МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Н.Г. ЧЕРНЫШЕВСКОГО»

Геологический факультет

УТВЕРЖДАЮ кекан факультета М.В. Пименов

Рабочая программа дисципцина «Инженерная геодинамика»

Специальность 21.05.02 Прикладная геология

Специализация «Поиски и разведка подземных вод и инженерно-геологические изыскания»

Квалификация выпускника Горный инженер-геолог

Форма обучения очная

Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Хохлов А.Е.	A low	85. 102y
Председатель НМК	Волкова Е.Н.	-gbon	83.10.21
Заведующий кафедрой	Гончаренко О.П.	Oflows	05.10 21
Специалист Учебного управления			/

1. Цели освоения дисциплины

Целями освоения дисциплины «Инженерная геодинамика» является получение студентами основополагающих знаний об основных закономерностях формирования геологических и инженерно-геологических процессов. В рамках дисциплины рассматриваются эндогенные и экзогенные геологические процессы, развивающиеся под действием разнообразных региональных, зональных и техногенных факторов, освещаются как стандартные, так и авторские методики их оценки и прогноза развития, также излагаются профилактические и в упрощённой форме конструктивные мероприятия, нацеленные на борьбу с негативными проявлениями геологических и инженерно-геологических процессов.

2. Место дисциплины в структуре ООП

Дисциплина «Инженерная геодинамика» представляет собой дисциплину по выбору части блока 1 «Дисциплины (модули)» учебного плана ООП, формируемой участниками образовательных отношений. Читается в 8 семестре. Для успешного освоения дисциплины «Инженерная геодинамика» необходима хорошая общегеологическая подготовка, выражающаяся в понимании содержания курсов "Кристаллографии и минералогии", "Петрографии» и «Литологии", "Структурной геологии", "Общей геохимии", а также знания в рамках курсов "Основы гидрогеологии", «Основы инженерной геологии» и "Грунтоведение". Освоение данной дисциплины необходимо для изучения вариативных профильных дисциплин и освоения магистерских программ геологического профиля, а также для успешной профессиональной деятельности

3. Результаты обучения по дисциплине

Код и	Код и наименование	Результаты обучения
наименование	индикатора (индикаторов)	
компетенции	достижения компетенции	
ПК-3	1.1. Б. ПК-3. Знаком с	Знать: современные подходы к
Способен	современными подходами к	формированию
участвова	формированию	информационной моделиобъекта
ть в	информационной модели	капитального строительства,
формиров	объекта капитального	программные
ании	строительства,	средства и методики
информацион	программными	геологического моделирования
ной модели	средствами и методиках	и прогнозирования
объекта	геологического	геологических и
капитального	моделирования и	гидрогеологических
строительства	прогнозирования	процессов.
,	геологических и	<u>Уметь</u> : формировать
моделировать	гидрогеологических	информационную модель,
И	процессов.	использовать современные
прогнозирова	1.2. Б. ПК-3. Способен	программные средства и
ть экзогенные	формировать	методики геологического
геологические	информационной модели,	моделирования и
И	использовать современные	прогнозирования геологических
гидрогеологи	программные средства и	И
ческие	методики геологического	гидрогеологических
процессы	моделирования и	процессов.
оценивать их	прогнозирования	Влалеть: навыками использования
точность и	геологических и	современных программных средств
достоверность	гидрогеологических	и методик моделирования и
	процессов.	прогнозирования.
	1.3. Б. ПК-3. Обладает навыками	_
	использования современных	

	программных средств и методик	
	моделирования и	
	прогнозирования	
ПК-5	1.1_Б. ПК-5. Знаком с	Знать: современные требования
Способен	современными требованиями	к контролю, проведению,
контролир	к контролю, проведению,	согласованию, приемки и
овать	согласованию, приемки и	утверждению результатов
проведени	утверждению результатов	инженерных изысканий, коценке
e,	инженерных изысканий, к	инженерно-
согласовы	оценке инженерно-	геологические и гидрогеологические
вать,	геологические и	условиядля различных видов
принимать	гидрогеологические условиядля	хозяйственной деятельности
И	различных видов хозяйственной	Уметь: выполнять контрольные
утверждат	деятельности	функции, проводить,
Ь	1.2_Б. ПК-5. Готов к	согласовывать, принимать и
результаты	выполнению контрольных	утверждать результаты
инжене	функций, проведению,	инженерных изысканий,
рных	согласованию, приемки и	выполнять оценку
изыска	утверждению результатов	инженерно-геологических и
ний,	инженерных изысканий,	гидрогеологических условийдля
оценив	выполнению оценки	различных видов хозяйственной
ать	инженерно-геологических и	деятельности
инжене	гидрогеологических условийдля	Владеть: навыками выполнения
рно-	различных видов хозяйственной	контрольных функций,
геологические	деятельности	проведения, согласования,
И	1.3_Б. ПК-5. Обладает	приемки и утверждения
гидрогеологи	навыками выполнения	результатов инженерных
ческие	контрольных функций,	изысканий, оценки
	проведения, согласования,	инженерно-геологических и
условия для	приемки и утверждения	гидрогеологических условийдля
различных видов	результатов инженерных	различных видов
хозяйственно	изысканий, оценки	хозяйственной деятельности
й	инженерно-геологических и	
	гидрогеологических условийдля	
деятельности	различных видов	
	хозяйственной деятельности	

3. Структура и содержание дисциплины «Инженерная геодинамика»

Общая трудоемкость дисциплины составляет 3 зачетных единицы или 108 часов.

4.1. Структура преподавания дисциплины

	4.1. Структура п	рспод	ирин	ти ди	СЦИП	IMIIDI		I
№ п/ п	Раздел дисциплины	Семестр		Лаборато ная рабо		почая рятель туден ость (в ратор работа	ную тов и часах)	Формы текущего контроля (по неделям
					Оощая грудое	В том числе практ		
	Введение. Объект, предмет, цели, задачи и методы инженерной геодинамики.	8	1	2	4	4	4	Собеседование
	Раздел 1. Тема 1.1 Основные законы инженерной геодинамики	8	2	2	4	4	4	Лабораторная работа № 1
3.	Раздел 2. Эндогенные геологические процессы. Тема 2.1. Влияние новейших и современных тектонических движений на геодинамические условия.	8	3	1	2	2	4	Собеседование
	Тема 2.2. Сейсмичность.	8	4-5	1	2	2	2	Лабораторная работа № 2
	Раздел 3. Экзогенные геологические процессы. Тема 3.1 Выветривание.	8	8	1	2	2	2	Собеседование
	Тема 3.2.Осыпи, обвалы.	8	9	1	2	2	2	Контрольная работа № 1
7.	Тема 3.3 Оползни.		10	1	2	2	2	Лабораторная работа № 3
8.	Тема 3.4. Эрозионные процессы.	8	11	1	2	2	2	Лабораторная работа № 4
9.	Тема 3.5. Подтопление и заболачивание	8	12	1	2	2	2	
10	Тема 3.6. Суффозия	8	12	1	2	2	2	
11	Тема 3.7. Карст	8	13	1	2	2	2	Контрольная работа № 2
12	Тема 3.8. Плывунные явления	8	13	1	2	2	2	Лабораторная работа № 5
13	Промежуточная аттестация	8	14					Экзамен, Курсовая работа
10	Итого в 8 семестре						30	
11	ВСЕГО			108ч.				

4.2. Содержание учебной дисциплины

Введение. Объект, предмет, цели, задачи и методы инженерной геодинамики. Значение инженерной геодинамики для экономики и природопользования.

Раздел 1. Тема 1.1 Связь инженерной геодинамики с инженерной геологией. Основные законы инженерной геодинамики. Основные методы инженерной геодинамики. Понятие о геологических и инженерно-геологических процессах в массивах грунтов. Различные классификации геологических и инженерно-геологических процессов. Типы воздействий на геологическую среду.

Раздел 2. Эндогенные геологические процессы.

- Тема 2.1 Новейшие и современные тектонические движения, и их влияние на геодинамические условия. Эндогенные геологические процессы. Новейшие и современные тектонические движения, их признаки. Основные типы неоструктур. Геодинамический режим разных типов неоструктур.
- Тема 2.2. Сейсмичность, основные показатели сейсмичности, методы оценки и прогноз землетрясений, наведённая сейсмичность, особенности инженерной подготовки и сейсмостойкое строительство. Инженерно-геологический анализ современной тектоники и трещиноватости.

Раздел 3. Экзогенные геологические процессы.

- Тема 3.1. Выветривание. Природные условия и основные факторы-агенты процессов выветривания, количественная оценка и защитные мероприятия, направленные на борьбу с выветриванием.
- Тема 3.2. Осыпи: распространение, природные и техногенные факторы формирования, количественная оценка, противоосыпные мероприятия. Обвалы: распространение, природные и техногенные факторы формирования, количественная оценка, противообвальные мероприятия.
- Тема 3.3 Оползни, различные классификации оползней, природные и техногенные факторы формирования, количественная оценка напряжённого состояния склонов и откосов, противооползневые мероприятия.
- Тема 3.4. Речная и овражная эрозия, природные и техногенные факторы формирования, оценка и прогноз развития эрозионных процессов, противоэрозионные мероприятия.
- Тема 3.5. Подтопление и заболачивание, природные и техногенные факторы формирования, оценка и прогноз развития процессов подтопления и заболачивания, меры борьбы.
- Тема 3.6. Суффозия, природные и техногенные факторы формирования, оценка и прогноз развития процессов суффозии, противосуффозионные мероприятия.
- Тема 3.7. Карст и карстово-суффозионные процессы, природные и техногенные факторы формирования, оценка и прогноз их развития, противокарстовые мероприятия.
- Тема 3.8. Плывунные явления в грунтах, природные и техногенные факторы формирования, оценка и прогноз их развития, противоплывунные мероприятия.

5 Образовательные технологии, применяемые при освоении дисциплины.

При реализации программы дисциплины «Инженерная геодинамика» используются различные образовательные технологии - во время аудиторных занятий занятия проводятся в виде лекций с использованием ПК и компьютерного проектора, и лабораторных занятий в лаборатории кафедры гидрогеологии и инженерной геологии или компьютерном классе Геологического факультета с использованием программы Excel и специальных программ гидродинамического моделирования.

теоретического материала осуществляется Закрепление при проведении лабораторных занятий с использованием компьютерных технологий, выполнения проблемно-ориентированных заданий. творческих Самостоятельное теоретического материала дисциплины c использованием Internet-pecypcob, информационных баз, методических разработок, специальной учебной и научной литературы, а также консультации и помощь преподавателя при выполнении индивидуальных лабораторных работ.

При проведении практической подготовки в рамках лабораторных занятий основная часть отведенного времени посвящается приобретению навыков сбора, обработки, анализа и обобщения геологической информации.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию без барьерной образовательной среды:

технологии дифференциации и индивидуализации обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения.

Для обеспечения дифференцированного подхода обеспечивается многоуровневая подача материала в соответствие с индивидуальными особенностями, предоставление учащимся права выбора целей, средств, форм работы, организация работы учащихся в малых группах, самостоятельная работа в собственном диапазоне возможностей, оценка достижения учащихся в соответствии с их возможностями.

Адаптивные технологии при обучении студентов-инвалидов реализуются с учетом особенностей этапов обучения: адаптации и овладения основами обучения,

- интеграции в коллектив, накопления опыта социально-адаптированного поведения и учебной деятельности;
- введения в профессионально-практическую деятельность и накопления практикоориентированного опыта;
- овладения основами профессиональной деятельности;
- результативный этап.

Каждый этап предусматривает свою специфику сопровождения. В зависимости от этапа обучения и принадлежности студента к учебной группе используется сопровождение тьюторов.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Предусматриваются следующие виды контроля: текущий и промежуточный. **Текущий контроль** осуществляется на лекционных и лабораторных занятиях, а также по результатам выполнений индивидуальных заданий в аудиторное и внеаудиторное время.

В начале каждого лабораторного занятия проводится 10 минутный опрос для оценки степени готовности студентов к лабораторной работе по теме занятия.

На лабораторных занятиях и в процессе самостоятельной работы во внеаудиторное время студенты выполняют индивидуальные задания с элементами исследований по всем основным блокам дисциплины. Работы оцениваются преподавателем в балльной системе.

Промежуточный контроль проводится в виде *экзамена*. Цель контроля - проверка знаний студента всей дисциплины, выяснение понимания взаимосвязей различных её разделов друг с другом и связей с иными естественнонаучными, общепрофессиональными и специальными дисциплинами.

Основные темы лабораторных занятий: 8 семестр

<u>Лабораторная работа № 1.</u> Построение инженерно-геологического разреза по данным бурения.

Лабораторная работа № 2. Составление карты сейсмического микрорайонирования.

<u>Лабораторная работа № 3</u> Расчёт устойчивости оползневого тела с известной ступенчатой поверхностью скольжения. Расчёт устойчивости оползневого тела с неизвестной круглоцилиндрической поверхностью скольжения.

<u>Лабораторная работа № 4</u> Составление карты овражно-балочной поражённости. Определение степени поражённости эрозионными процессами. Прогноз переработки берега водохранилища (по методу С.Г. Золотарёва).

<u>Лабораторная работа № 5 Составление экзогеодинамической карты и оценка различных</u> показателей геодинамической опасности по данным бурения и топографической съёмки.

Выполнение лабораторных работ проводится в виде индивидуальных заданий на базе реального фактического материала по инженерным изысканиям, что приближает

лабораторные работы и отчет по ним к инженерно-геологическим разделам реальных научных и производственных отчетов и проектов. Обработка данных и специальные расчеты проводятся с использованием программного комплекса Exel и других программ (ЭОР "Инженерная геодинамика" на основе пакета E-learning Moodle). Оформления отчетов выполняется в редакторе MS Word

Контрольные вопросы и задания для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины:

- 1. Роль региональных, зональных и техногенных условий при формировании экзогенных геологических процессов.
- 2. Связь инженерной геодинамики с другими науками.
- 3. Роль состава, строения и свойств грунтов при развитии гравитационных процессов.
- 4. Прогноз развития экзогенных геологических условий в связи с глобальным изменением климатических условий.
- 5. Характеристика наиболее значительных сейсмических явлений конца XX и начала XX! веков: причины и последствия.
- 6. Современные методы прогноза землетрясений: методика, точность, эффективность.
- 7. Влияние возрастающей техногенной нагрузки на активизацию карстовых и карстовосуффозионных процессов.
- 8. Переработка берегов водохранилищ и гидротехническое подтопление: причины, последствия и прогноз развития.
- 9. Инженерные мероприятия по борьбе с гидрогенными и гидрогеогенными процессами.
- 10. Современные методы картирования участков развития геологических и инженерно-геологических процессов.
- 11. Основные принципы мониторинга геологических и инженерно-геологических процессов.
- 12. Современные методы моделирования в инженерной геодинамике.
- 13. Инженерные мероприятия по борьбе с гравитационными процессами.
- 14. Сейсмостойкое строительство: современные тенденции и эффективность
- 15. Гравитационные смещения пород на склонах и откосах, типы и виды смещений
- 16. Меры защиты берегов водохранилищ от переработки поверхностными водами
- 17. Особенности инженерно-геологического анализа при взрывных работах
- 18. Методы наблюдений неотектонических движений.
- 19. Оползни, классификации, стадии оползневого процесса. Факторы развития оползней. Прогноз.
- 20. Районирование закарстованных территорий.
- 21. Поведение зданий и сооружений при землетрясениях.
- 22. Меры борьбы с оползнями.
- 23. Курумы. классификация, схема описания,
- 24. Горное давление и сдвижение пород над горными выработками
- 25. Лавины: причины, классификация, схема описания.
- 26. Классификация повреждения зданий в результате землетрясений.
- 27. Искусственное понижение уровня подземных вод.
- 28. Процессы, связанные с водопонижением.
- 29. Классификация пород по степени трещиноватости.
- 30. Сели: условия образования, классификация селевых потоков и их бассейнов.
- 31. Мероприятия по защите от лавин.
- 32. Карст: классификация, условия и закономерности образования
- 33. Выветривание горных пород: типы, условия образования.
- 34. Плывунные явления в песках: причины и условия проявления процесса
- 35. Зональность коры выветривания.
- 36. Геологические процессы, инженерно-геологические процессы:

- классификация
- 37. Процессы, связанные с искусственным водопонижением.
- 38. Неотектонические движения: особенности распространения, скорости, степень влияния на инженерные сооружения.
- 39. Обвалы: классификация, схема описания, количественные характеристики.
- 40. Сейсмические волны, параметры сейсмических волн, шкала сейсмической бальности.
- 41. Осыпи: классификация, схема описания, стадии образования.
- 42. Сейсмическое микрорайонирование территорий в инженерных целях: критерии, оценка сейсмогеологических условий, инструментальные наблюдения.
- 43. Переработка берегов водохранилищ поверхностными водами: основные условия и факторы.
- 44. Болота и заболоченные земли: классификация" состав болотных отложений.
- 45. Основные карстовые формы.
- 46. Суффозия: классификации, скорости развития, меры борьбы.
- 47. Процессы, связанные с поверхностными водами: причины, особенности
- 48. Процессы, связанные с производственной деятельностью человека,
- 49. Выветривание горных пород: методы изучения, меры зашиты.
- 50. Экзогенные процессы: определение, классификация.
- 51. Новейшие и современные тектонические движения инженерно-геологическое значение.
- 52. Эндогенные процессы: определение, классификация
- 53. Прогноз и противоселевые мероприятия
- 54. Процессы, связанные с подземными водами: причины, особенности.
- 55. Инженерные мероприятия в районах развития осыпей.
- 56. Развевание и выветривание, причины, классификация.
- 57. Схема описания оползневого процесса. Морфология оползней.
- 58. Сейсмические процессы: причины, характеристики,
- 59. Меры борьбы с суффозионными процессами.
- 60. Генетические типы склонов и классификация по крутизне.
- 61. Остаточные деформации грунтов и изменения режима поверхностных и грунтовых вод при землетрясениях.
- 62. Трещиноватость горных пород: условия формирования трещиноватости, характеристики трещин.
- 63. Методы оценки закарстованносги и скорость развития карста
- 64. Обвалы: меры защиты.

Курсовая работа по дисциплине «Инженерная геодинамика»

Является самостоятельной работой студента. Её целями являются: углубленное изучение одного из вопросов дисциплины; развитие практических навыков сбора и анализа литературных источников, обобщения отобранных сведений, сопоставления фактических данных и различных представлений по рассматриваемому вопросу, составления выводов, а также изложения и оформления результатов работы. Приобретенные навыки теоретических исследований, составления обоснованных выводов и оценки результатов исследований, способствуют успешному выполнению последующей дипломной работы. Фактический материал для написания курсовой работы может быть собран вовремя прохождения поисково-разведочной практики, в геологических фондах или в опубликованных источниках. Предлагаемые темы курсовых работ соответствуют развитию основных компетенций, указанных в программе. В дальнейшем перечень тем курсовых работ может изменяться и дополняться.

СТРУКТУРА РАБОТЫ И МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ

Обязательными структурными элементами работы являются: титульный лист; оглавление; перечень сокращений, условных обозначений, символов, единиц и терминов (при необходимости); введение; основная часть; список использованной литературы;

приложения (при необходимости).

Титульный лист является первой страницей работы, но номер страницы на нём не проставляется. В оглавлении последовательно указываются заголовки всех структурных элементов работы и номера страниц, на которых размещается начало материала. Во введении обосновывается выбор темы, характеризуется её теоретическое и практическое значение, современное состояние изучаемой проблемы, формулируются основная цель и задачи, излагаются методическая основа и структура работы. Основная часть обычно состоит из логически связанных разделов, подразделов и пунктов. Каждый раздел является относительно самостоятельной частью работы и должен завершаться кратким обобщением или выводами, с помощью которых обеспечивается связь между разделами и достигается единство работы в целом. В заключении подводятся итоги работы, оценивается уровень решения задач, поставленных во введении, и формулируются основные выводы.

Работа начинается с самостоятельного выбора темы, ее осмысления и составления плана (содержания). Выбор темы должен соответствовать научным, практическим или познавательным интересам студента. При этом он может предложить свою тему работы, обосновав ее актуальность и целесообразность выполнения. Порядок изложения материала в работе должен быть подчинен руководящей идее. Логичность построения и четкость изложения содержания достигается тогда, когда каждый раздел имеет целевое назначение и является базой для последующего раздела. Составление плана работы следует начинать с просмотра конспекта лекций, основной и дополнительной учебной литературы, специальных геологических словарей и справочников, в которых обязательно содержатся основные сведения по существу избранной темы. Выполнение курсовой работы предусматривает изучение ряда специальных научных изданий (монографий, сборников научных статей и трудов, материалов конференций и др.) и обязательный просмотр научно-технических журналов необходимого профиля. Изучение основной и дополнительной учебной литературы позволит наметить общие контуры темы и выделить её основные вопросы. Поиск и изучение специальной литературы позволит привлечь новые дополнительные научные факты и практические сведения, а также будет способствовать приобретению навыков отбора, необходимых материалов, их анализа, сопоставления и оценки.

ТРЕБОВАНИЯ К СОДЕРЖАНИЮ И ИЗЛОЖЕНИЮ КУРСОВОЙ РАБОТЫ

Курсовая работа предусматривает всестороннее изучение выбранной темы и достаточно краткое, свободное и логическое изложение основных фактических сведений и выводов автора по её существу. Дословное конспектирование литературных источников не допускается. Цитаты должны быть использованы для подтверждения достоверности или обоснованности приводимых (заимствованных) фактов, положений и выводов или, наоборот, для их опровержения. Вся цитируемая литература должна быть отмечена ссылками внутри текста. Ссылки указываются порядковым номером по списку литературных источников и выделяются квадратными скобками. Литературные источники располагаются в списке по алфавиту фамилий авторов, а у каждого автора по порядку лет издания. Ссылки на источники приводимых сведений обеспечивают их фактическую достоверность и авторские права исследователей, а также предоставляют данные о цитируемом источнике: его объеме, содержании, времени исполнения и месте издания. Эти данные позволяют найти его, в случае необходимости.

Курсовая работа обязательно должна иметь таблицы и различные рисунки (схемы, графики и др.), которые делают её более содержательной и наглядной. Однако их использование должно быть логически обоснованным, и они не должны загромождать основную текстовую часть работы. Громоздкие, но необходимые материалы выделяются в приложения. Необходимо, чтобы каждый раздел (глава) работы завершался кратким обобщением или выводами. С их помощью обеспечивается связь между отдельными разделами, достигается единство работы, выявляется уровень самостоятельной работы

над темой и уровень осмысления излагаемого материала автором. Кроме того, эти обобщения позволят более кратко и четко изложить основные итоги работы и сформулировать общие выводы в её заключении.

ПРАВИЛА ОФОРМЛЕНИЯ РАБОТЫ

Работа представляется в печатном виде на одной стороне листа стандартной бумаги формата А 4 через полтора интервала. Поля должны составлять по четырем сторонам листа: левое - 30 мм, правое - не менее 10 мм, верхнее не менее 15 мм до номера страницы, нижнее - не менее 20 мм. Математические знаки необходимо применять только в формулах, в тексте они пишутся словами (минус, меньше или равно, больше или равно, не равно). Числа до десяти при отсутствии размерностей, а также знаки № (номер) и % (процент) пишутся в тексте словами. Интервалы величин записывают в тексте словами «от» и «до», например, масса от 20 до 25 мг. Номера страниц проставляют арабскими цифрами справа вверху страницы, начиная со второй страницы. Титульный лист включается в общую нумерацию, но на нем номер не ставится. В случае использования малораспространенных сокращений слов, символов, единиц и терминов следует их привести на отдельном листе после «Оглавления». Заголовки разделов пишутся с новой страницы прописными буквами в центре текста. Переносы слов в заголовках не допускаются. Заголовки следует нумеровать арабскими цифрами. Иллюстрации (схемы, графики, диаграммы, карты, фотоснимки) обозначаются символом «Рис.» и нумеруются последовательно арабскими цифрами в пределах всей работы или раздела, Поясняющие данные помещают под ним. Номер рисунка и название рисунка располагают ниже поясняющих данных симметрично рисунку. Таблицы нумеруются арабскими цифрами в пределах всей работы или раздела. Номер размещается в правом верхнем углу над заголовком таблицы после слова «Таблица». При переносе таблицы над ее продолжением пишут слово «Продолжение». Если в работе несколько таблиц, то после слова «Продолжение» указывается номер таблицы, например, «Продолжение таблицы 1». На все иллюстрации и таблицы, в том числе и на те, которые помещены в приложениях, должны быть ссылки в тексте. Иллюстрации и таблицы следует располагать непосредственно после текста, в котором они упоминаются впервые или на следующей странице. В повторных ссылках на иллюстрации и таблицы следует, сокращено указывать слово «смотри», например, «см. рис.1». Ссылки на источники следует указывать порядковым номером по списку источников, выделенным квадратными скобками.

Список использованных источников должен содержать все опубликованные и фондовые материалы, на которые есть ссылки или которые цитируются в тексте. Список располагается в алфавитном порядке и составляется отдельно для опубликованных и фондовых источников. Сведения об использованных источниках следует оформлять в соответствии с требованиями стандарта. Материалы, которые могут загромождать текст основной части работы, но которые необходимы для более полного её освещения, выделяют в качестве приложений. Приложения помещают после списка использованных источников или оформляют в виде отдельной части (книги, папки), располагая в порядке появления ссылок на них в тексте работы. Каждое приложение должно начинаться с новой страницы и иметь заголовок. В правом верхнем углу над заголовком должно быть напечатано прописными буквами слово «Приложение». Если приложений более одного, их следует нумеровать арабскими цифрами.

ЗАЩИТА И ОЦЕНКА РАБОТЫ

Оформленная курсовая работа подписывается студентом и представляется на подпись руководителю. После просмотра и одобрения руководителем она защищается на кафедре «Петрологии и прикладной геологии» в виде презентации.

Основные обобщенные темы курсовой работы

(окончательные темы формируются в процессе сбора информации по конкретным объектам):

1. Оценки закарстованности и скорости развития карста

- 2. Выветривание горных пород: методы изучения, меры зашиты
- 3. Сейсмические процессы, оценка сейсмичности
- 4. Новейшие и современные тектонические движения
- 5. Картирование современных экзогенных процессов
- 6. Сейсмическое микрорайонирование территорий
- 7. Мониторинг эрозионных процессов
- 8. Оползневые процессы, оценка пораженности территорий
- 9. Эрозионные процессы, оценка пораженности территорий
- 10. Переработка берегов, мероприятия по защите территорий
- 11. Подтопление грунтовыми водами, мероприятия по защите территорий
- 12. Морозное пучение грунтов, мероприятия по защите объектов
- 13. Моделирование оползневых процессов
- 14. Техногенная активизация экзогенных процессов
- 15. Осадки и просадки грунтовых оснований.

7. Данные для учета успеваемости студентов в БАРС Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

	1	2	3	4	5	6	7	8
семестр	Лекции	Лабораторные занятия	Практически е занятия	Самостоятель ная работа	Автомат изирован ное тестиров ание	виды учебной	Промежу точная аттестаци я	Итого
8	10	30	0	20	0	0	40	100

Программа оценивания учебной деятельности студента

8 семестр Лекции

Посещаемость, опрос, активность и др. за 8 семестр - от 0 до 10 баллов.

Лабораторные занятия

Контроль выполнения лабораторных заданий - от 0 до 30 баллов.

Лабораторная работа № 1 (от 0 до 6 баллов)

Лабораторная работа № 2 (от 0 до 6 баллов)

Лабораторная работа № 3 (от 0 до 6 баллов)

Лабораторная работа № 4 (от 0 до 6 баллов)

Лабораторная работа № 5 (от 0 до 6 баллов)

Практические занятия

Не предусмотрены.

Самостоятельная работа

Контроль выполнения самостоятельной работы в течение 8 семестра - от 0 до 20 баллов.

- 1. Контрольная работа № 1 к теме 3.2. Склоновые процессы: интересные случаи, новые методики оценки и прогноза (по данным отечественных и зарубежных научных изданий) (от 0 до 10 баллов).
- 2. Контрольная работа № 2 к теме 3.7. Карстовые и суффозионные процессы: интересные случаи, новые методики оценки и прогноза (по данным отечественных и зарубежных научных изданий) (от 0 до 10 баллов)

Автоматизированное тестирование

Не предусмотрено

Другие виды учебной деятельности

Не предусмотрены.

Промежуточная аттестация

Ответ студента на экзамене может быть оценен от 0 до 40 баллов. При проведении промежуточной аттестации:

- от 0 до 20 баллов «неудовлетворительно»;
- от 21 до 29 баллов «удовлетворительно»;
- от 30 до 34 баллов «хорошо»;
- от 35 до 40 баллов «отлично».

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 8 семестр по дисциплине «Инженерная геодинамика» составляет **100** баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине в оценку (экзамен':

от 0 до 54 баллов «неудовлетворительно»

55-79 баллов «удовлетворительно»

80-89 баллов «хорошо»

90-100 баллов «отлично»

Программа оценивания учебной деятельности студента по курсовой работе дисциплины «Инженерная геодинамика»

Таблица 1.1 Таблица максимальных баллов по курсовой работе.

		1	2	3	4	5	6	7	8
семестр		Лекции	Лаборатор ные занятия		ятельная	Автоматизиро ванное тестирование	ие в ной льн	Промежут очная аттестация	Итого
	8	0	0	0	40	0	20	40	100

Программа оценивания учебной деятельности студента (8 семестр)

Лекции

Не предусмотрено

Лабораторные

занятия Не

предусмотрено

Практические занятия

Не предусмотрены.

Самостоятельная работа

Формирование структуры и содержания элементов курсовой работы: титульный лист, содержание, введение, основная/текстовая часть, заключение, список использованных источников, приложения (от 0 до 40 баллов).

Автоматизированное тестирование

Не предусмотрено

Другие виды учебной деятельности

Контроль выполнения работы в течение 6 семестра - от 0 до 20 баллов.

- 1. Вводная лекция (цели и порядок выполнения курсовых работ) от 0 до 5 баллов.
- **2.** Консультация № 1. План работы (Определение темы, уточнение круга вопросов, подлежащих изучению, сроки выполнения курсовой работы) (от 0 до 5 баллов).

- **3.** Консультация № 2. Этапы выполнения курсовой работы (от 0 до 10 баллов). **Промежуточная аттестация дифференцированный зачет от 0 до 40 баллов**
- 1. Разработка презентации и представление доклада (от 0 до 20 баллов).
- 2. Ответы на вопросы при защите курсовой работы (от 0 до 20 баллов)

При проведении промежуточной аттестации:

- от 0 до 20 баллов «неудовлетворительно» / «не зачтено»;
- от 21 до 29 баллов «удовлетворительно» / «зачтено»;
- от 30 до 34 баллов «хорошо» / «зачтено»;
- от 35 до 40 баллов «отлично» / «зачтено».

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 8 семестр по дисциплине «Инженерная геодинамика» (курсовая работа) составляет **100** баллов.

 Таблица
 2.2
 Таблица
 пересчета
 полученной
 студентом
 суммы

 баллов
 по
 курсовой
 работе
 дисциплины
 «Инженерная

геодинамика» в оценку (дифференцированный зачет):

90-100 баллов	«отлично»/ «зачтено»
80-89 баллов	«хорошо» / «зачтено»
55-79 баллов	«удовлетворительно»/«зачтено»
0-54 балла	«не удовлетворительно»/ «не зачтено»

8. Учебно-методическое и информационное обеспечение дисциплины: а) литература:

1. Бондарик Г.К. Инженерная геодинамика [Текст]: учебник - 2-е изд. - ∨ Москва: Кн. дом "Университет", 2009. - 439 с.

2. Иванов И. П., Тржцинский Ю. Б. Инженерная геодинамика [Текст] : учеб. Санкт- Петербург : Наука, 2001. - 415 с. ✓

3. Методическое пособие по гидрогеологическому картированию Саратовског о гидрогеологического полигона: для студентов специальности гидрогеологии / С. И. Солдаткин, А. Е. Хохлов, М. В. Савина; под ред. Ю. В. Ваньшина. - Саратов: Издательский центр "Наука", 2008. - 35 с.

б) лицензионное программное обеспечение и интернет-ресурсы:

- 1. OC MS Windows XP SP2 или OC MS Windows 7 Pro
- 2. MS Office 2003 или MS Office 2007 Pro
- 3. Антивирус Касперского для Windows workstations
- 4. CorelDRAW Graphics Suite X3
- 5. http://www.google.com/earth/index.html Google Планета Земля
- 6. http://geo.web.ru общеобразовательный геологический сайт
- 7. http://www.sgu.ru/node/11448/ страница дисциплины на геологическом факультете СГУ, с большим количеством электронных учебников и публикаций
- 8. http://vsegei.ru сайт Всероссийского научно-исследовательского геологического института им. А.П. Карпинского
- 9. http://wiki.web.ru/ сайт энциклопедический словарь
- 10. elibrary.ru (Научная электронная библиотека).

9. Материально-техническое обеспечение дисциплины

Геологический факультет располагает материально-технической базой, соответствующей действующим противопожарным правилам и нормам и обеспечивающей проведение всех видов дисциплинарной и междисциплинарной подготовки, практической и научно-исследовательской работ обучающихся, предусмотренных учебным планом.

Учебный процесс реализуется в VII корпусе ФГБОУ ВО «СГУ имени Н.Г. Чернышевского» в 9 аудиториях (107, 404, 406, 407, 409, 410, 412, 416-а и 416 б), оборудованных для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы специалистов.

Учебная аудитория 410 укомплектована специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (интерактивные доски и мультимедиа-проекторы).

Аудитории 416-а и 416-б оборудованы:

Экраном (телевизором), мультимедиа-проекторами;

Парком микроскопов: 12 петрографических микроскопов Полам P-111, Полам P-211, Мин-8 и микроскопом Axioskop 40 Pol с камерой AxioCam MRc 5 и программным обеспечением AxioVision.

Коллекция типичных магматических и метаморфических пород.

Атласы структур и текстур магматических и метаморфических пород

Компьютер с набором файлов с типичными изображениями пород под микроскопом.

Место проведения (осуществления) лабораторной практической подготовки - г.Саратов, ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского», геологический факультет, Региональный музей Землеведения, расположенный по адресу: г.Саратов, ул. Ленина, 161, корпус 6, к.119, 125. Учебная лаборатория по комплексному изучению минералов и пород, расположенная по адресу г. Саратов, ул Б.Казачья, 120, корпус 7, ком. 107.

Программа составлена в соответствии с требованиями ФГОС ВО по специальности 21.05.02 «Прикладная геология», специализации «Поиски и разведка подземных вод и инженерногеологические изыскания».

Автор:	
Ст. препод.	 А.Е. Хохлов

Программа одобрена на заседании кафедры петрологии и прикладной геологии от 05.10.2021 года, протокол № 3.