МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Биологический факультет

УТВЕРЖДАЮ

Декан биологического факультета О.И.Юдакова

2019 г.

Рабочая программа дисциплины

Биотехнология и основы сельского хозяйства

Направление подготовки бакалавриата 44.03.01 Педагогическое образование

Профиль подготовки бакалавриата Биология

> Квалификация выпускника Бакалавр

> > Форма обучения заочная

Саратов, 2019

Статус	ФИО	, Подпись Дата
Преподаватели- разработчики	Коробко В.В. Кашин А.С.	W Schoum
Председатель НМК	Юдакова О.И.	Millel
Заведующий кафедрой	Степанов С.А. Юдакова О.И.	robel
Специалист Учебно- го управления		

1. Цели освоения дисциплины

Целями освоения дисциплины «Биотехнология и основы сельского хозяйства» являются формирование представлений об основных направлениях современной биотехнологии, методах генетического совершенствования биообъектов, культивирования микроорганизмов, клеток и тканей растений; знакомство с основными экологическими проблемами промышленной биотехнологии; формирование систематизированных теоретических знаний и практических навыков в области биотехнологии и биологических основ сельского хозяйства.

2. Место дисциплины в структуре ООП

Дисциплина относится к части, формируемой участниками образовательных отношений, блока «Дисциплины (модули)», является обязательной, изучается в 7,8 и 9 семестре (Б1.В.О6).

При изучении дисциплины студенты должны опираться на знания, приобретенные в результате освоения предшествующих дисциплин в соответствии с ООП, а именно курсов «Микробиология и вирусология», «Физиология растений», «Биохимия и биофизика», «Генетика». Студент должен имеет навыки работы с микроскопом, химическими реактивами, лабораторным оборудованием. Знания, полученные при изучении дисциплины «Биотехнология и основы сельского хозяйства» будут использованы в научно-исследовательской деятельности студентов, профессиональной деятельности выпускников.

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование	Результаты обучения		
компетенции	индикатора (индикаторов)			
	достижения компетенции			
ПК-1	1.1_Б.ПК-1 Пользуется	Знать перспективы		
Способен осуществлять	современными	развития современной		
педагогическую	образовательными	биотехнологии; основные		
деятельность по	технологиями в процессе	новейшие биотехнологии		
профильным предметам	обучения.	для решения важнейших		
(дисциплинам, модулям) в	2.1_Б.ПК-1 Разрабатывает	проблем в области экологии,		
рамках программ основного	учебные программы и	ресурсов, питания,		
общего и среднего общего	соответствующее	здравоохранения, основные		
образования, среднего	методическое обеспечение	законы земледелия,		
профессионального и	для процесса обучения	особенности роста и		
дополнительного	3.1_Б.ПК-1 Применяет	развития важнейших		
профессионального	современные методы	сельскохозяйственных		
образования, по программам	обучения биологии	растений		
дополнительного	4.1_Б.ПК-1 Показывает	Уметь применять научные		
образования детей и	знания научных основ	знания в области		
взрослых	содержания школьного	биологической технологии,		
	биологического	растениеводства,		
	образования, ориентируется	земледелия в учебной и		
	в проблематике и	профессиональной		
	достижениях современной	деятельности.		
	биологии.	Владеть основными		
		понятиями растениеводства,		
		земледелия, плодоводства,		
		овощеводства и		
		биотехнологической		
		терминологией.		

ПК-4 Способен 1.1 Б.ПК-4 Способен Знать вести основные этапы биотехнологического научно-исследовательскую использовать современные работу области методы и технологии при процесса, способы создания В профильной дисциплины и научносовершенствования проведении методики ее преподавания исследовательской работы и объектов методами анализировать свой опыт в клеточной и генетической соответствии инженерии, методы культивирования используемыми методами и технологиями биообъектов, биологические образовательным целям. растениеводства, основы 2.1 Б.ПК-4 Осуществляет плодоводства сбор научной информации, научные овощеводства, готовит обзоры, составляет химизации основы рефераты отчеты. И земледелия. библиографии Уметь применять 3.1 Б.ПК-4 Анализирует и современные методы планирует стадии научнобиотехнологии на практике исследовательской работы, осуществлять выбор и отбор биообъектов, поддерживать научного проекта естественно-научного оптимальные условия для эксперимента по биологии проведения биотехнологического процесса, анализировать полученные результаты; применять способы вегетативного размножения растений, основные законы земледелия. Владеть методами культивирования микроорганизмов, растительных тканей клеток, микроклонального разножения растений, оздоровления растений, методами селекции микрооранизмов; приемами агротехники культивирования сельскохозяйственных растений. ПК-6 1.1 Б.ПК-6 Способен Владеет Знать общие принципы навыками участия в разработке проектировать учебную организации реализации различного типа деятельность по предмету в биотехнологического проектов в образовательных соответствии процесса, современные организациях требованиями проблемы биотехнологии. педагогической сфере образовательных возможности стандартов. интенсификации 2.1 Б.ПК-6 Имеет биотехнологического представление о психологопроцесса позиний

педагогических

проектирования

основах

современной науки, области

применения биологических

взаимодействия с различными категориями участников образовательных отношений 3.1_Б.ПК-6 Анализирует и обобщает результаты научно-исследовательских работ с использованием современных достижений науки и техники

4.1_Б.ПК-6 Планирует и выстраивает учебный процесс, формирует у обучающихся интеллектуальные потребности, в том числе к научно-исследовательской деятельности

5.1_Б.ПК-6 Осуществляет сбор научной информации, готовит обзоры, аннотации, составляет рефераты и отчеты, библиографии

6.1_Б.ПК-6 Критически анализирует и планирует стадии педагогического эксперимента, научного проекта и естественнонаучного эксперимента по биологии

Способен 7.1 Б.ПК-6 проектировать педагогические действия, в том числе инновационной направленности, связанные с использованием ресурсов образовательной среды (работа учебником, предметного занятия кружка, совместные действия c библиотекой, использование ресурсов ЭОР, учебные экскурсии и т.д.).

технологий; принципы рационального земледелия, классификацию культурных растений, перспективные сорта и особенности их культивирования. Уметь осуществлять методологическое обоснование биотехнологического исследования, осуществлять поиск и анализ научной информации современным проблемам биотехнологии и применять ЭТУ информацию при планировании научноисследовательской деятельности анализе полученных результатов, организовать учебноопытного школьный участок. Владеть методами исследования объектов биологических растительного и микробного происхождения, навыками организации асептических условий, работы асептических условиях, навыками использования биотехнологических исследований в проектной деятельности обучающихся, навыками использования учебно-опытного школьного участка для реализации задач научно-

исследовательской работы.

4. Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 зачетных единицы, 180 часов. 4.1. Структура дисциплины.

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	pa6 cam pa6	боты, в 10стоя		Формы текущего контроля успеваемост и (по неделям семестра) Формы промежуточ ной аттестации (по семестрам)
	Часть 1.						
1	Биотехнология как научная дисциплина. Цели и задачи биотехнологии, объекты и методы биотехнологии	7		1		16	Опрос, рефераты
2	Организация биотехнологического производства	7		1		16	Опрос, тестирование , рефераты
3	Основы инженерной энзимологии	7		2		16	Опрос, рефераты
4	Основы фитобиотехнологии	7 8		4	6	16 11	Опрос, рефераты, тестирование
5	Основы микробной биотехнологии	8				11	рефераты
	Контрольная работа	8			2	4	Тестирован ие
	Промежуточная аттестация	8				4	Зачет
	Итого по части «Биотехнология» - 110 ч.			8	8	90+4	
	Часть 2. Основы сельского хозяйства						
1	Почвоведение и земледелие с основами агрохимии	8 9		4	4	13 9	Опрос, рефераты

2	Растениеводство,	8	4		13	Опрос,
	овощеводство и	9		4	10	Опрос, рефераты
	плодоводство					
	Промежуточная аттестация	9			9	Экзамен
	Итого по части		8	8	45+9	
	«Основы сельского					
	хозяйства» - 70 ч.					
	Итого по дисциплине – 180		1	16	135+13	
	ч.		6			

4.2. Содержание дисциплины.

Часть 1. Биотехнология

Раздел 1. Биотехнология как научная дисциплина, цели и задачи биотехнологии, объекты и методы биотехнологии. История развития. Связь биотехнологии с фундаментальными науками второй половины XX века. Природа и многообразие биотехнологических процессов.

Раздел 2. Организация биотехнологического производства

Подготовка биологических объектов к культивированию. Генетические основы совершенствования объектов. Принципы действия и конструкции биореакторов. Биотехнологические процессы и аппараты периодического и непрерывного действия; специализированные типы биотехнологических процессов и аппаратов. Получение конечного продукта: отделение биомассы от культуральной жидкости; методы разрушения клеток; отделение и очистка; концентрирование; обезвоживание; пути модификации; стабилизация, безопасность продукта.

Раздел 3. Основы инженерной энзимологии.

Иммобилизация биообъектов. Носители для иммобилизации биообъектов. Методы физической и химической иммобилизации ферментов. Стабильность иммобилизованных ферментов. Использование иммобилизованных ферментов и клеток в различных отраслях промышленности.

Раздел 4. Основы фитобиотехнологии.

Протопласты растительных клеток, как объекты биологического конструирования. Соматическая гибридизация растительных клеток. Методы и условия культивирования изолированных клеток и тканей растений. Типы культур растительных клеток и тканей. Вегетативное размножение растений методом культуры тканей. Культивирование каллусных клеток. Клональное микроразмножение и оздоровление растений. Получение безвирусных растений c помощью культуры апикальных меристем Оплодотворение растений in vitro. Культивирование незрелых гибридных семяпочек и зародышей. Регенерация растений из тканей летальных зародышей. Создание гаплоидов эмбриогенез. растений. Соматический Методы генетической трансформации Использование растительных клеток. трансгенных растений пищевой, фармацевтической промышленности, сельском хозяйстве.

Раздел 5. Основы микробной биотехнологии. Промышленные штаммы микроорганизмов.

Конструирование промышленных штаммов микроорганизмов. Требования, предъявляемые к промышленным штаммам. Современные методы селекции микроорганизмов. Генетическое конструирование *in vivo*. Мутагенез и методы получения мутантных штаммов. Использование транспонируемых элементов для промышленных штаммов микроорганизмов. Генетическое конструирование in vitro. (рекомбинантных) структур. генетически новых Биотехнологическое белка. Биотехнологическое производство микробного метаболитов. Биотехнологическое производство вторичных метаболитов.

Часть 2. Основы сельского хозяйства

Раздел 1. Почвоведение и земледелие с основами агрохимии

Научное определение почвы. Почвообразовательный процесс и его слагаемые; факторы почвообразования. Почвенный профиль, генетические горизонты, их строение, морфологические признаки и обозначение. Физико-химические свойства почвы. Поглотительная способность почвы и ее значение. Воздушный, водный и тепловой режимы почвы, приемы их регулирования. Классификация почв. Характеристика основных типов почв по зонам страны. Почвы Саратовской области. Плодородие почвы. Эрозия почвы и меры борьбы с ней. Земледелие как наука о рациональном использовании почв и повышении их плодородия. Основные законы земледелия. Севообороты, их агротехническое значение и классификация. Научные основы химизации земледелия. Органические и минеральные удобрения, их воздействие на культурные растения. Классификация удобрений. Сроки, способы и дозы внесения различных удобрений. Биологические особенности сорных растений; вред, причиняемый сорняками. Классификация сорных растений и меры борьбы с ними. Вредители и болезни культурных растений и меры борьбы с ними. Различные аспекты использования химических соединений в сельском хозяйстве.

Раздел 2. Растениеводство, плодоводство и овощеводство

Многообразие культурных растений. Центры происхождения культурных растений по Н.И. Вавилову. Классификация культурных растений. Зерновые хлеба 1 группы. Фенологические фазы и этапы органогенеза у злаковых культур. Зерновые хлеба 2 группы, особенности их агротехники. Многообразие зерновых бобовых культур, их биологические особенности. Химический состав семян бобовых растений, накопление растительного белка, условия симбиотической активности азотофиксирующих бактерий. Основные бобовые культуры, выращиваемые в Поволжье. Масличные растения. Виды и сорта маслинных культур, выращиваемые в условиях Саратовской области. Показатели качества растительных масел, методы их оценки. Эфиромасличные растения. Разделение сельскохозяйственных растений на пищевые, технические и кормовые (фуражные) культуры. Прядильные культуры, их биологические особенности. Корнеплоды и клубнеплоды. Основные фуражные культуры. Биологические основы плодоводства. плодово-ягодных культур: семечковые, косточковые, орехоплодные, субтропические, ягодные, их биологические и морфологические особенности. Способы вегетативного размножения – черенкование, размножение корневыми отпрысками, различные виды прививок. Выращивание саженцев в питомниках, основные разделы питомника. Перспективные сорта плодовых и ягодных культур. Значение овощных культур, их классификация. Подготовка семян овощных культур к посеву. Технология выращивания рассады и показатели ее качества. Основы агротехники выращивания овощей в парниках и теплицах. Особенности агротехники овощей в открытом грунте в условиях Поволжья. Площадь питания, способы посева и посадки овощных растений, уход за растениями в открытом грунте. Уборка и хранение урожая.

5. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В ходе реализации различных видов учебной работы по освоению дисциплины «Биотехнология и основы сельского хозяйства» используются следующие формы обучения:

1) традиционные: лекции, практические занятия. Практические занятия включают разбор конкретных биотехнологических задач, встречи с представителями крупнейших научно-исследовательских институтов г. Саратова (РОС НИПЧИ «Микроб», УРАН Институт биохимии, физиологии растений и микроорганизмов), представителями

коммерческих организаций, работающих в смежных областях (ЗАО «Биоамид», ЗАО «Нита-Фарм»).

2) современные интерактивные технологии: создание проблемных ситуаций, интерактивные лекции, дискуссии.

Интерактивные методы обучения, которые включают в свою структуру разработку вариантов тестирования знаний студентов по данной дисциплине и проведение их во время занятий и в специально отведенное для этого время. На лекциях используются различные формы визуализации наглядного материала (мультимедийные презентации MS PowerPoint, таблицы, коллекции).

Занятия лекционного типа по данной дисциплине составляют 50 % аудиторных занятий. Удельный вес интерактивных форм обучения составляет около 70% аудиторных занятий.

Особенности организации образовательного процесса для лиц с ограниченными возможностями здоровья

- использование индивидуальных графиков обучения и сдачи экзаменационных сессий;
- организация коллективных занятий в студенческих группах с целью оказания помощи в получении информации инвалидам и лицам с ограниченными возможностями здоровья;
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья;
- для лиц с ограничениями по слуху для облегчения усвоения материала предусматривается максимально возможная визуализация лекционного курса, в том числе широкое использование иллюстративного материала, мультимедийной техники, дублирование основных понятий и положений на слайдах;
- для лиц с ограничениями по слуху для облегчения усвоения материала предусматривается максимально возможная визуализация лекционного курса, в том числе широкое использование иллюстративного материала, мультимедийной техники, дублирование основных понятий и положений на слайдах.
- 6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Самостоятельная работа студентов заключается в поиске и обработке информации по основным разделам дисциплины как в библиотечном фонде, так и в электронных базах данных.

Часть 1. Биотехнология. Вопросы для проведения текущего контроля

Раздел 1. Биотехнология как научная дисциплина, цели и задачи биотехнологии, объекты и методы биотехнологии.

- 1. История развития биотехнологии. Роль отечественных ученых.
- 2. Биотехнология как научная дисциплина. Цели и задачи биотехнологии.
- 3. Природа и многообразие биотехнологических процессов. Биотехнология на службе народного хозяйства, здравоохранения, науки.
- 4. Биообъекты растительного происхождения. Основные группы целевых продуктов, получаемых в фитобиотехнологических процессах.
- 5. Микроорганизмы как объекты биотехнологии.
- 6. Традиционные методы селекции, используемые для получения более продуктивных биообъектов и биообъектов с новыми свойствами.
- 7. Индуцированный мутагенез в селекции. Физические и химические мутагены, механизм их действия.

Раздел 2. Организация биотехнологического производства

- 1. Значение асептики в биотехнологических производствах. Борьба с микробамиконтаминантами при реализации биотехнологических производств.
- 2. Принципы организации материальных потоков: периодический, полупериодический, отьемно-доливной, непрерывный.
- 3. Характеристика систем, входящих в состав биореактора: система перемешивания и аэрации, теплообмена, пеногашения.
- 4. Пилотные, промышленные биореакторы их характеристика, назначение, задачи. Проблемы масштабирования.
- 5. Методы извлечения внутриклеточных целевых продуктов.
- 6. Выделение целевого продукта из культуральной жидкости.
- 7. Модификация и стабилизация продукта биотехнологического производства.

Раздел 3. Основы инженерной энзимологии

- 1. Основные цели и задачи инженерной энзимологии. Преимущества иммобилизованных ферментов перед нативными.
- 2. Носители для иммобилизации биообъектов органической и неорганической природы. Требования, предъявляемые к носителям.
- 3. Методы физической иммобилизации ферментов. Характеристика и классификация.
- 4. Иммобилизация биообъектов путём адсорбции на нерастворимых носителях. Преимущества и недостатки адсорбционной иммобилизации. Способы адсорбционной иммобилизации: статический, с перемешиванием, метод электроосаждения.
- 5. Иммобилизация биообъектов путём включения в структуру геля. Способы иммобилизации, преимущества и недостатки метода.
- 6. Иммобилизация биообъектов с использованием полупроницаемых мембран. Модификации метода: микрокапсулирование, двойное эмульгирование, включение в волокна, включение в липосомы.
- 7. Иммобилизация биообъектов с использованием систем двухфазного типа: микроэмульсий и двухфазных водных систем.
- 8. Химические методы иммобилизации биообъектов. Основные преимущества химических методов. Причины ограниченного применения химических методов иммобилизации.
- 9. Применение иммобилизованных ферментов и клеток в пищевой и фармацевтической промышленности.

Раздел 4. Основы фитобиотехнологии.

- 1. Типы культур, методы и условия культивирования клеток и тканей растений.
- 2. Глубинное культивирование клеток высших растений. Получение суспензии клеток. Основные принципы и аппаратура для культивирования клеток высших растений.
- 3. Поверхностное культивирование клеток и тканей растений.
- 4. Проблемы регуляции морфогенеза и дифференциации в культуре клеток и тканей растений.
- 5. Методы культивирования одиночных растительных клеток.
- 6. Каллусогенез. Дедифференцировка как основа каллусогенеза. Характеристика каллусных клеток.
- 7. Влияние внешних и внутренних факторов на процесс микроклонального размножения.
- 8. Получение безвирусных растений с помощью культуры апикальных меристем побега.
- 9. Изолированные протопласты растений объект и модель для физиологических исследований. Получение и культивирование.
- 10. Соматическая гибридизация растительных клеток. Возможности и использование метода соматической гибридизации.
- 11. Оплодотворение растений in vitro.

- 12. Создание гаплоидов растений. Андрогенез, гиногенез.
- 13. Использование трансгенных растений в пищевой, фармацевтической промышленности, сельском хозяйстве.

Раздел 5. Основы микробной биотехнологии. Промышленные штаммы микроорганизмов.

- 1. Конструирование промышленных штаммов микроорганизмов.
- 2. Требования, предъявляемые к промышленным штаммам.
- 3. Современные методы селекции микроорганизмов. Генетическое конструирование *in vivo*.
- 4. Мутагенез и методы получения мутантных штаммов.
- 5. Использование транспонируемых элементов для создание промышленных штаммов микроорганизмов.
- 6. Генетическое конструирование *in vitro*.
 - 7. Создание генетически новых (рекомбинантных) структур.

Темы рефератов по части «Биотехнология»

- 1. Хемостатный, турбидостатный и дифференцированный режимы непрерывного культивирования.
- 2. Фундаментальные принципы непрерывных биотехнологических процессов. Лимитация скорости размножения биообъектов в техногенной системе компонентами питательной среды. Уравнение Моно.
- 3. Требования к ферментационному процессу в зависимости от физиологического значения целевых продуктов для продуцента (первичные метаболиты, высокомолекулярные вещества, биомасса как целевой продукт).
- 4. Требования к ферментационному процессу при использовании рекомбинатных штаммов, образующих чужеродные для биообъекта целевые продукты.
- 5. Направления повышения эффективности ферментации в промышленном биотехнологическом производстве.
- 6. Массообмен в биотехнологических процессах: роль кислорода и его радикалов, критическая концентрация, формула скорости переноса кислорода.
- 7. Теплообмен: определение, источники тепла в биотехнологических процессах, уравнение теплообмена, отвод тепла в биореакторах.
- 8. Влияние иммобилизации на ферментативную активность: микроокружение («эффективное распределение», диффузионные ограничения), влияние на молекулу фермента, изменение рН зависимости фермента, эффективные кинетические параметры.
- 9. Микрокапсулирование. Способы получения микрокапсул (диспергирование, межфазная поликонденсация).
- 10. Способы получения липосом. Включение ферментов в липосомы (в оболочку и полость).
- 11. Основные принципы конструирования препаратов ковалентно иммобилизованных ферментов («пришивка», «сшивка» и «вшивка» конъюгатов, ретикуляция фермента).
- 12. Ковалентное связывание фермента с активированными полимерами. Связывающие молекулы (трихлортриазин, глутаровый альдегид, бромистый циан). Сополимеризация с помощью многофункциональных реагентов.
- 13. Культура каллусных клеток в получении веществ вторичного синтеза.
- 14. Андрогенез и получение гаплоидов в культуре пыльников.
- 15. Метаболизм углеводов к культуре тканей растений.
- 16. Регуляция вторичного метаболизма в культурах клеток и тканей растений. Кригенное хранение культур клеток растений.
- 17. Проблемы регуляции морфогенеза и дифференциации в культуре клеток и тканей растений.

- 18. Применение методов генной инженерии для улучшения аминокислотного состава запасных белков растений, повышения эффективности процесса фотосинтеза.
- 19. Применение методов генной инженерии для улучшения усвоения азота растительными организмами.
- 20. Применение методов генной инженерии для решения проблем устойчивости растений к фитопатогенам, гербицидам, насекомым.
- 21. Применение методов генной инженерии для решения проблем устойчивости растений к абиотическим стрессам.
- 22. Биотехнологическое производство гликанов и гликоконъюгатов.
- 23. Биотехнологическое получение энтомопатогенных препаратов.
- 24. Микробная трансформация органических соединений.
- 25. Биотехнологическое производство бактериальных удобрений.
- 26. Биотехнологическое производство, основанное на спиртовом брожении.
- 27. Биотехнологическое производство, основанное на молочнокислом брожении.
- 28. Биотехнологические производства, основанные на пропионовокислом и маслянокислом брожении.
- 29. Биотехнологическое производство, основанное на уксуснокислом брожении.
- 30. Биотехнологическое производство, основанное на ацетонобутиловом брожении.
- 31. Биотехнологическое производство стероидов.
- 32. Биотехнологическое производство витаминов.
- 33. Биотехнологическое производство ферментов.
- 34. Биотехнологическое производство пробиотических препаратов.
- 35. Получение иммунологических препаратов (вакцины, сыворотки).
- 36. Использование векторных молекул в биотехнологии.
- 37. Конъюгация у бактерий и ее использование для генетического конструирования микроорганизмов.
- 38. Трансдукция у бактерий и ее использование для генетического конструирования микроорганизмов.
- 39. Биологические основы генотерапии.
- 40. Использование молекулярных механизмов внутриклеточной регуляции в биотехнологическом производстве.
- 41. Экологические аспекты биотехнологического производства.

Контрольная работа по части «Биотехнология» (тестирование)

- 1. Ауксины термин, под которым объединяются специфические стимуляторы роста
- а) растительных тканей
- b) актиномицетов
- с) животных тканей
- d) эубактерий
- е) эукариот
- 2. Для дезинтеграции клеток дрожжей и плесневых грибов не используют
- а) комплексный дрожжелитический препаратом
- b) смесь пектиназы и целлюлазы
- с) хитиназа
- d) зимолиазой улитки
- 3. Иммобилизация индивидуальных ферментов ограничивается
- а) высокой лабильностью фермента
- b) наличием у фермента кофермента
- с) наличием у фермента субъединиц
- d) принадлежностью фермента к гидролазам
- е) принадлежностью фермента к лигазам

- 4. Оптимальные условия культивирования изолированных тканей и клеток растений:
- а) температура 10 15 °C, относительная влажность воздуха 30 40 %;
- б) температура 25 27 °C, относительная влажность воздуха 60 70 %;
- в) температура 30-40 °C, относительная влажность воздуха 80-90 %.
- 5. Иммобилизация целых клеток-продуцентов лекарственных веществ нерациональна в случае
- а) высокой лабильности целевого продукта (лекарственного вещества)
- b) использования целевого продукта только в инъекционной форме
- с) внутриклеточной локализации целевого продукта
- d) высокой гидрофильности целевого продукта
- е) высокой гидрофобности целевого продукта
- 6. Для решения проблемы регенерации кофакторов в ферментативных биотехнологических многостадийных процессах не целесообразно использовать один из следующих методов:
- а) кофактор может быть пришит к ферменту или его носителю через пространственную ножку
- b) постоянное добавление в ферментер в течении всего процесса
- с) масса молекулы кофактора может быть значительно увеличена за счет присоединения к водорастворимым полимерам
- 7. Способ сохранения нужной биотехнологу продуктивности культур микроорганизмов
- а) сублимационное высушивание
- b) криохранение
- с) в сыпучих материалах
- d) при высоких температурах
- 8. Технологический воздух для биотехнологического производства стерилизуют
- а) нагреванием
- b) фильтрованием
- с) УФ-облучением
- d) радиацией в малых дозах
- е) антибиотическими веществами
- 9. Выделение и очистка продуктов биосинтеза и оргсинтеза имеет принципиальные отличия на стадиях процесса
- a) Bcex
- b) конечных
- с) первых
- d) только на подготовительных этапах
- е) принципиальных различий нет
- 10. Борьба с фаговой инфекцией в цехах ферментации антибиотической промышленности наиболее рациональна путем
- а) ужесточения контроля за стерилизацией технологического воздуха
- b) ужесточения контроля за стерилизацией питательной среды
- с) получения и использования фагоустойчивых штаммов биообъекта
- d) ужесточения контроля за стерилизацией оборудования
- е) ужесточения контроля за фильтрационными установками
- 11. Наиболее эффективный химический метод разрушения клеточных стенок E. coli с целью выделения рекомбинантного гормона роста человека:
- а) обработка лизоцимом яичного белка
- b) обработка клеток натрия гидрокарбонатом при pH 11.
- с) обработка зимолиазой улитки
- d) обработка смесью пектиназы и целлюлазы
- 12. Физическим методом дезинтеграции клеток является:

- 1. применение ультразвука; 2. применение ферментов; 3. применение антибиотиков; 4. применение толуола; 5. осмотический шок
- а) 1 и 5
- b) только 5
- с) все, кроме 3
- d) все перечисленные
- 13. Химическим методом дезинтеграции клеток является:
- а) применение вибраторов
- b) замораживание-оттаивание
- с) применение антибиотиков
- d) осмотический шок
- 14. Вещество переходит из одной жидкости в другую при
- а) твердо-жидкофазной экстракции;
- b) жидко-жидкофазной экстракции;
- с) адсорбции;
- d) сепарации;
- 15. Разделение веществ, при котором биомасса всплывает на поверхности культуральной жидкости:
- а) фильтрация;
- b) флотация;
- с) сепарация;
- 16. Аффинная хроматография основана на разделении веществ по
- а) заряду
- b) гидрофобности
- с) размеру
- d) способности связываться различными химическими группами
- 17. Разделение веществ по заряду характерно для:
- а) аффинной хроматографии;
- b) бумажной хроматографии;
- с) ультрацентрифугирования;
- d) ионообменной хроматографии
- 18. Культуральной жидкостью называется
- а) сложная смесь, которая используется для ферментации, состоящая из клеток продуцента, компонентов питательных среды
- b) сложная смесь, которая образуется по окончании ферментации, состоящая из клеток продуцента, раствора непотребленных питательных компонентов и накопившихся в среде продуктов биосинтеза
- с) сложная смесь, которая состоит из раствора питательных компонентов и используется для культивирования биообъектов
- 19. Часть суспензионной или каллусной культуры, используемая для пересадки в (или на) питательную среду:
- а) штамм;
- b) линия;
- с) клон;
- d) инокулюм или трансплантат
- 20. Культура клеток, возникшая из штамма путем селекции или клонирования, имеющая маркерные признаки:
- а) штамм;
- b) линия;
- с) клон;
- d) инокулюм или трансплантат;

- 21. Культура, возникшая после первого субкультивирования, состоящая из многих клеточных линий, возникших из клеток, присутствующих в первичной культуре:
- а) штамм;
- b) линия;
- с) клон;
- d) инокулюм или трансплантат;
- 22. Назначение питательных сред:
- а) обеспечение клеток питательными веществами для синтеза необходимых продуктов жизнедеятельности;
- b) поддержание оптимальных для роста клеток физико-химических условий;
- с) обеспечения клеток питательными вещества и для синтеза биомассы;
- d) все вышеперечисленное верно.
- 23. Получение липосом посредством впрыскивания раствора фосфолипидов в органическом растворителе в водную среду
- а) Экструзия
- b) Метод спонтанной везикуляции
- с) Инжекция
- 24. Фаза культивирования, характеризующаяся максимальным накоплением вторичных-метаболитов:
- а) лаг-фаза;
- b) экспоненциальная или логарифмическая фаза;
- с) фаза замедления роста;
- d) стационарная фаза;
- 25. Фаза культивирования, характеризующаяся максимальным накоплением первичных метаболитов:
- а) лаг-фаза;
- b) экспоненциальная или логарифмическая фаза;
- с) фаза замедления роста;
- d) стационарная фаза;
- 26. Отличительные признаки эрлифного реактора:
- а) механическое перемешивание культуральной жидкости;
- b) перемешивание среды барботированием;
- с) циркуляция среды за счет потока воздуха;

Вопросы для промежуточной аттестации по части 1 «Биотехнология»

- 1. Биотехнология как научная дисциплина, цели и задачи биотехнологии, объекты и методы биотехнологии.
- 2. Природа и многообразие биотехнологических процессов. Краткая характеристика отдельных разделов биотехнологии: фитобиотехнологии, зообиотехнологии; технической микробиологии, биогеотехнологии. Технологическая биоэнергетика; биотехнология и медицина; биотехнология и ветеринария; биотехнология и пищевая промышленность.
- 3. Культивирование биологических объектов. Подготовка биологических объектов: подбор объектов; селекция.
- 4. Субстраты для культивирования биообъектов; принципы действия и конструкции биореакторов; лабораторные, пилотные и промышленные биореакторы; проблемы масштабирования.
- 5. Биотехнологические процессы и аппараты периодического и непрерывного действия; специализированные типы биотехнологических процессов и аппаратов.
- 6. Получение конечного продукта: отделение биомассы от культуральной жидкости; методы разрушения клеток; отделение и очистка; концентрирование; обезвоживание; пути модификации; стабилизация, безопасность продукта.

- 7. Основные задачи инженерной энзимологии. Иммобилизация ферментов и клеток. Носители для иммобилизации ферментов.
- 8. Методы физической и химической иммобилизации ферментов.
- 9. Стабильность иммобилизованных ферментов. Использование иммобилизованных ферментов и клеток в различных отраслях промышленности.
- 10. Использование методов генной инженерии в фитобиотехнологии. Применение методов генной инженерии для улучшения аминокислотного состава запасных белков растений, повышения эффективности процесса фотосинтеза, усвоения азота растительными организмами.
- 11. Применение методов генной инженерии для решения проблем устойчивости растений к фитопатогенам, гербицидам, насекомым, абиотическим стрессам.
- 12. Вегетативное размножение растений методом культуры тканей. Методы и условия культивирования клеток и тканей растений.
- 13. Типы культур растительных клеток и тканей. Культивирование каллусных клеток. Дедифференцировка как основа каллусогенеза. Характеристика каллусных клеток.
- 14. Клональное микроразмножение и оздоровление растений. Получение безвирусных растений с помощью культуры апикальных меристем побега.
- 15. Получение и культивирование изолированных протопластов растительных клеток.
- 16. Соматическая гибридизация растительных клеток. Возможности и использование метода соматической гибридизации.
- 17. Методы клеточной инженерии растений, используемые в селекции (оплодотворение in vitro, культивирование незрелых гибридных семяпочек и зародышей, регенерация растений из тканей летальных зародышей, создание гаплоидов растений).
- 18. Создание трансгенных растений.
- 19. Промышленные штаммы микроорганизмов и способы их усовершенствования. Понятие о клоне клеток и штамме, требования к производственным штаммам.
- 20. Понятие о мутагенезе и методах выделения мутантов. Индуцированный мутагенез и отбор продуктивных мутантов.
- 21. Стратегия селекционной работы с микроорганизмами; методы селекции микроорганизмов. Ступенчатый отбор.
- 22. Генетическое конструирование in vivo (перенос генетической информации: конъюгация, трансдукция, трансформация и трансфекция).
- 23. Генетическое конструирование штаммов-продуцентов in vitro. Источники ДНК для клонирования.
- 24. Бактериофаги и их использование в биотехнологии.
- 25. Характеристика плазмид, понятие о группах несовместимости. Конъюгативные и неконъюгативные плазмиды.
- 26. Понятие о векторных молекулах.
- 27. Микробиологические производства, основанные на получении микробной биомассы.
- 28. Технологическая схема получения микробного белка.
- 29. Производства, основанные на получении микробных метаболитов. Понятие о первичных и вторичных метаболитах. Принципы получения первичных и вторичных метаболитов.
- 30. Биотехнологическое производство аминокислот.
- 31. Биотехнологическое производство ферментов.
- 32. Классификация антибиотических веществ, продуцируемых микроорганизмами. Основные продуценты антибиотиков.
- 33. Биотехнологические схемы получения антибиотиков.
- 34. Получение гликанов и гликоконъюгантов микробного происхождения.
- 35. Получение энтомопатогенных препаратов, особенности организации производства.
- 36. Технология производства бактериальных удобрений.
- 37. Получение микробных иммунобиологических препаратов.

- 38. Традиционные микробиотехнологические процессы. Получение продуктов брожения микроорганизмов.
- 39. Организация производств, основанных на спиртовом брожении микроорганизмов.
- 40. Молочнокислое брожение и производство молочнокислых продуктов.
- 41. Биотехнологические производства, основанные на пропионовокислом и маслянокислом брожении.
- 42. Биотехнологические производства, основанные на уксуснокислом брожении.
- 43. Биотехнологические производства, основанные на ацетонобутиловом брожении.
- 44. Микробная трансформация органических соединений.

Часть 2. Основы сельского хозяйства Вопросы для проведения текущего контроля

Раздел 1. Почвоведение и земледелие с основами агрохимии

- 1. Что такое почвенный разрез и какие виды почвенных разрезов выделяют?
- 2. Что такое почвенный профиль; что такое генетические горизонты почвы, как они обозначаются и описываются?
- 3. Какие морфологические признаки почвы выделяют?
- 4. Какую окраску имеют горизонты разных типов почв, от чего она зависит?
- 5. Что такое структура почвы, какие типы структуры почв выделяют?
 - 6. Как подразделяются механические элементы почвы, дать определение гранулометрическому составу почвы?
 - 7. Как классифицируются почвы по гранулометрическому составу? Какие свойства почв зависят от гранулометрического состава?
 - 8. Как определяется гранулометрический состав почвы в полевых и в лабораторных условиях?
 - 9. Какие существуют формы воды в почве?
 - 10. Как определяется влажность почвы в полевых и лабораторных условиях?
 - 11. Перечислите водные свойства почвы. Что такое влагоемкость и от чего она зависит?
 - 12. Что такое максимальная гигроскопичность почвы?
 - 13. Как определяется влажность почвы в полевых условиях?
- 14. Что такое водопроницаемость почвы и как она определяется?
 - 15. Что такое водоподъемная способность (капиллярность) почвы и как она определяется?
 - 16. От каких характеристик (свойств, параметров) зависят водные свойства почвы ?
 - 17. Что такое водный режим почвы, какие типы водного режима существуют?
- 18. Что такое рН, какие границы измерения рН почвы (почвенного раствора)?
 - 19. Какими методами определяются рН солевой и рН водной вытяжки?
 - 20. Какие группы почв выделяют по степени кислотности почвенного раствора?
 - 21. Какие существуют виды кислотности почвы и чем они обусловлены?
 - 22. Как проводится борьба с избыточной кислотностью почвы?
 - 23. Какие существуют виды щелочности почвы, чем они обусловлены?
 - 24. Какие меры борьбы с избыточной щелочностью почвы?
 - 25. Какие основные источники засоления почвы?
 - 26. Какие виды культурных растений можно выращивать на кислых почвах?
 - 27. Что такое буферность почвы, чем она обусловлена и какую функцию она выполняет?
- 28. Опишите природные условия, характерные для Саратовской области.
- 29. Какие почвенно-климатические зоны расположены на территории Саратовской области?
- 30. Какие типы почв распространены в Правобережье и чем это обусловлено?
- 31. Какие типы почв сформировались в условиях Левобережья и чем это обусловлено?
- 32. Какой почвенный покров формируется в поймах рек и как это используется в сельском (фермерском) хозяйстве?

- 33. Перечислите основные показатели качества посевного материала. В каком документе изложены кондиции на посевные качества семян?
- 34. На какие классы делятся семена в зависимости от посевных качеств?
- 35. Как берутся средние образцы семян для контрольно-семенных лабораторий?
- 36. Как определяется всхожесть семян?
- 37. Как определяется энергия прорастания семян?
- 38. Какие методы определения влажности семян известны?
- 39. Для чего определяют массу тысячи семян?
- 40. Как рассчитывается посевная годность семян?
- 41. Как выражают норму высева семян?

Раздел 2. Растениеводство, овощеводство и плодоводство

- 1. Как подразделяются зерновые культуры по характеру их использования и биологическим особенностям?
- 2. Какие отличительные (родовые) признаки зерновых культур?
- 3. Какие отличительные морфологические признаки у зерновки, различие хлебных злаков по строению зерновки.
- 4. Морфологические особенности соцветий хлебных злаков, определение видов по соцветиям.
- 5. Многообразие видов пшеницы, определение их по морфологическим признакам.
 - 6. Какие культуры, относящиеся к просовидным хлебам, выращиваются в Поволжье?
 - 7. Какие биологические особенности имеют хлебные злаки 2 группы?
 - 8. Признаки подвидов проса и их определение.
 - 9. Признаки подвидов кукурузы, их определение.
 - 10. Кормовые культуры сорго, могар, чумиза, их разновидности по характеру использования.
 - 11. Какие биологические особенности имеют бобовые культуры, значение и характеристика зерновых бобовых культур.
 - 12.Определение важнейших зернобобовых культур по вегетативным органам (листья, стебли).
 - 13. Какие отличительные признаки плодов (бобов) зернобобовых культур?
 - 14. Какие признаки положены в основу определения зернобобовых по семенам?
 - 15. Назовите важнейшие масличные и эфиромасличные культуры, их деление на группы по характеру использования.
 - 16. Какие группы сортов подсолнечника выделяют и в чем их отличия?
 - 17. Что такое панцирность подсолнечника и какое значение имеет этот признак?
 - 18. Какой показатель называется лузжистость и как он определяется, его хозяйственное значение?
 - 19. Назовите важнейшие масличные и эфиромасличные культуры, их деление на группы по характеру использования.
 - 20. Назовите виды маслинных культур, выращиваемые в условиях Саратовской области.
 - 21. Какие группы сортов подсолнечника выделяют и в чем их отличия?
 - 22. Что такое панцирность подсолнечника и какое значение имеет этот признак?
 - 23. Какой показатель называется лузжистость и как он определяется, его хозяйственное значение?
 - 24. Группы прядильных культур, их виды и разновидности. Биологические особенности прядильных культур: льна и хлопчатника.
 - 25. Каковы критерии определения качества продукции у прядильных культур.
 - 26. Какими методами определяется содержание крахмала в клубнях картофеля.
 - 27.Познакомиться с сортами сахарной свеклы, изучить методы оценки качества продукции (содержание сахара в корнеплодах).

28. По каким признакам проводится разделение корнеплодов и клубнеплодов по характеру использования на пищевые, технические и кормовые.

Тестовые задания по части «Основы сельского хозяйства»

- 1. Выдающиеся русские ученые почвоведы:
- 1) Вавилов Н.И., Тимирязев К.А.
- Гуляев Г.В., Гужов Ю.А.
- 3) Докучаев В.В., Костычев П.А., Сибирцев Н.М.
- 4) Лукьяненко П.П., Ремесло В.Н., Стебут И.А.
- 2. Именно это свойство отличает почву от горной породы (по В.Р.Вильямсу) :
- 1) поглотительная способность
- 2) плодородие
- 3) водопроницаемость
- 4)буферность
- 3. К факторам почвообразования относятся:
- 1) почвообразующие породы и возраст почвы
- 2) климат и рельеф местности
- 3) деятельность человека
- 4) все перечисленные факторы
- 4. Почвенный профиль определяется:
- 1) химическим составом и цветом
- 2) сочетанием генетических горизонтов
- 3) структурой и сложением
- 4) гранулометрическим составом
- 5. Сколько типов почвенных разрезов различают:
- 1) 1
- 2) 2
- 3) 3
- 4) 4
- 6. Почвенные разрезы делаются для:
- 1) изучения морфологических свойств почвы
- 2) изучения гранулометрического состава
- 3) определения влажности почвы
- 4) определения рН почвенного раствора
- 7. К морфологическим признакам почвы относятся:
- 1) окраска и влажность
- 2) структура, сложение и гранулометрический состав
- 3) новообразования и включения
- 4) все перечисленные признаки
- 8. Цвет почвы определяется:
- 1) химическим составом и влажностью
- 2) структурой
- 3) сложением
- 4) гранулометрическим составом
- 9. Сколько типов структуры почвы выделяют:
- 1) 1
- 2) 2
- 3) 3
- 4) 4
- 10. Сложение почвы определяет:
- 1) степень пористости
- 2) аэрацию и водопроницаемость

- 3) гранулометрический состав
- 4) характер трещин
- 11. Количество коллоидных частиц в почве зависит от:
- 1) плотности
- 2) валового химического состава
- 3) влажности
- 4) содержания гумуса и гранулометрического состава
- 12. Не входят в состав минеральной части почвы:
- 1) кислород, азот, фосфор
- 2) углерод и азот
- 3) калий, натрий, сера
- 4) кислород и водород
- 13. В составе минеральной части почвы преобладают химические элементы:
- 1) кислород, водород, азот
- 2) кремний, алюминий, железо
- 3) натрий, калий, кальций
- 4) сера, фосфор, марганец
- 42. Сколько видов поглотительной способности почвы было выделено К.К. Гедройцем:
- 1) 3
- 2) 4
- 3) 5
- 4) 6
- 15. Большинству растений для нормального развития необходима почва с рН водного раствора:
- 1) нейтральная
- 2) нейтральная или слабокислая
- 3) нейтральная или слабощелочная
- 4) слабокислая или слабощелочная
- 16. Наибольшее количество органических кислот содержится в почвах:
- 1) пустынь
- 2) лугов
- 3) лиственных лесов
- 4) хвойных лесов
- 17. Тип почвы это группа почв ...
- 1) имеющих профиль из однотипных взаимосвязанных генетических горизонтов
- 2) характеризующаяся одинаковым гранулометрическим составом
- 3) имеющая одинаковый состав почвообразующих пород
- 4) сформировавшаяся в одинаковых климатических условиях
- 18. Глеевый процесс при почвообразовании возникает в условиях:
- 1) недостаточного увлажнения
- 2) при повышенных температурах
- 3) пониженной температуры и недостатке кислорода
- 4) большого количества легкорастворимых солей в почве
- 19. Из всех химических элементов, входящих в состав почвы, растения потребляют в наибольшем количестве:
- 1) кислород, водород, азот
- 2) азот, фосфор, калий
- 3) натрий, калий, кальций
- 4) магний, медь, бор
- 20. Удобрения подразделяются на:
- 1) органические и минеральные

- 2) органические, минеральные и бактериальные
- 3) простые и сложные
- 4) все перечисленные группы вместе
- 21. Из вредителей наибольший вред культурным растениям наносят:
- 1) насекомые
- слизни
- 3) нематоды
- 4) мышевидные грызуны
- 22. Наиболее эффективные методы борьбы с болезнями и вредителями сельскохозяйственных культур:
- 1) агротехнические
- 2) механические
- 3) биологические
- 4) химические
- 23. Факторы, необходимые для нормального роста растений:
- 1) свет и тепло
- 2) воздух и вода
- 3) питательные вещества
- 4) все перечисленные факторы
- 24. Сорные растения засоряют:
- 1) сельскохозяйственные посевы и сенокосы
- 2) поля, сады и огороды
- 3) пастбища и луга
- 4) все утверждения верны
- 25. Биологические особенности сорных растений, сильно затрудняющие борьбу с ними:
- 1) высокая плодовитость
- 2) вегетативное размножение
- 3) способность семян долго сохранять всхожесть
- 4) все перечисленные свойства вместе
- 26. Самыми трудноискоренимыми сорняками являются:
- 1) многолетние
- 2) стержнекорневые
- 3) корнеотпрысковые
- 4) корневищные
- 27. Структура посевных площадей это:
- 1) чередование сельскохозяйственных культур во времени
- 2) чередование сельскохозяйственных культур на территории
- 3) соотношение площади посевов различных культур
- 4) перечень сельскохозяйственных культур в порядке их чередования
- 28. Севооборотом называют:
- 1) чередование сельскохозяйственных культур и паров во времени
- 2) чередование сельскохозяйственных культур и паров во времени и на территории
- 3) соотношение площади посевов различных культур в хозяйстве
- 4) система обработки почвы
- 29. Ротация севооборота это:
- 1) перечень сельскохозяйственных культур и паров в порядке их чередования в севообороте
- 2) чередование сельскохозяйственных культур на территории
- 3) период, в течение которого культуры и пар проходят через каждое поле
- 4) последовательность чередования сельскохозяйственных культур

- 30. Сельскохозяйственная культура, возделываемая на одном месте длительное время называется:
- 1) бессменная
- 2) монокультура
- 3) повторная
- 4) постоянная
- 31. Лучшими предшественниками в севообороте для большинства культур являются:
- 1) однолетние травы
- 2) озимые зерновые
- 3) яровые зерновые
- 4) однолетние бобовые
- 32. Учение о центрах происхождения культурных растений создано:
- 1) Ч. Дарвиным
- 2) Н.И. Вавиловым
- 3) И.В. Мичуриным
- 4) К.А. Тимирязевым
- 33. Пшеница, рожь, ячмень, овес относятся к:
- 1) хлебным злакам 1 группы
- 2) хлебным злакам 2 группы
- 3) зерновым бобовым культурам
- 4) однолетним травам
- 34. Просо, кукуруза, рис относятся к:
- 1) хлебным злакам 1 группы
- 2) хлебным злакам 2 группы
- 3) зерновым бобовым культурам
- 4) однолетним травам
- 35. Нут, соя, фасоль, чечевица относятся к:
- 1) хлебным злакам 1 группы
- 2) хлебным злакам 2 группы
- 3) зерновым бобовым культурам
- 4) кормовым травам
- 36. Свекла, морковь, брюква относятся к:
- 1) зерновым бобовым
- 2) корнеплодам
- 3) клубнеплодам
- 4) бахчевым культурам
- 37. Горчица, рапс, клещевина относятся к:
- 1) кормовым травам
- 2) масличным
- 3) эфиромасличным
- 4) зерновым бобовым
- 38. Конопля, лен, хлопчатник относятся к:
- 1) масличным
- 2) прядильным
- 3) наркотическим
- 4) эфиромасличным
- 39. Соцветие у зерновых хлебов ржи, пшеницы, ячменя
- 1) простой колос
- 2) сложный колос
- кисть
- 4) метелка

- 40. Соцветия у просовидных хлебов проса и сорго:
- 1) простой колос
- 2) сложный колос
- 3) кисть
- 4) метелка
- 41. Листья у фасоли и сои:
- 1) простые
- 2) перистосложные
- 3) пальчатосложные
- 4) тройчатосложные
- 42. Яблоня, груша, айва, ирга относятся к ... культурам:
- 1) семечковым
- 2) косточковым
- 3) орехоплодным
 - 4) ягодным
- 43. Апельсин, мандарин, лимон относятся к ... культурам:
- 1) семечковым
- 2) косточковым
- 3) орехоплодным
- 4) субтропическим
- 44. Абрикос, вишня, слива относятся к ... культурам:
- 1) семечковым
- 2) косточковым
- 3) субтропическим
- 4) ягодным
- 45. Выращивание овощей рассадным методом производят для:
- 1) образования у растений лучшей корневой системы
- 2) увеличения безморозного периода вегетации
- 3) получения высокого урожая
- 4) получения более крупных плодов
- 46. Непосредственно в грунт высеваются семена овощных растений:
- 1) томатов и огурцов
- 2) болгарского перца и баклажанов
- 3) капусты
- 4) свеклы, моркови и редиса
- 47. Гидропонный метод выращивания овощей это:
- 1) посев растений определенным способом
- 2) выращивание в питательном растворе на искусственном субстрате
- 3) выращивание в теплице
- 4) выращивание в парнике

Вопросы для промежуточной аттестации по части 2 «Основы сельского хозяйства»

- 1. Почвоведение как наука и ее связь с другими науками. Методы изучения почвенного покрова, вклад русских ученых в развитие почвоведения.
- 2. Почвообразовательный процесс, его слагаемые. Факторы почвообразования.
- 3. Морфологические признаки почвы.
- 4. Классификация почв по гранулометрическому составу.
- 5. Почвенные разрезы, их виды и строение.
- 6. Строение почвенного профиля.
- 7. Химический состав и свойства почв.
- 8. Поглотительная способность почвы, ее виды и значение.
- 9. Водный режим и водные свойства почвы.

- 10. Классификация почв. Почвенные зоны, выделяемые на территории России.
- 11. Болотный процесс почвообразования.
- 12. Особенности подзолообразовательного процесса почвообразования.
- 13. Дерновый процесс почвообразования.
- 14. Характеристика тундровых почв.
- 15. Характеристика дерново-подзолистых почв.
- 16. Характеристика серых лесных почв.
- 17. Характеристика типичных черноземов.
- 18. Характеристика каштановых почв.
- 19. Засоленные почвы, причины их засоления.
- 20. Характеристика почвенного покрова Саратовской области.
- 21. Земледелие как наука о рациональном использовании почв и повышении их плодородия. Основные законы земледелия.
- 22. Классификация систем земледелия в историческом разрезе.
- 23. Задачи обработки почв. Вспашка как основной приём обработки почвы; виды вспашки, орудия.
- 24. Приёмы поверхностной обработки почвы: боронование, культивация, лущение, прикатывание.
- 25. Система обработки почвы под яровые культуры.
- 26. Система обработки почвы под озимые культуры.
- 27. Виды паров. Их значение в сельском хозяйстве.
- 28. Биологические особенности способов, норм и сроков посева
- 29. Подготовка семян к посеву.
- 30. Сроки и способы сева и нормы высева. Глубина заделки семян.
- 31. Классификация сорных растений.
- 32. Меры борьбы с малолетними и многолетними сорняками.
- 33. Понятие о севооборотах и их ротации.
- 34. Классификация севооборотов.
- 35. Научные основы химизации земледелия.
- 36. Органические и минеральные удобрения.
- 37. Понятие о гербицидах, инсектицидах, фунгицидах, зооцидах и других защитных вешествах.
- 38. Условия применения химических средств природы без нарушения биологического равновесия в природе
- 39. Учение Н.И. Вавилова о центрах происхождения культурных растений.
- 40. Классификация культурных растений.
- 41. Хлебные злаки 1 группы, особенности строения и вегетации, основные культуры.
- 42. Строение и особенности прорастания зерновки, фенологические фазы роста.
- 43. Хлебные злаки 2 группы, особенности строения и вегетации, основные культуры.
- 44. Зерновые бобовые культуры, особенности строения и вегетации, основные культуры.
- 45. Разнообразие зерновых бобовых культур, их различия по морфологическим признакам: по листьям, плодам (бобам), семенам.
- 46. Корнеплоды и клубнеплоды, особенности строения и вегетации, основные культуры.
- 47. Бахчевые культуры, их биологические и хозяйственные особенности, основные культуры, возделываемые в Поволжье.
- 48. Масличные культуры, их биологические и хозяйственные особенности, основные культуры, возделываемые в Поволжье.
- 49. Эфиромасличные и наркотические культуры, их биологические и хозяйственные особенности, основные культуры, возделываемые в Поволжье.
- 50. Прядильные культуры, их биологические и хозяйственные особенности.
- 51. Кормовые травы, их биологические и хозяйственные особенности, основные культуры, возделываемые в Поволжье.

- 52. Однолетние и многолетние кормовые культуры из семейства Мятликовые.
- 53. Однолетние и многолетние кормовые культуры из семейства Бобовые.
- 54. Плодоводство, как отрасль сельскохозяйственного производства. Группы плодовоягодных культур.
- 55. Морфология плодового дерева.
- 56. Размножение плодовых культур. Сорта семечковых и косточковых культур, возделываемые в Поволжье.
- 57. Виды и техника прививок плодовых культур.
- 58. Размножение ягодных культур, наиболее распространенные сорта.
- 59. Овощные растения, их биологические особенности.
- 60. Требования, предъявляемые к семенам овощных культур.
- 61. Выращивание овощей в защищенном грунте. Виды защищенного грунта.
- 62. Овощные севообороты.
- 63. Выращивание овощей в открытом грунте.
- 64. Способы посева семян и высадки рассады.
- 65. Технология выращивания плодовых и ягодных культур на школьном учебно-опытном участке.
- 66. Технология выращивания овощных растений на школьном учебно-опытном участке.
- 67. Озеленение и декоративное цветоводство на школьном учебно-опытном участке.
- 68. Основные направления развития отраслей животноводства в условиях Саратовской области.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лек ции	Лаборат орные занятия	Практи ческие занятия	Самостоя тельная работа	Автоматиз ированное тестирован ие	Другие виды учебной деятельн ости	Промеж уточная аттеста ция	Итог
7,8	16	30	0	20	0	14	20	100
9	16	30	0	20	0	14	20	100

Программа оценивания учебной деятельности студента

7 и 8 семестр

Лекции

Посещаемость, активность и др. за один семестр - от 0 до 16 баллов.

Лабораторные занятия

Самостоятельность при выполнении работы, правильность выполнения заданий и оформления результатов исследований – от 0 до 10 баллов.

Устный опрос - от 0 до 20 баллов.

Самостоятельная работа

Подготовка рефератов - от 0 до 20 баллов.

Другие виды учебной деятельности

Письменный контроль знаний – от 0 до 14 баллов.

Промежуточная аттестация (зачёт)

При проведении промежуточной аттестации

16-20 баллов – ответ на «отлично»

11-15 баллов – ответ на «хорошо»

6-10 баллов – ответ на «удовлетворительно»

0-5 баллов – неудовлетворительный ответ.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента 7 и 8 семестр по дисциплине «Биотехнология и основы сельского хозяйства» составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Биотехнология и основы сельского хозяйства» в оценку (зачет):

51 балл и более	«зачтено»
менее 50 баллов	«не зачтено»

Программа оценивания учебной деятельности студента 9 семестр

Лекции

Посещаемость, активность и др. за один семестр - от 0 до 16 баллов.

Лабораторные занятия

Самостоятельность при выполнении работы, правильность выполнения заданий и оформления результатов исследований – от 0 до 10 баллов.

Устный опрос - от 0 до 20 баллов.

Самостоятельная работа

Подготовка рефератов - от 0 до 20 баллов.

Другие виды учебной деятельности

Письменный контроль знаний – от 0 до 14 баллов.

Промежуточная аттестация

При проведении промежуточной аттестации

16-20 баллов - ответ на «отлично»

11-15 баллов - ответ на «хорошо»

6-10 баллов - ответ на «удовлетворительно»

0-5 баллов – неудовлетворительный ответ.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 9 семестр по дисциплине «Биотехнология и основы сельского хозяйства» составляет 100 баллов.

Таблица 2.2. Таблица пересчета полученной студентом суммы баллов по дисциплине «Биотехнология и основы сельского хозяйства» в оценку (экзамен) для модуля 2 «Основы сельского хозяйства»

сновы сельского хозяис	тва»	
86 - 100 баллов	отлично	<u> </u>
76 – 85 балла	хорошо	
51 – 75 баллов	удовлетворительно	
менее 51	неудовлетворительно	

Максимальное количество баллов по итогам освоения дисциплины в течение трех семестров - 200 баллов.

8. Учебно-методическое и информационное обеспечение дисциплины (модуля).

а) основная литература: 1. Клунова С. М., Егорова Т. А., Живухина Е. А. Биотехнология : учеб. для высш. пед. проф. Образования. Москва: Изд. центр "Академия", 2010. 255 с.

2. Микробиология: учеб. пособие / Р. Г. Госманов [и др.]. Санкт-Петербург; Москва; Краснодар: Лань, 2011. 494 с.

3. Микробиология. Большой практикум [Электронный ресурс]: учебное пособие / А. М. Петерсон [и др.]. Саратов: [б. и.], 2015. 85 с.

Кашин А. С., Старичкова Н. И., Решетникова Т. Б. Биологические основы сельского хозяйства: учебное пособие для студентов биологических специальностей. Ч. 3: Растениеводство. - Саратов: Издательский центр "Наука", 2012. 92 с.

в) программное обеспечение и Интернет-ресурсы

1. Основы сельского хозяйства [Электронный ресурс] : учебно-методическое пособие для студентов биологического факультета, обучающихся по направлению подготовки 44.03.01 Педагогическое образование профиль "Биология" / А. С. Кашин [и др.].; Федер. гос. бюджет. образоват. учреждение высш. образования "Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского". - Саратов : [б. и.], 2017. 108 с. http://library.sgu.ru ID= 1985 .

- 2. Спивак В.А., Ксенофонтова О.Ю., Тихомирова Е.И. Основы биотехнологии: Учебное пособие [Электронный ресурс]. Саратов: [б. и.], 2015. 86 с. http://library.sgu.ru ID= 1253.
- 3. Технологии микроразмножения in vitro [Электронный ресурс]: учебнометодическое пособие / С. Н. Тимофеева, Ю. В. Смолькина, Н. В. Апанасова, О. И. Юдакова; Сарат. гос. ун-т им. Н. Г. Чернышевского. Саратов: [б. и.], 2016. 38 с. http://library.sgu.ru ID= 1791.

9. Материально-техническое обеспечение дисциплины (модуля)

Для успешного освоения студентами дисциплины необходимо наличие аппаратуры, позволяющей демонстрировать мультимедийные презентации, наличие учебнометодической и научной литературы в ЗНБ СГУ. Для выполнения практических работ необходимо наличие стерильной комнаты или ламинара, лабораторное оборудование: микроскопы, автоклав, термостат, дистиллятор, холодильник, аналитические весы, электроплитка, спиртовки; лабораторная посуда: чашки Петри, пробирки, пипетки, колбы, градуированные стаканы и цилиндры, шпатели, скальпели, препаровальные иглы, а также питательные среды, химические реактивы, индикаторная и фильтровальная бумага, таблицы по всем разделам курса «Основы сельского хозяйства», гербарный материал, живые и фиксированные объекты: снопики зерновых культур; метелки проса, сорго и овса, корзинки подсолнечника; коллекции зерна злаковых культур, семян и плодов зерновых бобовых, масличных и технических культур, муляжи плодовых, ягодных и овощных культур, набор минеральных удобрений.

Лицензионное программное обеспечение обновляется по мере необходимости.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 44.03.01 - Педагогическое образование и профилю подготовки - Биология.

Авторы доцент кафедры микробиологии и физиологии растений, к.б.н.

В. В. Коробко

профессор кафедры генетики, д.б.н.

Программа одобрена и актуализирована на заседании кафедры микробиологии и физиологии растений от 7 сентября 2021 года, протокол № 11.

Программа одобрена и актуализирована на заседании кафедры генетики от 2 сентября 2021 года, протокол \mathbb{N}_2 1