительной геномной гибридизации (СGH) и его принципы.

<u>Тема 12. Проточная цитометрия и её применение</u>

Основные принципы метода проточной цитометрии. Цитометрические данные и способы их графического представления. Анализ состава клеточной популяции: виды принципы выделения субпопуляций, «гейтов», иерархия субпопуляций. «Многоцветный» анализ, спектры эмиссии, компенсация «паразитной» засветки флюорохромами соседних каналов. Специфика работы фотодетекторов (РМТ), параметры сигнала на РМТ, дискриминация сигналов от дуплетов и других клеточных агрегатов. Инструменты статистического анализа получаемых данных и их использование для ретровалидации параметров компенсации и правильности выделения субпопуляций. Применение проточной цитометрии для оценки размера генома, гибридности, плоидности, анеу- и миксоплоидии.

5. Образовательные технологии, применяемые при освоении дисциплины (модуля)

При реализации учебной дисциплины используются следующие формы обучения:

- 1) традиционные: лекции, семинары, практические занятия.
- 2) современные интерактивные технологии: создание проблемных ситуаций, ролевые, деловые игры, интерактивные лекции, дискуссии.

Курс сохраняет системное теоретическое изложение в рамках лекций, но практические занятия по отдельным темам становятся проблемно-ориентированными.

При реализации лекционных занятий используются различные формы визуализации наглядного материала (мультимедийные презентации, таблицы). Занятия лекционного типа по данной дисциплине составляют 41 % аудиторных занятий.

На практических занятиях используется метод учебной дискуссии, разбор проблемных ситуаций, докладов и беседы, что развивает коммуникативные способности. Практические занятия организованы в форме ответов на поставленные вопросы или докладов студентов. Доклады завершаются дискуссией по основным вопросам, затронутым в устных сообщениях. Наглядные методы обучения необходимы в рамках изучения курса, необходимо применять наглядные материалы в виде рисунков, плакатов, таблиц, графиков, а также проводить занятия с использованием компьютерной техники – презентации и др. Удельный вес интерактивных форм обучения составляет 30 % аудиторных занятий.

Практическая подготовка осуществляется на базе лаборатории молекулярной биологии и цитогенетики учебно-научного центра «Ботанический сад» ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского». Умения и навыки, приобретаемые студентами при практической подготовке: - выделения ДНК с количественным и качественным анализом выделенной ДНК; проведения полимеразной цепной реакции; - проведения электрофореза на полиакриламидном геле и визуализации продуктов амплификации с использованием гельдокументирующей системы; -проведения анализа с использованием ISSR маркёров; -

анализа результатов ISSR маркирования в программах STRUCTURE и NEW HYBRIDS.; - приготовления препаратов для дифференциального окрашивания хромосом.

Самостоятельная работа необходима в процессе изучения курса, она должна проводится по графику под руководством преподавателя. Самостоятельная работа студентов при изучении дисциплины «Молекулярно-генетические исследования живых организмов» включает: проработку конспекта лекций; подготовку к практическим работам; написание реферата по предложенным темам; изучение материалов, выделенных для самостоятельной проработки; выполнение домашнего задания; проработку лекционных материалов по учебникам.

Курс завершается экзаменом.

Особенности организации образовательного процесса для лиц с ограниченными возможностями здоровья и инвалидностью

- использование индивидуальных графиков обучения и сдачи экзаменационных сессий;
- организация коллективных занятий в студенческих группах с целью оказания помощи в получении информации инвалидам и лицам с ограниченными возможностями здоровья;
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья;
- для лиц с ограничениями по слуху для облегчения усвоения материала предусматривается максимально возможная визуализация лекционного курса, в том числе широкое использование иллюстративного материала, мультимедийной техники, дублирование основных понятий и положений на слайдах;
- для лиц с ограничениями по зрению предусматривается использование крупномасштабных наглядных пособий.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Реализация данной учебной дисциплины предусматривает следующие формы организации самостоятельной работы студентов:

- 1) внеаудиторная самостоятельная работа (подготовка к семинарским занятиям и тестированию, рефератов, составление словарей используемых терминов, списка персоналий с указанием наиболее важных открытий названных ученых, составление таблиц и схем биологических процессов);
- 2) аудиторная самостоятельная работа, которая осуществляется под непосредственным руководством преподавателя;
 - 3) творческая работа.

Цель самостоятельной работы студентов — научить студента осмысленно и самостоятельно работать сначала с учебным материалом, затем с научной информацией, заложить основы самоорганизации и самовоспитания с тем, чтобы привить умение в дальнейшем непрерывно повышать свою квалификацию.

Внеаудиторная самостоятельная работа студентов по дисциплине заключается в следующем:

- 1) подготовка к занятиям, изучение литературы (список рекомендуемой литературы приведен в разделе 8 данной рабочей программы);
 - 2) подготовка к текущей аттестации
 - 3) подготовка к промежуточной аттестации
- 4) подготовка и написание рефератов (студенту предоставляется право свободного выбора темы);
 - 5) подготовка устных и письменных ответов.

Творческая самостоятельная работа — выполнение индивидуальных заданий, направленных на развитие у студентов самостоятельности и инициативы. Она включает подготовку рефератов, эссе, решение задач. Аудиторная самостоятельная работа реализуется при проведении практических занятий и во время чтения лекций.

Текущий контроль проводится в ходе проверки и оценки выполнения заданий для самостоятельной работы.

Промежуточная аттестация (экзамен) проводится в форме устного опроса студентов по билетам.

Самостоятельная работа студентов подкреплена учебно-методическим и информационным обеспечением, включающим учебники, учебно-методические пособия, конспекты лекций, Интернет-ресурсы.

Для лиц с ограниченными возможностями здоровья (слабослышащих и др.) текущий контроль успеваемости и промежуточная аттестация может проводиться в письменной форме.

Темы рефератов:

- 1. Геномы, транскриптомы и протеомы.
- 2. Структурная геномика.
- 3. Функциональная геномика.
- 4. Сравнительная геномика.
- 5. Картирование геномов.
- 6. Секвенирование геномов
- 7. Определение местоположения генов в последовательности генома.
- 8. Определение функций отдельных генов.
- 9. Наглядный пример: аннотирование последовательности генома дрожжей.
- 10. Изучение транскриптома.
- 11. Изучение протеома.
- 12. Метаболом.
- 13. Постижение биологических систем.
- 14. Механизм эволюции геномов.
- 15. Молекулярная филогенетика и возможности её применения.
- 16. Программы для анализа молекулярно-генетических данных.
- 17. Фенетические методы анализа.
- 18. Кладистические методы анализа.
- 19. Полимеразная цепная реакция в прикладной медицине.
- 20. Модификации метода ПЦР
- 21. Использование методов, базирующиеся на анонимном полиморфизме ДНК.
- 22. Методы секвенирования ДНК
- 23. Методы секвенирования нового поколения: Примеры использования методов, базирующихся на таргетном секвенировании.

- 24. Комбинация разных методов секвенирования для получения полногеномной последовательности.
- 25. Флуоресцентная гибридизация in situ (FISH).
- 26. Метод сравнительной геномной гибридизации (ССН) и его принципы.
- 27. Применение проточной цитометрии для оценки размера генома, гибридности, плоидности, анеу- и миксоплоидии.

Вопросы для промежуточной аттестации

- 1. Количественный и качественный анализ выделенной ДНК.
- 2. Материал для выделения, особенности выделения ДНК из различных объектов. Очистка ДНК.
- 3. Протоколы выделения ДНК из растительной ткани: СТАБ-метод, SDS-метод быстрого выделения и др.
- 4. Спектрофотометрическое измерение концентрации нуклеиновых кислот.
- 5. Оценка качества и количества ДНК И РНК при помощи электрофореза в агарозном геле.
- 6. Суть метода ПЦР. Основные компоненты ПЦР-смеси.
- 7. Разведение и подготовка прапймеров к работе.
- 8. Программы амплификации. Оптимизация ПЦР-реакции. Протоколы амплификации ДНК.
- 9. Модификации метода ПЦР: мультиплексная ПЦР, вложенная (nested) ПЦР, «long-time» ПЦР, терминирующая ПЦР. Преимущества ПЦР перед другими методами, Практическое применение и перспективы развития метода ПЦР.
- 10. Электрофорез в агарозном геле.
- 11. Электрофорез в полиакриламидном геле.
- 12. Гель-документирующие системы и денситометры.
- 13. Молекулярные методы, базирующиеся на анонимном полиморфизме ДНК.
- 14. Примеры использования методов, базирующиеся на анонимном полиморфизме ДНК.
- 15. Секвенирование ДНК по Максаму и Гилберту: метод химической деградации.
- 16. Секвенирование ДНК по Сэнгеру: «плюс-минус» метод.
- 17. Секвенирование ДНК по Сэнгеру: метод «терминаторов»;
- 18. Автоматическое секвенирование ДНК;
- 19. Методы секвенирования нового поколения: Illumina секвенирование путём синтеза, PacBio одноцепочечное секвенирование в реальном времени, Oxford Nanopore нанопоровое секвенирование и другие альтернативные методы.
- 20. Выбор целевых участков ДНК и конструирование праймеров для апмлификации этих участков при таргетном секвенировании.
- 21. Проблемы подбора праймеров: шпилечные структуры и Г-Ц-богатые участки.
- 22. Примеры использования методов, базирующихся на таргетном секвенировании.
- 23. Комбинация разных методов секвенирования для получения полногеномной последовательности.
- 24. Методы сборки полного генома: сборка на референс и сборка *de novo*.
- 25. Сборка полногеномных последовательностей в хромосомы.
- 26. Методы филогенетического анализа.
- 27. Современные компьютерные программы и базы данных в области молекулярной генетики.
- 28. Международная база генетических данных NCBI GenBank. Регистрация генетических данных
- 29. Проверка и конвертация генетических данных с помощью BLAST.

- 30. Основные принципы гибридизации нуклеиновых кислот in situ.
- 31. ДНК-пробы (хромосомные нумераторы) для выявления численных хромосомных аномалий.
- 32. ДНК-пробы для выявления микроделеций и транслокаций хромосом.
- 33. Понятие о флуоресцентной гибридизации in situ (FISH).
- 34. Метод сравнительной геномной гибридизации (CGH) и его принципы.
- 35. Основные принципы метода проточной цитометрии.
- 36. Цитометрические данные и способы их графического представления.
- 37. Анализ состава клеточной популяции: принципы выделения субпопуляций, виды «гейтов», иерархия субпопуляций.
- 38. Анализ состава клеточной популяции: принципы выделения субпопуляций, виды «гейтов», иерархия субпопуляций.
- 39. Инструменты статистического анализа получаемых данных и их использование для ретровалидации параметров компенсации и правильности выделения субпопуляций.
- 40. Применение проточной цитометрии для оценки размера генома, гибридности, плоидности, анеу- и миксоплоидии.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 - Таблица максимальных баллов по видам учебной деятельности.

Семестр	Лекци и	Лаборато рные занятия	Практиче ские занятия	льная	Автоматизир ованное тестирование	учебной	Промежут очная аттестаци я	Итого
1	10	0	40	0	0	30	20	100

Программа оценивания учебной деятельности студента

1 семестр

Лекпии

Посещаемость, активность - от 0 до 10 баллов.

Лабораторные занятия – не предусмотрены

Практические занятия - от 0 до 40 баллов

Устный опрос, который предполагает подготовку доклада по теме занятия, умение выделить главную мысль, самостоятельность при выполнении работы, уровень подготовки доклада и презентации – от 0 до 10 баллов

Активность работы в аудитории – от 0 до 10 баллов

Правильность выполнения практических заданий - от 0 до 20 баллов

Самостоятельная работа – не предусмотрена.

Автоматизированное тестирование – не предусмотрено.

Другие виды учебной деятельности - от 0 до 30 баллов

К другим видам учебной деятельности относится написание реферата и оформление его по традиционной схеме: включающего введение, построение научного текста, заключение, список использованной литературы.

Готовность реферата - от 0 до 5 баллов.

Оформление реферата – от 0 до 5 баллов;

Промежуточная аттестация (экзамен) – от 0 до 20 баллов

Промежуточная аттестация в 1 семестре проводится в устной форме.

Максимальное количество баллов -20.

При проведении промежуточной аттестации:

от 16 до 20 баллов – ответ на «отлично»

от 11 до 15 баллов – ответ на «хорошо»

от 6 до 10 баллов – ответ на «удовлетворительно»

от 0 до 5 баллов – ответ на «неудовлетворительно»

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за **1** семестр по дисциплине «Молекулярно-генетические исследования живых организмов» составляет 100 баллов.

Таблица 2.2 - Таблица пересчета полученной студентом суммы баллов по дисциплине «Молекулярно-генетические исследования живых организмов» в оценку (экзамен):

91-100 баллов	«отлично»
71-90 баллов	«хорошо»
51-70 баллов	«удовлетворительно»
0-50 баллов	«не удовлетворительно»

8. Учебно-методическое и информационное обеспечение дисциплины (модуля).

а) литература:

- 1. Общая и молекулярная генетика : учеб. пособие для студентов ун-тов / И. Ф. Жимулёв ; отв. ред.: Е. С. Беляева, А. П. Акифьев. 3-е изд., испр. Новосибирск : Сиб. унив. изд- $\sqrt{}$ во, 2006.-478 с.
- 2. Современные иммунологические и молекулярно-генетические методы диагностики [Электронный ресурс]: учебное пособие / Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2009. 69 с. БД ЭБС «RUCONT».
- 3. Молекулярная биомедицина. Часть 2 [Электронный ресурс]: учебное пособие / А.А.Агарков и др. Воронеж : Издательский дом ВГУ, 2014. 75 с. БД ЭБС «RUCONT».
- 4. Заспа, Л. Ф. Биотехнология : методические указания для лабораторных занятий [Электронный ресурс]: методическое пособие / Л.Ф. Заспа Самара : РИЦ СГСХА, 2014. 69 с. БД ЭБС «RUCONT».
- 5. Попов, В. Н. Методы молекулярно-биологических и генно-инженерных исследований [Электронный ресурс]: учебное пособие / В.Н.Попов Воронеж: Лаборатория оперативной полиграфии Воронежского государственного университета, 2005. 52 с. БД ЭБС «RUCONT».
- 6. Практикум по молекулярной генетике и биоинженерии [Электронный ресурс].: учебное пособие / Воронеж: Издательский дом ВГУ, 2016. 55 с. БД ЭБС «RUCONT».
- 7. Генетическая инженерия : Учебно-справочное пособие / С. Н. Щелкунов. - Новосибирск : Сибирское университетское издательство, 2017. 514 с. Книга находится в премиум-версии ЭБС IPR BOOKS.
- 8. Волков, А. Н., Начева, Л.В. Молекулярно-генетические методы в практике современных медико-биологических исследований. Часть І: Теоретические основы ПЦР-диагностики / А. Н. Волков, Л.В. Начева // Фундаментальная и клиническая медицина. 2020. Т. 5, № 4. С. 134-140.

б) программное обеспечение и Интернет-ресурсы

- 1. OC Windows (лицензионное ПО) или ОС Unix/ Linux (свободное ПО)
- 2. Microsoft Office (лицензионное ПО) или Ореп Office, ЛіЬгеОffice (свободное ПО)
- 3. Браузеры Internet Explorer, Google Chrome, Opera и др. (свободное ПО)
- 4. Зональная научная библиотека имени В.А. Артисевич СГУ имени Н.Г. Чернышевского http://library.sgu.ru
- 5. Introduction to Flow Cytometry: A Learning Guide. BD Biosciences complilation (https://www.bu.edu/flow-cytometry/files/2010/10/BD-Flow-Cytom-Learning-Guide.pdf) Онлайн инструмент для подбора флюорохромов

https://www.bdbiosciences.com/enus/applications/research-applications/multicolor-flow-cytometry/product-selectiontools/spectrum-viewer

- 6. Форум молекулярной и клеточной биологии: http://molbiol.ru/forums/index.php?showtopic=575844
- 7. Электронная библиотечная система ИНФРА-М
- 8. Электронная библиотечная система ЮРАЙТ
- 9. Электронная библиотечная система АЙБУКС
- 10. Электронная библиотечная система РУКОНТ
- 11. Электронная библиотечная система ВООК.ru
- 12. Научная электронная библиотека eLIBRARY
- 13. Электронная библиотечная система IPRbooks
- 14. Электронная библиотечная система ЛАНЬ

9. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения занятий, рабочие места, оснащенные аудиовизуальными средствами (мультимедийным демонстрационным комплексом). Для реализации данной рабочей программы используются аудитории (кабинеты), оборудованные меловыми досками, аудиовизуальными средствами и мультимедийными демонстрационными комплексами. Доступ студентов к Интернет- ресурсам обеспечивается залом открытого доступа к Интернет-ресурсам в научной библиотеке СГУ.

Все указанные помещения соответствуют действующим санитарным и противопожарным нормам, а также требованиям техники безопасности и охраны труда при проведении учебных, научно-исследовательских и научно-производственных работ.

Для проведения дисциплины «Молекулярно-генетические исследования живых организмов» в Зональной научной библиотеке СГУ имеется в необходимом количестве литература.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 06.04.01 Биология профиль «Общая биология».

Автор:

профессор кафедры генетики, д.б.н.

Кашин А.С.

Программа одобрена на заседании кафедры генетики от 02.09.21 года, протокол №1