МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ имени Н.Г. Чернышевского»

Механико-математический факультет

СОГЛАСОВАНО

заведующий кафедрой геометрии

Галаев С.В.

30" abyeste 2022 r.

УТВЕРЖДАЮ

председатель НМК механикоматематического факультета

Тышкевич С.В.

130" asycra 2022 r.

Фонд оценочных средств

Текущего контроля и промежуточной аттестации по дисциплине

Спецкурс 1

Направление подготовки магистратуры 02.04.01 Математика и компьютерные науки

Профиль подготовки магистратуры Математические основы компьютерных наук

Квалификация (степень) выпускника *Магистр*

> Форма обучения *очная*

> > Саратов, 2022

Карта компетенций

Контролируемые	Индикаторы	Планируемые результаты	Виды заданий и
компетенции	достижения	обучения	оценочных
· ·	' '		·
(шифр компетенции)	компетенций	(знает, умеет, владеет,	средств
OHIC 2	1.1 M OHE 2	имеет навык)	D
ОПК-2	1.1_М.ОПК-2.	Знать:	Разноуровневые
Способен создавать и	Создает и	- методы неевклидовых	задачи и задания.
исследовать новые	исследует новые	геометрий, применяемые в	Контрольная
математические модели	математические	построении	работа
в естественных науках,	модели в	математических моделей в	
совершенствовать и	естественных	естественных науках.	
разрабатывать	науках.	Уметь:	
концепции, теории и		- применять понятия	
методы		неевклидовых геометрий к	
		решению задач	
		визуализации математических объектов и	
		понятий;	
		- математически грамотно	
		формулировать задачи	
		неевклидовых геометрий и	
		проводить их анализ.	
		Владеть:	
		- методами построения	
		неевклидовых геометрий и	
		навыками моделирования	
		при решении	
		профессиональных задач.	
	2.1 М.ОПК-2.	Знать:	Разноуровневые
	Используя методы	- методы построения	задачи и задания.
	математического	неевклидовых геометрий,	Контрольная
	моделирования,	методы поиска и	работа
	находит	доказательств новых	1
	эффективные	математических фактов и	
	решения научных	применение этих методов в	
	и прикладных	решении научных и	
	задач.	прикладных задач.	
		Уметь:	
		- применять методы	
		неевклидовых геометрий в	
		решении научных и	
		прикладных задач.	
		Владеть:	
		- навыками применения	
		методов неевклидовых	
		геометрий в решении	
		научных и прикладных	
		задач.	
	3.1_М.ОПК-2.	Знать:	Разноуровневые
	Совершенствует и	- методы математического	задачи и задания.
	разрабатывает	моделирования в области	Контрольная
	методы	неевклидовых геометрий и	работа

	математического моделирования, оценивает пригодность модели, ее соответствие практике.	их приложений, Уметь: - совершенствовать и разрабатывать методы математического моделирования в области неевклидовых геометрий и их приложений; - оценивать пригодность математической модели, ее соответствие практике. Владеть:	
		- навыками разработки модели методами	
ПК-1 Способен демонстрировать фундаментальные знания математических и естественных наук, программирования и информационных технологий.	1.1_М.ПК-1. Понимает основные концепции, принципы, теории и факты в области математических и (или) естественных наук, программирования и информационных технологий.	неевклидовых геометрий. Знать: - основные понятия неевклидовых геометрий; - основные результаты неевклидовых геометрий. Уметь: - решать типовые задачи неевклидовых геометрий; - использовать современный аппарат неевклидовых геометрий в научно-исследовательской деятельности. Владеть: - навыками получения и	Разноуровневые задачи и задания. Контрольная работа
		визуализации фактов неевклидовых геометрий.	
	2.1_М.ПК-1. Формулирует и решает стандартные задачи в собственной научно-исследовательской деятельности.	Знать: - основные задачи неевклидовых геометрий и их приложения в математике и физике; Уметь: - формулировать и решать задачи в собственной научно-исследовательской деятельности, используя теорию неевклидовых геометрий и ее приложения. Владеть: - приемами и методами неевклидовых геометрий; - навыками решения задач и проблем различных областей математики, опирающиеся на знания теории неевклидовых	Разноуровневые задачи и задания. Контрольная работа

	геометрий.
3.1_М.ПК-1	
Проводит н	научно- - применение неевклидовых задачи и задания.
исследовате:	
работы в с	области математики и работа
математики	и компьютерных наук;
компьютерн	
наук.	результаты в области
	неевклидовых геометрий и
	их приложений.
	Уметь:
	- проводит научно-
	исследовательские работы
	в области математики и
	компьютерных наук,
	используя неевклидовы
	геометрии и их
	приложения.
	Владеть:
	- навыками научно-
	исследовательской работы
	в области неевклидовых
	геометрий и их
	приложений.

Показатели оценивания планируемых результатов обучения

C	Шкала оценивания			
Сесместр	2	3	4	5
1	Не владеет методами решения	Плохо владеет методами	Достаточно хорошо владеет	Достаточно хорошо владеет
	задач в области неевклидовых	решения задач в области	методами решения задач в	методами решения задач в
	геометрий, проективной	неевклидовых геометрий,	области неевклидовых	области неевклидовых
	аналитической геометрии	проективной аналитической	геометрий, проективной	геометрий, проективной
	(методом использования	геометрии (методом	аналитической геометрии	аналитической геометрии
	проективных координат);	использования проективных	(методом использования	(методом использования
	не может производить основные	координат);	проективных координат);	проективных координат);
	доказательства, применяя	с трудом может производить	может производить основные	может грамотно производить
	проективные координаты,	основные доказательства,	доказательства, применяя	основные доказательства,
	вычислять сложное отношение	применяя проективные	проективные координаты,	применяя проективные
	четырех точек, составлять	координаты, вычислять	вычислять сложное отношение	координаты, вычислять сложное
	уравнение прямой на	сложное отношение четырех	четырех точек, составлять	отношение четырех точек,
	проективной плоскости,	точек, составлять уравнение	уравнение прямой на	составлять уравнение прямой на
	определять принадлежность трех	прямой на проективной	проективной плоскости,	проективной плоскости,
	прямых одному пучку;	плоскости, определять	определять принадлежность	определять принадлежность
	не знает определения основных	принадлежность трех прямых	трех прямых одному пучку;	трех прямых одному пучку;
	понятий формулировки и	одному пучку;	не знает определения основных	безошибочно знает определения
	доказательства, наиболее важных	не достаточно хорошо знает	понятий формулировки и	основных понятий
	теорем дисциплины.	определения основных	доказательства, наиболее	формулировки и
	Не владеет методами поиска и	понятий формулировки и	важных теорем дисциплины.	доказательства, наиболее
	отбора литературы, наиболее	доказательства, наиболее	хорошо решает задачи на	важных теорем дисциплины.
	соответствующей заданной	важных теорем дисциплины.	доказательство проективных	Хорошо решает задачи на
	тематике; не умеет составлять	Не понимает определения	свойств фигур;	доказательство проективных
	библиографический список по	основных понятий	показано хорошее понимание	свойств фигур.
	заданной тематике; не знает	формулировки и	определения основных	Показано хорошее понимание
	государственные стандарты в	доказательства основных	понятий, формулировок и	определений основных понятий,
	области оформления	утверждений и теорем.	доказательств теорем	формулировок и доказательств
	библиографических ссылок и	Плохо владеет методами	дисциплины.	теорем дисциплины.

списков	поиска и отбора литературы,	Достаточно хорошо владеет	Отлично владеет методами
	наиболее соответствующей	методами поиска и отбора	поиска и отбора литературы,
	заданной тематике; с трудом	литературы, наиболее	наиболее соответствующей
	может составлять	соответствующей заданной	заданной тематике; уверенно
	библиографический список	тематике; хорошо составляет	справляется с составлением
	по заданной тематике; не	библиографический список по	библиографических списков по
	достаточно хорошо знает	заданной тематике; показано	заданной тематике; уверенно
	государственные стандарты в	хорошее знание	ориентируется в
	области оформления	государственных стандартов в	государственных стандартах в
	библиографических ссылок и	области оформления	области оформления
	списков	библиографических ссылок и	библиографических ссылок и
		списков	списков

Оценочные средства

1.1. Задания для текущего контроля

- 1. Задания для оценки «ОПК-2»
- 1. **Кейс-задача** не предусматривается.
- 2. Доклад не предусматривается.
- 3. Реферат не предусматривается.
- 4. Контрольная работа

ПРИМЕРНЫЙ ВАРИАНТ КОНТРОЛЬНОЙ РАБОТЫ

- 1. Определите на расширенной евклидовой плоскости проективный смысл понятий: аффинный репер; ортогональный репер; ортонормированный репер.
 - 2. Проверьте справедливость утверждений:
- а) все преобразования первого рода евклидовой плоскости образуют разрешимую группу Ли;
- б) все преобразования второго рода евклидовой плоскости образуют разрешимую группу Ли.
- 3. Абсолют флаговой плоскости состоит из прямой и точки на ней. Определите матрицу фундаментальной группы преобразований флаговой плоскости, задав абсолют уравнениями наиболее простого вида. Найдите особенности расположения вершин и единичной точки канонических реперов относительно абсолютных элементов, соответствующие уравнениям абсолюта. Укажите типы прямых флаговой плоскости.
- 4. Проведите классификацию овальных линий копсевдоевклидовой плоскости, абсолют которой состоит из двух вещественных прямых, учитывая расположение овальной линии по отношению к абсолюту.
- 5. Найдите формулы для вычисления угла между прямыми на расширенной псевдоевклидовой плоскости (плоскости Минковского), если абсолютные элементы заданы координатами l (0:0:1), P (1:0:0), K (0:1:0).

Методические рекомендации. Контрольная работа по дисциплине проводится в письменном виде. Учебным планом предусмотрена 1 контрольная работа. Подготовка студента к контрольной работе осуществляется в период практических занятий, а также во внеаудиторные часы в рамках самостоятельной работы. Во время самостоятельной подготовки студент пользуется конспектами практических занятий, литературой по дисциплине (см. перечень литературы в рабочей программе дисциплины).

Критерии оценивания. Количество баллов, выставляемых за выполнение

заданий, зависит от полноты решения и правильности ответа. Общие требования к выполнению заданий: решение должно быть математически грамотным, полным, в частности все возможные случаи должны быть рассмотрены. За решение, в котором обоснованно получен правильный ответ, выставляется максимальное количество баллов. Правильный ответ при отсутствии текста решения оценивается в 0 баллов. Имеется верное доказательство утверждения и обоснованно получен верный ответ - 2 балла.

Допущена единичная ошибка, возможно, приведшая к неверному ответу, но при этом имеется верная последовательность всех шагов решения - 1 балл.

Решение не соответствует ни одному из критериев, перечисленных выше - 0 баллов.

- 5) Тесты не предусматриваются.
- 6) Задания для практических занятий

План практических занятий написан в форме вопросов для текущего контроля знаний.

Вопросы для текущего контроля знаний на практических занятиях

- 1. Укажите отличия евклидовой плоскости и расширенной евклидовой плоскости.
 - 2. Сформулируйте определение *n*-мерного проективного пространства.
 - 3. Существуют ли параллельные прямые на проективной плоскости?
- 4. Сформулируйте определения проективной системы координат и проективных координат точки на проективной плоскости и в n-мерном проективном пространстве.
- 5. Выведите формулы преобразования проективных координат точек в n-мерном проективном пространстве.
- 6. Выведите параметрические уравнения прямой на проективной плоскости.
 - 7. Составьте общее уравнение прямой на проективной плоскости.
- 8. Составьте уравнения m-мерной плоскости в проективном n-мерном пространстве.
- 9. Сформулируйте принцип двойственности проективного пространства и малый принцип двойственности проективной плоскости.
 - 10. Сформулируйте и докажите теорему Дезарга.
 - 11. Определите сложное отношение четырех точек прямой.
 - 12. Определите сложное отношение четырех прямых пучка.
 - 13. Определите полный четырехвершинник и докажите его свойства.

- 14. Дайте определение проективного преобразования.
- 15. Сформулируйте основные свойства проективных преобразований.
- 16. Сформулируйте и докажите основную теорему о проективном преобразовании.
 - 17. Введите понятие отрезка проективной прямой.
- 18. Определите понятие линии второго порядка на проективной плоскости и докажите основные свойства линий второго порядка.
- 19. Проведите классификацию линий второго порядка на проективной плоскости.
 - 20. Укажите различные подходы к построению геометрических систем.

2. Задания для оценки «ПК-1»

- 1. **Кейс-задача** не предусматривается.
- 2. Доклад не предусматривается.
- 3. Реферат не предусматривается.
- 4. Контрольная работа

ПРИМЕРНЫЙ ВАРИАНТ КОНТРОЛЬНОЙ РАБОТЫ

- 1. Абсолют псевдоевклидовой плоскости состоит из действительной прямой и пары действительных точек на ней. Проведите классификацию овальных линий псевдоевклидовой плоскости, учитывая расположение овальной линии по отношению к абсолюту.
- 2. Определите фундаментальную группу преобразований псевдоевклидовой плоскости.
 - 3. Проведите классификацию сфер пространства Минковского.
- 4. Определите инварианты двух точек и двух прямых на расширенной плоскости Лобачевского. Найдите формулы для вычисления расстояния между точками на плоскости Лобачевского, задав абсолют наиболее простым уравнением.
- 5. Сформулируйте аксиомы скалярного произведения векторов в аксиоматике Вейля для евклидовой и псевдоевклидовой плоскостей.

Методические рекомендации. Контрольная работа по дисциплине проводится в письменном виде. Учебным планом предусмотрена 1 контрольная работа. Подготовка студента к контрольной работе осуществляется в период практических занятий, а также во внеаудиторные часы в рамках самостоятельной работы. Во время самостоятельной подготовки студент пользуется конспектами практических занятий, литературой по дисциплине (см. перечень литературы в рабочей программе дисциплины).

Критерии оценивания. Количество баллов, выставляемых за выполнение заданий, зависит от полноты решения и правильности ответа. Общие требования к выполнению заданий: решение должно быть математически грамотным, полным, в частности все возможные случаи должны быть рассмотрены. За решение, в котором обоснованно получен правильный ответ, выставляется максимальное количество баллов. Правильный ответ при отсутствии текста решения оценивается в 0 баллов.

Имеется верное доказательство утверждения и обоснованно получен верный ответ - 2 балла.

Допущена единичная ошибка, возможно, приведшая к неверному ответу, но при этом имеется верная последовательность всех шагов решения - 1 балл.

Решение не соответствует ни одному из критериев, перечисленных выше - 0 баллов.

5) Тесты - не предусматриваются.

6) Задания для практических занятий

План практических занятий написан в форме вопросов для текущего контроля знаний.

Вопросы для текущего контроля знаний на практических занятиях

- 1. Охарактеризуйте идеи Клейна построения различных геометрий, указывая их преимущества и недостатки.
- 2. Чем отличается современная проективная интерпретация неевклидовых геометрий от интерпретации Клейна?
- 3. Как связаны фундаментальные группы евклидовой и неевклидовых плоскостей с группой проективных преобразований?
- 4. Опишите абсолюты классических плоскостей в системе Кэли-Клейна.
- 5. В чем заключается проективная интерпретация евклидовой геометрии?
- 6. На каком методе основан поиск и доказательство геометрических фактов в проективных моделях различных неевклидовых плоскостей?
- 7. Охарактеризуйте процесс построения геометрии в проективной модели на примере плоскости Лобачевского.
- 8. В чем заключается аксиоматический метод построения геометрий?
- 9. Какие требования предъявлявляются к системам аксиом?
- 10. Каковы были исторические предпосылки появления и развития неевклидовых геометрий?
- 11. Опишите логику рассуждений Николая Ивановича Лобачевского в решении проблемы пятого постулата Евклида.

- 12. Сформулируйте аксиому Лобачевского и первые следствия из нее.
- 13. Приведите примеры геометрии с аффинной базой.
- 14. Сформулируйте аксиомы векторной аксиоматики Вейля евклидовой плоскости.
- 15. Сформулируйте аксиомы векторной аксиоматики Вейля псевдоевклидовой плоскости.
- 16. На чем основан вывод основных метрических формул евклидовой геометрии в проективной модели?
- 17. Какие следствия их аксиом псевдоевклидова пространства Вам знакомы?
- 18. Какие типы векторов существуют в псевдоевклидовом пространстве?
- 19. Как вычислить скалярное произведение векторов в ортонормированном базисе в псевдоевклидовом пространстве?
- 20. Как найти длину вектора в ортонормированном базисе в псевдоевклидовом пространстве?
- 21. На чем основана классификация и измерение углов псевдоевклидовой плоскости?
- 22. На чем основана классификация линий второго порядка псевдоевклидовой плоскости?
- 23. Какие типы окружностей псевдоевклидовой плоскости Вам знакомы? Какие существуют типы сфер в трехмерном псевдоевклидовом пространстве?
- 24. В чем заключается метод исследования объектов вблизи бесконечности
- 25. Какие программные средства могут быть применены для визуализации объектов неевклидовых геометрий?

Обучающиеся продолжают формировать общепрофессиональные и профессиональные компетенции (ОПК-2, ПК-1) в рамках практической подготовки, которая осуществляется путем проведения практических занятий.

Примерный перечень тем по практической подготовке в рамках практических занятий:

- 1. Определение проективного пространства. Основные факты проективной геометрии на плоскости.
- 2. Основные факты проективной геометрии на плоскости и в пространстве. Проективная интерпретация геометрий.
- 3. Построение геометрических теорий в проективной модели.
- 4. Аксиоматический метод построения геометрий.
- **5.** Основные факты псевдоевклидовой геометрии в аксиоматическом изложении.
- 6. Исследование объектов евклидовой геометрии вблизи бесконечности.
- 7. Визуализация объектов и понятий неевклидовых геометрий с помощью программных средств.

Литература:

- 1. Атанасян Л.С., Базылев В.Т. Геометрия (в 2-х частях). Ч. 2. [Электронный ресурс] / Атанасян Л.С., Базылев В.Т. Москва : КноРус, 2017. 424 с. ISBN 978-5-406-05977-7 : Б. ц. Перейти к внешнему ресурсу http://www.book.ru/book/927669 Книга находится в ЭБС "BOOK.ru"
- 2. Атанасян Л.С. Геометрия Лобачевского : учебное пособие [Электронный ресурс] / Л.С. Атанасян. Москва : Лаборатория знаний, 2021. 467 с. URL: https://e.lanbook.com/book/166727 ISBN 978-5-93208-508-0 : Б. ц. Текст : электронный. Книга находится в ЭБС "ЛАНЬ".

Промежуточная аттестация

Методические указания. Промежуточная аттестация ПО дисциплине, предусмотренная по учебному плану, проводится в виде зачета. Подготовка студента к прохождению промежуточной аттестации осуществляется в период занятий, a также практических во внеаудиторные часы самостоятельной работы. Во время самостоятельной подготовки студент пользуется конспектами практических занятий, основной и дополнительной литературой по дисциплине (см. перечень литературы в рабочей программе дисциплины).

Критерии оценивания. Во время зачета студент должен дать развернутый ответ на вопросы, изложенные в билете. Преподаватель вправе задавать дополнительные вопросы по всему изучаемому курсу. Полнота ответа определяется показателями оценивания планируемых результатов обучения.

При проведении промежуточной аттестации ответ на «отлично» / «зачтено» оценивается от <u>23 до 30</u> баллов; ответ на «хорошо» / «зачтено» оценивается от <u>16 до 22</u> баллов; ответ на «удовлетворительно» / «зачтено» оценивается от <u>8 до 15</u> баллов; ответ на «неудовлетворительно» / «не зачтено» оценивается от <u>0 до 7</u> баллов.

Вопросы для промежуточной аттестации по итогам освоения дисциплины

1 семестр

Nº	Вопрос	Компетенция в соответствии с РПД
1.	Пропедевтические задачи введения бесконечно удаленных объектов на евклидовой плоскости и в трехмерном евклидовом пространстве. Понятие <i>n</i> -	·

	мерного проективного пространства с фиксированной вещественной компонентой, в частности, понятие вещественной проективной плоскости, пополненной мнимыми точками.	
2.	Понятие проективных систем координат, координат точек, прямых и <i>m</i> -мерных плоскостей.	ОПК-2, ПК-1
3.	Формулы преобразования проективных координат точек на проективной плоскости.	ОПК-2, ПК-1
4.	Уравнения прямой на проективной плоскости.	ОПК-2, ПК-1
5.	Малый принцип двойственности проективной плоскости.	ОПК-2, ПК-1
6.	Теорема Дезарга	ОПК-2, ПК-1
7.	Сложное отношение четырех точек прямой и сложное отношение четырех прямых пучка.	ОПК-2, ПК-1
8.	Полный четырехвершинник.	ОПК-2, ПК-1
9.	Проективные преобразования. Основная теорема о проективном преобразовании.	ОПК-2, ПК-1
10.	Отрезки проективной прямой	ОПК-2, ПК-1
11.	Уравнения <i>m</i> -мерной плоскости в проективном <i>n</i> -мерном пространстве.	ОПК-2, ПК-1
12.	Принцип двойственности проективного пространства.	ОПК-2, ПК-1
13.	Линии второго порядка на проективной плоскости (определение, основные свойства, классификация).	ОПК-2, ПК-1
14.	Различные подходы к построению геометрических систем. Классическая схема Кэли-Клейна построения различных геометрий (ее преимущества и недостатки). Современная проективная интерпретация неевклидовых геометрий.	ОПК-2, ПК-1
15.	Абсолюты и фундаментальные группы евклидовой и неевклидовых плоскостей как подгруппы группы проективных преобразований.	ОПК-2, ПК-1
16.	Проективная интерпретация евклидовой геометрии.	ОПК-2, ПК-1

17.	Поиск и доказательство геометрических фактов в проективных моделях различных неевклидовых плоскостей.	ОПК-2, ПК-1
18.	Процесс построения геометрии в проективной модели на примере плоскости Лобачевского.	ОПК-2, ПК-1
19.	Аксиоматический метод. Требования, предъявляемые к системам аксиом.	ОПК-2, ПК-1
20.	Исторический обзор развития неевклидовых геометрий. Николай Иванович Лобачевский и его геометрия.	ОПК-2, ПК-1
21.	Геометрии с аффинной базой. Векторная аксиоматика Вейля евклидовой и псевдоевклидовой плоскостей.	ОПК-2, ПК-1
22.	Вывод основных метрических формул евклидовой геометрии в проективной модели.	ОПК-2, ПК-1
23.	Первые следствия их аксиом псевдоевклидова пространства, в частности, псевдоевклидовой плоскости (типы векторов, понятие ортонормированного базиса, вычисление скалярного произведения векторов в ортонормированном базисе, длина вектора в ортонормированном базисе, классификация и измерение углов, классификация линий второго порядка, в частности, классификация окружностей, решение треугольников псевдоевклидовой плоскости, типы сфер в трехмерном псевдоевклидовом пространстве).	ОПК-2, ПК-1
24.	Реализация неевклидовых геометрий на сферах псевдоевклидова пространства.	ОПК-2, ПК-1

ФОС для проведения промежуточной аттестации одобрен на заседании кафедры геометрии (протокол № 1 от «30» августа 2022 года).

Автор:

к.ф.-м.н., доцент

Л.Н. Ромакина