МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕН-НЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Механико-математический факультет

СОГЛАСОВАНО

заведующий кафедрой МА и.о.зав.кафедрой

к.ф.-м.н.

А.М.Захаров

125" a Augen, 2022 F.

УТВЕРЖДАЮ

председатель НМК механикоматематического факультета,

к.ф.-м.н., доцент

Тышкевич С.В. **2022** г.

Фонд оценочных средств

текущего контроля и промежуточной аттестации по дисциплине

ВЕЙВЛЕТ АНАЛИЗ

Направление подготовки магистратуры 01.04.02 Прикладная математика и информатика

Профиль подготовки магистратуры **Математические и компьютерные методы обработки информации**

> Квалификация (степень) выпускника **Магистр**

> > Форма обучения очная

Саратов, 2022

1. Результаты обучения по дисциплине «Вейвлет анализ»

Код и наименование компетенции	Код и наименование индикатора (индикатора ров) достижения компетенции	Результаты обучения	Виды заданий и оценочных средств
ПК-1. Способен демонстрировать фундаментальные знания в математических и естественных науках, программировании и информацион-	1.1_М.ПК-1. Применяет на практике фундаментальные знания, полученные в области математических и (или) естественных наук, программирования и информа-	Знать: фундаментальные понятия, методы и алгоритмы, используемые в теоретических и прикладных задачах информатики	Контрольное мероприятие
ных технологиях	ционных технологий	Уметь: -разрабатывать алго- ритмы .решения при- кладных задач	Доклад
		Владеть: —навыками разработки программных комплексов.	Контрольная работа. Отчет по практиче- ской подготов- ке
	2.1_М.ПК-1. Формулирует и решает стандартные и не стандартные задачи в собственной научно- исследовательской деятельности.	Знать: -стандартные задачи, возникающие в исследовательской деятельности	Контрольное мероприятие
		Уметь: -грамотно формулировать возникающие проблемы	Доклад
		Владеть: -навыками решения стандартных задач в области математиче- ской обработки инфор- мации	Контрольная работа. Отчет по практической подготовке
	3.1_М.ПК-1. Использует информационные технологии при решении технических,	Знать: -современные языки программирования.	Контрольное мероприятие
	экономических и управленческих задач, программирует.	Уметь: -грамотно создавать необходимые типы данных	Доклад

		Владеть: современными информационными технологиями	Контрольная работа. Отчет по практиче- ской подготов- ке
	4.1_М.ПК-1. Имеет практический опыт научно- исследовательской	Знать: -актуальные проблемы математики и информатики	Контрольное мероприятие
	деятельности в математике и информатике.	Уметь: -использовать имею- щиеся знания в иссле- довательской деятель- ности	Доклад
		Владеть: —современной терми- нологией в исследуе- мой отрасли	Контрольная работа. Отчет по практиче- ской подготов- ке
	5.1_М.ПК-1. Создает, анализирует и реализует программное обеспечение	Знать: -современное программное обеспечение и его возможности.	Контрольное мероприятие
		Уметь: -создавать, анализировать и реализовывать программное обеспечение.	
		Владеть: – методами реализации программное обеспечение	Контрольная работа. Отчет по практиче- ской подготов- ке
ПК-7 Способен преподавать учебные курсы, дисци- плины или проводить	1.1_М.ПК-7. Обладает высоким уровнем знаний в специализированной	Знать: -новейшие теории в изучаемой проблеме.	Контрольное мероприятие
отдельные виды учебных занятий; разрабатывать под ру- ководством специали-	области конкретной дисциплины, т.е. знаком с новейшими теориями,	Уметь: -находить новые идеи в публикациях и гене- рировать свои	Доклад
ста более высокой квалификации учебно-методического обеспечения реализа-	интерпретациями, методами и технологиями.	Владеть: — широким спектром математических методов в изучаемой проблеме	Контрольная работа. Отчет по практической подготовке

ции учебных курсов, дисциплин или отдельных видов учебных занятий; Способен организовать научно-исследовательскую, проектную, учебно-профессиональную и	. 2.1_М.ПК-7. Практически осмысливает и интерпретирует новейшие явления в теории и на практике; является достаточно компетентным в методах независимых исследований,	Знать: - появляющиеся новейшие идеи и методы в теории и на практике. Уметь: -выделять перспективные идеи среди множества других Владеть: - различными метода-	Контрольное мероприятие Доклад Контрольная работа. Отчет
иную деятельности обучающихся под руководством специалиста более высокой	интерпретирует результаты на высоком уровне. 3.1_М.ПК-7.	ми решения одной и той же задачи Знать:	по практиче- ской подготов- ке Контрольное
квалификации	Вносит оригинальный, вклад в каноны дисциплины; демонстрировать оригинальность и творчество в том, что касается владения	- основные математически теории и существующие педагогические формы в процессе обучения и контроля.	мероприятие
	дисциплиной; обладает развитой компетенцией на профессиональном уровне. Использует педагогически обоснованные формы,	Уметь: -применять современные оценочные средства и создавать свои.	Доклад
	методы, способы и приемы организации контроля и оценки освоения учебного курса, дисциплины, применяет современные оценочные средства.	Владеть: — педагогическими формами и методами в процессе обучения и контроля	Контрольная работа. Отчет по практической подготовке

2. Показатели оценивания планируемых результатов обучения

Семестр	Φ			Ф	
	2	3	4	5	
2 семестр	Не знает постановку за-	Частично постановку задачи	В основном знает по-	В полной мере знает	
	дач и основное содержание	и основное содержание вейвлет	становку задачи и основное	постановку задачи и ос-	
	вейвлет анализа, понятия ор-	анализа, понятия ортонормиро-	содержание вейвлет анализа	новное содержание	
	тонормированного базиса,	ванного базиса, преобразование	, понятия ортонормирован-	вейвлет анализа, поня-	
	преобразование Фурье и его	Фурье и его свойства, понятие	ного базиса, преобразование	тия ортонормированного	
	свойства, понятие кратномас-	кратномасштабного анализа	Фурье и его свойства, поня-	базиса, преобразование	
	штабного анализа (КМА), си-	(КМА), систему аксиом КМА,	тие кратномасштабного ана-	Фурье и его свойства,	
	стему аксиом КМА, понятия	понятия систем сжатий и сдви-	лиза (КМА), систему аксиом	понятие кратномасштаб-	
	систем сжатий и сдвигов,	гов, критерий ортогональности	КМА, понятия систем сжа-	ного анализа (КМА), си-	
	критерий ортогональности си-	системы сдвигов, понятие мас-	тий и сдвигов, критерий ор-	стему аксиом КМА, по-	
	стемы сдвигов, понятие мас-	штабирующей функции и мас-	тогональности системы	нятия систем сжатий и	
	штабирующей функции и	штабирующего уравнения, не-	сдвигов, понятие масштаби-	сдвигов, критерий орто-	
	масштабирующего уравнения,	обходимые и достаточные усло-	рующей функции и масшта-	гональности системы	
	необходимые и достаточные	вия на масштабирующую функ-	бирующего уравнения, не-	сдвигов, понятие мас-	
	условия на масштабирующую	цию, при которых она порожда-	обходимые и достаточные	штабирующей функции	
	функцию, при которых она	ет КМА, методов построения	условия на масштабирую-	и масштабирующего	
	порождает КМА, методов по-	ортогональных вейвлетов,.не	щую функцию, при которых	уравнения, необходимые	
	строения ортогональных	знает классические примеры	она порождает КМА, мето-	и достаточные условия	
	вейвлетов, не знает классиче-	вейвлетов: Добеши, Мейера,	дов построения ортогональ-	на масштабирующую	
	ские примеры вейвлетов: До-	Шеннона-Котельникова	ных вейвлетов, не знает	функцию, при которых	
	беши, Мейера, Шеннона-	Умеет применять полученные	классические примеры	она порождает КМА, ме-	
	Котельникова <mark>.</mark>	знания к построению вейвлетов,	вейвлетов: Добеши, Мейера,	тодов построения орто-	
	Не умеет применять получен-	записывать разложение сигнала	Шеннона-Котельникова.	гональных вейвлетов,.не	
	ные знания к построению	по системам сдвигов и сжатий	Умеет применять получен-	знает классические при-	
	вейвлетов, записывать разло-	вейвлетов, разрабатывать алго-	ные знания к построению	меры вейвлетов: Добе-	
	жение сигнала по системам	ритмы разложения сигнала по	вейвлетов, записывать раз-	ши, Мейера, Шеннона-	
	сдвигов и сжатий вейвлетов,	системам вейвлетов, использо-	ложение сигнала по систе-	Котельникова. Знает вза-	
	разрабатывать алгоритмы раз-	вать преобразование Фурье при	мам сдвигов и сжатий	имосвязь математиче-	

ложения сигнала по системам вейвлетов, использовать преобразование Фурье при изучение теории вейвлетов, не умеет численно реализовывать быстрые алгоритмы разложения по тригонометрической системе и по системе Хаара. Не умеет доказывать простейшие теоремы вейвлетанализа.

Не владеет понятийным аппаратом вейвлет анализа, практическими методами применения аппарата вейвлет анализа в обработке сигналов

изучение теории вейвлетов, не умеет численно реализовывать быстрые алгоритмы разложения по тригонометрической системе и по системе Хаара. Умеет доказывать простейшие теоремы вейвлет -анализа.

Слабо владеет понятийным аппаратом вейвлет анализа, практическими методами применения аппарата вейвлет анализа в обработке сигналов.

вейвлетов, разрабатывать алгоритмы разложения сигнала по системам вейвлетов, использовать преобразование Фурье при изучение теории вейвлетов, не умеет численно реализовывать быстрые алгоритмы разложения по тригонометрической системе и по системе Хаара. Умеет доказывать простейшие теоремы вейвлет -анализа и некоторые сложные теоремы..

Владеет понятийным аппаратом вейвлет анализа, практическими методами применения аппарата вейвлет анализа в обработке сигналов

ских понятий.

В полной мере умеет применять полученные знания к построению вейвлетов, записывать разложение сигнала по системам сдвигов и сжатий вейвлетов, разрабатывать алгоритмы разложения сигнала по системам вейвлетов, использовать преобразование Фурье при изучение теории вейвлетов, не умеет численно реализовывать быстрые алгоритмы разложения по тригонометрической системе и по системе Хаара. Умеет доказывать простейшие теоремы вейвлет -анализа и большинство сложных теоремы..

В полной мере владеет понятийным аппаратом вейвлет анализа, практическими методами применения аппарата вейвлет анализа в обработке сигналов. Отлично ориентируется в математических источниках информации

3. Оценочные средства

3.1 Задания для текущего контроля

Все задания для текущего контроля группируются по компетенциям, на проверку которых они направлены. Компетенции указываются в соответствии с рабочей программой дисциплины (модуля, практики). Блок заданий в рамках дисциплины должен быть предусмотрен для каждой компетенции в соответствии с РПД.

1) Задания для оценки «ПК-1 Способен демонстрировать фундаментальные знания в математических и естественных науках, программировании и информационных технологиях»:

Контрольное мероприятия (15 баллов)

Методические рекомендации. Контрольные мероприятия по дисциплине «Двоичный гармонический анализ» проводятся в письменном виде. Учебным планом по направлению подготовки 01.04.02 Прикладная математика и информатика предусмотрены 1 контрольная работа, и теоретическое контрольное мероприятие. Контрольная работа носит практический характер (решение задач). Контрольное мероприятие имеет смешанный характер, В него входят как теоретические задания (формулировки определений, теорем и их доказательства) так и практические задачи, которые не попали в к.р.

Контрольное мероприятие по самостоятельной работе: Теорема Банаха-Штейнгауза. Системы и базисы Рисса. Контрольное мероприятие выполняется во внеучебное время и заканчивается письменным отчетом через 2 месяца после начала занятий.

Критерии оценивания. Уровень выполнения контрольного мероприятия оценивается в баллах. Баллы выставляются следующим образом:

- 15 баллов сформулированы определения, теоремы и приведены их доказательства.
- $10\$ баллов сформулированы определения, теоремы и приведены доказательства одной из теорем Банаха .
 - 5 баллов сформулированы определения, теоремы.
 - 0-4 баллов отсутствуют формулировки теорем и их доказательства

Контрольное работа (20 баллов)

- 1. Критерий принадлежности функции пространству V_п. (1+4 баллов). \\
- 2. Определение вейвлета и его преобразование Фурье. (1+4 баллов)\\
- 3. Ортогональность системы сдвигов вейвлета.(1+4 балла)\\
- 4. Ортогональность сдвигов вейвлета пространству V 0(5 баллов).\\
- 5. Необходимое условие маски(5)

Темы Докладов (10 баллов)

- 1. Ортогонализация методом Шмидта.
- 2.Счетность систем функций.
- 3.Замкнутость системы степеней, теорема Мюнтца
- 4.Полиномы Лежандра.

- 5.Полиномы Чебышева.
- 6. Чезаровские средние.

Задания для практических занятий

- 1. Система Рисса, альтернативное определение через конечные суммы.
- 2. Система Рисса как базис в замыкании своей линейной оболочки.
- 3. Критерий принадлежности функции к замыкании линейной оболочки системы сдвигов.
- 4. Получение ортонормированного базиса из базиса Рисса.
- 5. Определение кратно масштабного анализа (КМА), масштабирующая функция.
- 6. Критерий включений подпространств, образующих КМА.
- 7. Масштабирующее уравнение во временной и частотной областях.
- 8. Методы построения КМА. Выполнение аксиом КМА.
- 9 Построение Вейвлетов по заданному КМА.
- 10.Система Хаара как Вейвлет-система.
- 11. Вейвлеты Мейера, Добеши, Кравченко
- 2) Задания для оценки ПК-7 Способен преподавать учебные курсы, дисциплины или проводить отдельные виды учебных занятий; разрабатывать под руководством специалиста более высокой квалификации учебно-методического обеспечения реализации учебных курсов, дисциплин или отдельных видов учебных занятий; Способен организовать научноисследовательскую, проектную, учебно-профессиональную и иную деятельности обучающихся под руководством специалиста более высокой квалификации

...ОНБ в V₁

Тесты (10 баллов) 1.Пусть (V_n) ортогональный КМА. Тогда а) $V_n \square V_{n-1}$ б) $V_n \square V_{n+1}$
a) $V_n \square V_{n-1}$
δ) $V_n \square V_{n+1}$
$V_n=V_{n-1}$
2.Пусть (V _n) ортогональный КМА, φ –масштабирующая функция. Тогда
(a) $\phi(x+n)$ –система сдвигов
(б) $\phi(x+n)$ –система сжатий
(в) $\phi(x+n)$ –система сжатий и сдвигов
3.Пусть (V _n) ортогональный КМА, ф –масштабирующая функция. Тогда
(a) $\phi(2x+n)$ –система сдвигов
(б) $\phi(2x+n)$ –система сжатий
(в) $\phi(2x+n)$ –система сжатий и сдвигов
4.Пусть (V _n) ортогональный КМА, φ –масштабирующая функция. Тогда
(a) ф (nx) – система сдвигов
\dots (б) ϕ (nx) –система сжатий
(в)ф (nx) –система сжатий и сдвигов
5.Пусть (V _n) ортогональный КМА, φ –масштабирующая функция. Тогда система φ(x+n)
ОНБ в V_0
ОНБ в V-1
ОНБ в V₁
6.Пусть (V_n) ортогональный КМА, ϕ –масштабирующая функция. Тогда система $\sqrt{2} \phi(2x+n)$
\sim OHБ в $ m V_0$
ОНБ в V ₂

```
\psi(2^n x+k)
7. Пусть (V_n) ортогональный КМА, \psi –вейвлет. Тогда система
...ОНБ в L<sub>2</sub>
...ОНБ в L<sub>1</sub>...
  ОНБ в L<sub>3</sub>
8. \Piусть (V_n) ортогональный КМА, (W_n) вейвлет пространства. Тогда
...ортогональное дополнение V_0 до V_1 есть W_0
...ортогональное дополнение V_0 до V_1 есть W_1
...ортогональное дополнение V_0 до V_1 есть W_2
9. Пусть (V<sub>n</sub>) ортогональный КМА, (W<sub>n</sub>) вейвлет пространства. Тогда
...ортогональное дополнение V_n до V_{n+1} есть W_n
...ортогональное дополнение V_{n} до V_{n+1} есть W_{n+1}
...ортогональное дополнение V_n до V_{n+1} есть W_{n+2}
10. Пусть \varphi(x) = \mathbf{1}_{[0,1]}(x) Тогда
   \varphi(x+1) = \mathbf{1}_{[-1,0]}(x)
   \varphi(x+1) = \mathbf{1}_{[0,1]}(x)
   \varphi(x+1) = \mathbf{1}_{[1,2]}(x)
```

Темы Докладов (10 баллов)

- 7. Биортогональные системы.
- 8. Биортогонализация.
- 9. Биортогональные разложения.
- 10.Системы, ортогональные с весом.

Отчет о практической подготовке (10 баллов)

Тема отчета: Разработка алгоритма сжатия двумерного изображения с помощью вейвлетов Хаара и его программная реализация —

Типовой Отчет по практической подготовке. включает следующие разделы:

титульный лист с наименованием темы работы, выполненной на практике;

введение с обоснованием актуальности изучаемой задачи, формулировкой целей работы, ее кратким содержанием и возможных применений;

постановка задачи, построение ее математической модели и теоретическое обоснование решения задачи;

разработка алгоритма решения рассматриваемой задачи;

реализация алгоритма на одном из языков программирования и проверка правильности программы на конкретном примере;

список литературы, использованной при работе и цитированной в отчете

1. 2 Промежуточная аттестация (35 баллов)

Методические указания.

Промежуточная аттестация по дисциплине «Вейвлет анализ» проводится в виде экзамена во 2 семестре. Экзамен проходит в письменной форме с последующей беседой по ответу. Подготовка студента к прохождению промежуточной аттестации осуществляется в период лекционных и практических занятий, а также во внеаудиторные часы в рамках самосто-

стоятельной работы. Во время самостоятельной подготовки студент пользуется конспектами лекций, практических занятий, основной и дополнительной литературой по дисциплине (см. перечень литературы в рабочей программе дисциплины).

Критерии оценивания. Количество вопросов в билете определяет ведущий преподаватель, он же определяет характер вопросов: часть вопросов может иметь теоретический характер, а часть практический.. В билете указывается стоимость каждого вопроса в баллах, максимальное количество баллов -35. За ошибки в ответе на вопрос снимается один или несколько баллов. Преподаватель вправе задавать дополнительные вопросы по предложенным ответам и всему изучаемому курсу.

Экзаменационные вопросы

- 1.Определение вейвлета и его преобразование Фурье. (ПК-1,ПК-7)
- 2.Ортогональность системы сдвигов вейвлета. . (ПК-1,ПК-7)
- 3.Ортогональность сдвигов вейвлета пространству V_0. (ПК-1,ПК-7)
- 4.Представление функции f из подпространства V_1 в виде прямой суммы. (ПК-1,ПК-7)
- 5. Вейвлет базис пространства L 2. (ПК-1,ПК-7)
- 6.Построение КМА по заданной масштабирующей функции. Проверка аксиомы А1 (включение). . (ПК-1,ПК-7)
- 7.Построение КМА по заданной масштабирующей функции. Проверка аксиомы А2 (пересечение). . (ПК-1,ПК-7)
- 8.Построение КМА по заданной масштабирующей функции. Проверка аксиомы A3(объединение). . (ПК-1,ПК-7)
- 9.Построение КМА по заданной масштабирующей функции. Проверка аксиомы А4.. (ПК-1,ПК-7)
- 10.Построение КМА по заданной масштабирующей функции. Проверка аксиомы A5. . (ПК-1,ПК-7)

Перечень литературы, используемой для проведения занятий:

- а) Основная литература:
- 1. Новиков И.Я., Протасов В.Ю., Скопина М.А.: Теория всплесков. –М.:Физматлит. 2005. –616с.
 - б)Дополнительная литература.
- 1.Yu. A. Farkov Pammy Manchanda Abul Hasan Siddiqi. Construction of Wavelet-sThrough Walsh Functions. Springer Nature Singapore Pte Ltd. 2019.

ФОС для проведения текущего контроля и промежуточной аттестации одобрен на заседании кафедры математического анализа (протокол № 1 от 29 августа 2022 г.).

Автор профессор, д.ф.-м.н, профессор

Лукомский С.Ф.