МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕРЖДАЮ

Директор Института физики

ФИЗИКИ

д.ф.-м.н. профессор

институт С. Б. Вениг

" OL'E

2023 г.

Рабочая программа дисциплины АСТРОФИЗИКА С ЭЛЕМЕНТАМИ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Направление подготовки бакалавриата 03.03.02 Физика

Профиль подготовки бакалавриата Компьютерная физика

Квалификация (степень) выпускника Бакалавр

> Форма обучения очная

> > Саратов, 2023

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Дмитриев Вадим Владимирович	Do	31.05.2025
Председатель НМК	Скрипаль Анатолий Владимирович	AG	01.06 2023
Заведующий кафедрой	Аникин Валерий Михайлович	her	31.05.2023
Специалист Учебного управления			

1. Цели освоения дисциплины

Целью освоения дисциплины «Астрофизика с элементами общей теории относительности» является обеспечение студентов знаниями и навыками в области наблюдательной астрономии, теоретической астрофизики и общей теории относительности (ОТО).

В задачи дисциплины входят:

- ознакомление с новейшими открытиями и достижениями в исследовании Вселенной за последние годы;
- изучение закономерностей мира звезд и современных теоретических представлений о природе звезд и их систем;
- изучение физических методов исследований небесных тел.

Реализация указанных целей направлена на получение высшего профессионально профилированного образования в области физики, позволяющего выпускнику успешно работать в избранной сфере деятельности в РФ и за рубежом, обладать универсальными и предметно специализированными компетенциями, способствующими его социальной мобильности, востребованности на рынке труда и успешной профессиональной карьере.

2. Место дисциплины в структуре ООП

Дисциплина Б1.В.11 «Астрофизика с элементами общей теории относительности» относится к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (Модули)» учебного плана ООП бакалавриата, и изучается после дисциплин обязательной части: Б1.О.26 «Электродинамика», Б1.О.30 «Гидро- и аэродинамика», Б1.О.29 «Термодинамика и статистическая физика», Б1.О.28 «Квантовая теория», Б1.О.11 «Оптика». Изучение данной дисциплины запланировано в 7 семестре.

Курс является одним из итоговых курсов по теоретической физике для студентов данного направления.

Студенты должны иметь навыки самостоятельной работы с учебной, монографической и периодической литературой, уметь решать физические задачи с применением ранее пройденного математического аппарата.

Знания, умения и навыки, сформированные в результате изучения дисциплины, будут способствовать активизации учебно-познавательной, научно-исследовательской и социально-общественной деятельности студентов, что позволит наиболее полно реализовать их личностный потенциал, заложить основы конкурентоспособности будущих выпускников СГУ.

3. Результаты обучения по дисциплине

	енование ком- енции	Код и наименование индикаторов) достижения компетенции	Результаты обучения			
ПК-1.	Способность	ПК-1.1. Способен оце-	Знать основные этапы			
применять	фундамен-	нить актуальность ре-	эволюции звезд и дру-			
тальные зн	ания в теоре-	шаемой задачи на ос-	гих объектов Вселен-			

тических и прикладных разработках в области компьютерной физики и физики и инфокоммуникационных систем.

нове анализа научнотехнической литературы и информационных материалов по тематике исследования.

ПК-1.2. Способен подготовить исходные данные для математического описания физики процесса в заданной физической системе с учетом ее назначения и элементной (электронной, оптической) базы.

ПК-1.3. Способен адекватно применить математический инструментарий при формулировке моделирующих физический процесс уравнений.

ПК-1.4. Умеет строить вероятностные модели прикладных и информационных процессов, проводить необходимые расчеты надежности информационных и коммуникационных сетей в рамках построенных моделей.

ной.

Уметь пользоваться астрономическими таблицами, каталогами и астрофизическими приборами.

Владеть астрономическими и астрофизическими понятиями, необходимыми для профессиональной деятельности в области моделирования астрофизических явлений.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа.

№ п/п	Раздел дисциплины	Се-местр	Неде- ля се- местра	Виды учебной работы, включая самостоя- тельную работу студентов и трудоемкость (в часах)					Формы теку- щего контроля успеваемости (по неделям семестра) Формы про- межуточной аттестации (по семестрам)
				лекции	Практичес тия Общая	Из них –	ИКР	CPC	

					трудоем- кость	практи- ческая подго- товка			
1	Излучение и поглощение ЭМ волн. Теория непрерывных и линейчатых спектров звезд.	7	1-2	4	0	0	5	2	Контр. раб., инд. конс.
2	Звезды. Общие характеристики. Механическое равновесие звезды. Ядерные реакции в звездах.	7	3-5	6	0	0	5	2	Контр. раб., инд. конс.
3	Сверхновые и остатки сверхновых. Вырожденные звезды.	7	6-7	4	0	0	5	2	Контр. раб., инд. конс.
4	Теория относительности. Черные дыры.	7	8-10	6	0	0	5	2	Контр. раб., инд. конс.
5	Галактики и скопления галактик.	7	11-12	4	0	0	5	2	Контр. раб., инд. конс.
6	Элементы современной космологии.	7	13-15	6	0	0	5	2	Контр. раб., инд. конс.
	Промежуточная аттестация	7							Зачет
	Итого за 7-й семестр: 72 ч.			30	0	0	30	12	
	Общая трудоемкость дисциплины			72 часа					

Содержание дисциплины

- 1. Излучение и поглощение ЭМ волн. Теория непрерывных и линейчатых спектров звезд
- 1.1 Функция распределения фотонов, интенсивность. Плотность излучения. Вектор потока, освещенность. Плоское поле излучения.
- 1.2 Поле излучения при термодинамическом равновесии. Функция Планка и ее свойства. Приближения Вина и Рэлея—Джинса и области их применимости. Закон Стефана Больцмана и закон смещения Вина.
- 1.3 Коэффициент ослабления. Истинное поглощение и рассеяние и соответствующие коэффициенты поглощения. Коэффициент излучения.

- 1.4 Уравнение переноса излучения (УПИ). Формальное решение УПИ и его следствия. Распространение излучения в вакууме, неизменность интенсивности вдоль луча. Распространение в поглощающей среде. Оптическое расстояние. Функция источников. Интегральная форма УПИ для поглощающей и излучающей среды. Нелинейность УПИ во многих астрофизических задачах.
- 1.5 Локальное термодинамическое равновесие (ЛТР). Закон Кирхгофа. УПИ в интегральной форме при ЛТР. Интенсивность излучения, выходящего из изотермической среды с ЛТР. Предельные случаи малых и больших оптических толщин.
- 1.6 Основные предположения стандартной модели плоской звездной атмосферы и их обсуждение. Зависимость строения атмосферы от эффективной температуры и от ускорения силы тяжести. Качественное объяснение двухмерности спектральной классификации звезд.
- 1.7 Современное состояние теории образования линий. Не-ЛТР подход к теории образований линий.
- 2. Звезды. Общие характеристики. Механическое равновесие звезды. Ядерные реакции в звездах
- 2.1 Нормальные звезды, их основные параметры и статистические связи между ними, подлежащие физическому объяснению.
- 2.2 Качественная картина звездной эволюции. Аксиоматика стандартной теории звездной эволюции и ее качественные следствия. Начальная масса и химический состав как определяющие параметры. Качественное объяснение существования главной последовательности и зависимости масса светимость. Качественное эволюционное истолкование вида диаграмм Герцшпрунга Рассела (ГР) рассеянных и шаровых скоплений. Конечные продукты звездной эволюции в зависимости от начальной массы звезды.
- 2.3 Уравнение гидростатического равновесия звезды. Звезды из невырожденного идеального газа («нормальные звезды»). Порядковая оценка температуры недр нормальной звезды. Оценка давления в центре звезды.
- 2.4 Теорема вириала для нормальной звезды. Ее следствия: вириальная температура звезды, отрицательность теплоемкости нормальной звезды. Кельвиновское сжатие и его роль в эволюции звезд. Другие следствия теоремы вириала: сильная зависимость темпа ядерного энерговыделения от температуры, принципиальное отличие строения красных гигантов и звезд главной последовательности.
- 2.5 Три характерных времени звезды: динамическое (время свободного падения), тепловое (кельвиновское) и эволюционное (ядерное), их оценки для звезд разных типов и вытекающие из них астрономические следствия.
- 2.6 Скорости термоядерных реакций (ТЯР) в звездах. Сечения реакций и выделение в них фактора, описывающего вероятность подбарьерного проникновения. Усреднение сечения по максвелловскому распределению с оценкой интеграла по методу Лапласа. Гамовская энергия и гамовский максимум. Окончательное выражение для зависимости скорости реакции от тем-

пературы. Степенная аппроксимация зависимости скорости реакции от температуры.

- 2.7 рр-цепочки. Зависимость энерговыделения от температуры. Нейтрино от рр-цепочек, нейтринный спектр Солнца. Регистрация солнечных нейтрино (понятие о методах, результаты). Простой СПО-цикл и его функционирование. Конкуренция рр-цепочек и СПО-цикла. Распространенности СПО-нуклидов в равновесном режиме цикла и объяснение особенностей их содержания в атмосферах красных гигантов. Тройной альфа-процесс. Условия, необходимые для его протекания. Горение углерода и последующие стадии ядерного горения.
- 3. Сверхновые и остатки сверхновых. Вырожденные звезды
- 3.1 Нейтронизация вещества. Фотодиссоциация. Нейтронизация вещества и УРКА-процессы. Захват нейтрино и остановка коллапса.
- 3.2 Вспышки сверхновых. Сверхновые II типа. Гиперновые и гаммавсплески. Сверхновые типа Ia. Остатки сверхновых и их взаимодействие с межзвездной средой. Исторические сверхновые. Сверхновая Кеплера 1604 года. Сверхновая Тихо 1572 года. Сверхновая 1181 года. Сверхновая 1054 года прародитель Крабовидной туманности. Яркая сверхновая 1006 года. Другие возможные сверхновые и ложные кандидаты.
- 3.3 Белые карлики (БК): их основные параметры. Спектры БК. БК как конечный продукт звездной эволюции.
- 3.4 Уравнение состояния вещества при высоких плотностях. Полностью вырожденный электронный газ (нерелятивистский и ультрарелятивистский). Вывод соответствующих уравнений состояния (из размерностей и точный). Критерий наступления вырождения. Нейтронизация при высоких плотностях. Пороги нейтронизации. Понятие об уравнении состояния нейтронного газа.
- 3.5 Соотношение масса радиус для политроп (вывод из размерностей). Применение к белым карликам. О численном расчете соотношения массарадиус для БК. Предельная масса Чандрасекара и выражение ее через мировые постоянные. Поправки к теории Чандрасекара (ОТО, неидеальность газа, начало нейтронизации). О наблюдательной проверке соотношения массарадиус для БК.
- 3.6 Динамическое время звезды и открытие нейтронных звезд (Н3). Механическое равновесие Н3. Уравнение Оппенгеймера Волкова. Оценки предельной массы нейтронных звезд.
- 4. Теория относительности. Черные дыры
- 4.1 Системы отсчета. Преобразования Лоренца. Электродинамика. Тензор энергии-импульса. Релятивистская гидродинамика.
- 4.2 Метрический тензор. Символы Кристоффеля. Уравнение геодезической. Ковариантное дифференцирование. Векторы Киллинга. Тензор кривизны и его свойства. Принцип общей ковариантности.
- 4.3 Принцип эквивалентности. Гравитационные силы. Ньютоновское приближение. Относительность и анизотропия инерции. Гравитационное красное смещение.

- 4.4 Уравнения поля Эйнштейна. Решение Шварцшильда. Метрика Крускала и диаграмма Картера-Пенроуза. Теоремы запрета. Метрики Рейснера Нордстрема, Керра, Керра Ньюмена.
- 4.5 Черная дыра (ЧД) как результат гравитационного коллапса. Термодинамика и испарение ЧД. Аккреция вещества в ЧД. Белые дыры и кротовые норы.
- 5. Галактики и скопления галактик
- 5.1 Звездные скопления и наша Галактика. Основные характеристики галактик. Структура галактик.
- 5.2 Движение газа и звезд. Столкновение звезд и время релаксации. Особенности движения звезд различных подсистем. Принципы измерения скоростей вращения галактик. Кривые вращения галактических дисков. Скорость вращения и круговая скорость. Связь распределения масс в галактике с кривой вращения. Проблема темного гало. О гравитационной устойчивости звездных дисков. Дисперсия скоростей и толщина галактических дисков. Бары галактик. Принципы оценки масс Е-галактик.
- 5.3 Физическая природа спиральной структуры. Спиральные ветви: наблюдаемые свойства. Два типа спиральных ветвей.
- 5.4 Межзвездный газ в галактиках. Холодный газ: нейтральный и молекулярный водород. Области НІІ в галактиках. Горячий газ и рентгеновское излучение галактик. Магнитные поля.
- 5.5 Звездообразование в галактиках— общие сведения. Физические процессы, управляющие звездообразованием. Волны сжатия. Гравитационная неустойчивость газового диска.
- 5.6 Ядра галактик общие сведения. Структура активных ядер. Сверх-массивные черные дыры. Основные принципы определения масс СМЧД.
- 5.7 Скопления галактик общие сведения. Газ в скоплениях галактик. Оценка массы богатых скоплений. Особенности эволюции галактик в скоплениях.
- 6. Элементы современной космологии
- 6.1 «Краткий курс» истории космологии XX века. Крупномасштабная структура Вселенной. Предельно далекие галактики и квазары. Космологический принцип. Наблюдательный фундамент космологии (пять основных тестов, образующих фундамент).
- 6.2 Однородные и изотропные космологические модели. Выбор системы координат. Метрика Фридмана-Робертсона-Уокера. Уравнение состояния в космологии и анализ решений для Вселенной заполненной идеальной жидкостью с различными уравнениями состояния.
- 6.3 Кинематика Вселенной. Закон Хаббла. Пекулярные скорости галактик. Распространение света. Понятие красного смещения, диаграмма Хаббла. Горизонт частиц. Расстояния в космологии, понятие углового расстояния, космического расстояния, болометрического расстояния. Поверхностная яркость и парадокс Ольберса.

- 6.4 Основные стадии расширения нашей Вселенной. Эволюция расширения. Критическая плотность. Влияние давления. Первичный нуклеосинтез («первые три минуты»).
- 6.5 Слабое возмущения плотности, их эволюция на стационарном фоне и в расширяющейся Вселенной (описание на ньютоновском языке). Классификация слабых возмущений гравитационного поля по спиральностям. Вывод калибровочно-инвариантных уравнений для описания эволюции малых возмущений в расширяющейся Вселенной.
- 6.6 Реликтовое излучение и эпоха рекомбинации. Эффект Сюняева-Зельдовича. Флуктуации реликтового излучения. Трудности классической космологии. Модель инфляционной Вселенной. Анизотропия реликтового излучения. Основные физические механизмы, генерирующие анизотропию реликтового излучения и его поляризацию.
- 6.7 Крупномасштабная структура Вселенной, основные принципы описания, образования и эволюция крупномасштабной структуры.

5. Образовательные технологии, применяемые при освоении дисциплины

Учебный план дисциплины «Астрофизика с элементами общей теории относительности» предусматривает классическую контактную работу преподавателя с обучающимся в аудитории и иную контактную работу посредством ЭИОС СГУ в синхронном и асинхронном режиме (вне аудитории) посредством применения возможностей компьютерных технологий (электронная почта, тестирование, презентация, форум и др.).

Иная контактная работа (ИКР)

Групповая или индивидуальная работа обучающихся с педагогическими работниками кафедры включает в себя консультации в режиме «on-line» и/или «off-line» по разбору избранных разделов данной дисциплины и математического аппарата, используемого в ней.

При обучении лиц с ограниченными возможностями здоровья используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве. При этом основной формой организации учебного процесса является интегрированное обучение лиц с ограниченными возможностями здоровья, т.е. все студенты обучаются в смешенных группах, имеют возможность постоянно общаться со сверстниками, благодаря чему легче адаптируются в социуме.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 30% аудиторных занятий. Занятия лекционного типа для соответствующих групп студентов не могут составлять более 50% аудиторных занятий в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению 03.03.02 «Физика».

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Самостоятельная работа студентов в рамках данного курса включает:

- 1. изучение теоретического материала по конспектам лекций и основной рекомендованной учебной литературе;
- 2. самостоятельное изучение отдельных теоретических вопросов по основной и дополнительной учебной литературе;
- 3. выполнение теоретических расчетных и графических заданий по отдельным разделам дисциплины;
- 4. написание реферата на избранную тему.

Темы рефератов для самостоятельной работы:

- 1. Солнечный цикл.
- 2. Проблема нагрева солнечной короны.
- 3. Релятивистские джеты.
- 4. Сверхмассивные черные дыры.
- 5. Космические лучи сверхвысокой энергии.
- 6. Крупномасштабная анизотропия Вселенной.

Контрольные вопросы и задания для проведения текущего контроля:

- 1. Характерный размер обозреваемой области Вселенной
- 2. Какие параметры определяют равновесный спектр излучения?
- 3. Размерность удельной интенсивности излучения (на единицу частоты).
- 4. Формула Планка для удельной интенсивности равновесного излучения.
- 5. Астрономические источники, в спектрах которых преобладает нетепловой компонент.
- 6. Поток фотонов от звезды 0-й величины в полосе $1000~A~F_0 = 10^6~$ квантов/см 2 /с. Каков поток в той же полосе от звезды 20-й звездной величины?
- 7. Солнце имеет абсолютную звездную величину M=+5. Какую видимую звездную величину имеет звезда типа Солнца, расположенная вблизи центра Галактики (d=10 кпк) ?
- 8. Чем ограничена угловая разрешающая способность наземных оптических телескопов?
- 9. Фотометр регистрирует поток от звезды со средним значением 100 отсчетов/сек. Выберите наиболее правдоподобную запись последовательных экспозиций.
- 10. Какие условия термодинамического равновесия выполняются в меж-звездном газе?
- 11. Почему возможно свечение газовых туманностей в запрещенных линиях ?

- 12. Как зависит интенсивность излучения в линии 21 см от оптической толщины облака HI для случая малой оптической толщи $\tau << 1$?
- 13. Как зависит интенсивность излучения в линии 21 см от оптической толщины облака HI для случая большой оптической толщи $\tau >> 1$?
- 14. Как проявляется магнитное поле межзвездной среды в Галактике?
- 15. Среднее значение межзвездного магнитного поля 10^{-6} Гаусс. Предполагая вмороженность поля в плазму, оцените какой радиус имело облака газа с хаотичным магнитным полем, чтобы при сжатии в звезду солнечного радиуса средняя напряженность поля на поверхности составила бы 1 Гаусс.
- 16. В каком масштабе могут возникать неустойчивости в однородной самогравитирующей среде с плотностью ρ и температурой T?
- 17. Два облака газа с массой M_1 =100 и M_2 =100000 масс солнца с размерами r_1 =10 пк и r_2 =100 пк сжимаются под действием гравитационной неустойчивости. Как относятся времена сжатия для этих облаков ?
- 18. В каких областях межзвездной среды начинается образование звезд?
- 19. Интервал масс наблюдаемых звезд.
- 20. Две звезды одинаковой светимости L имеют эффективные температуры T_1 =5000 К и T_2 =10000К. Как относятся радиусы звезд R_2/R_1 ?
- 21. Две звезды с массами M_I = $1M_{\odot}$ и M_2 = $10M_{\odot}$ образовались одновременно. Как относятся времена жизни на главной последовательности t_2/t_1 для этих звезд ?
- 22. Радиус стационарной звезды главной последовательности уменьшился на 10%. Как изменилась центральная температура?
- 23. Какая из реакций р-р цикла определяет скорость превращения водорода в гелий?
- 24. От чего зависит энерговыделение на 1 г вещества в ядерных реакциях в звездах ?
- 25. Почему термоядерное горение в звездах не носит взрывообразный характер?
- 26. Как относится эддингтоновская светимость для звезды с массой $10~M_{\odot}$ и $30M_{\odot}$?
- 27. При каком показателе адиабаты вещества звезда теряет механическое равновесие (т.е. наступает коллапс звезды)?
- 28. От чего зависит давление вырожденного электронного газа в белых карликах?
- 29. Как зависит радиус R вырожденной звезды (белого карлика) от ее массы M ?
- 30. Чем определяется предельная масса белых карликов?
- 31. Какова характерная плотность нейтронной звезды, наблюдаемой как пульсар?
- 32. Какой вид энергии нейтронной звезды превращается в излучение пульсара?
- 33. Чем станет Солнце в конце своей эволюции?
- 34. Какая стадия термоядерной эволюции звезд самая длительная?

- 35. Какая энергия выделяется при вспышке сверхновой с образованием нейтронной звезды?
- 36. Какими частицами уносится основная энергия, освобождаемая при вспышке сверхновой?
- 37. Чем может характеризоваться черная дыра?
- 38. Какова примерная величина гравитационного радиуса черной дыры с массой 1 M_{\odot} ?
- 39. Какой слой атмосферы Солнца имеет самую высокую температуру?
- 40. Какова характерная доля газа по массе в дисках спиральных галактик?
- 41. Где идет наиболее активное звездообразование?
- 42. Каковы признаки активно продолжающегося звездообразования в галактиках?
- 43. Какова характерная светимость квазаров?
- 44. Как изменяется масштабный фактор Вселенной в современную эпоху вследствие ее расширения?
- 45. Изменяется ли постоянная Хаббла в современную эпоху?
- 46. Что требуется для определения расстояний до галактик с использованием закона Хаббла?
- 47. Как изменяется длина волны излучения в расширяющейся Вселенной?
- 48. Как изменяется температура теплового излучения в расширяющейся Вселенной?
- 49. При каком отношении средней плотности к критической $\Omega = \rho/\rho_{cr}$ расширение Вселенной будет продолжаться вечно?

Контрольные вопросы и задания для проведения промежуточной аттестации по итогам освоения дисциплины:

- 1. Оптические телескопы. Оптические схемы рефлекторов и зеркально-линзовых телескопов. Механические конструкции телескопов. Экваториальные и азимутальные установки.
- 2. Эффективность телескопов. Аберрации оптических систем, способы их уменьшения. Связь с качеством изображения. Методы достижения высокого углового разрешения. Активная и адаптивная оптика.
- 3. Принципы спектрального анализа. Спектрографы. Спектральное разрешение и факторы, его определяющие.
- 4. Приемники оптического излучения. Фотоэлектрический умножитель. Приборы с зарядовой связью. Понятие квантового выхода. Линейность, спектральная чувствительность.
- 5. Шкала звездных величин и показателей цвета. Фотоэлектрические системы. Современные методы фотоэлектрической фотометрии.
- 6. Радиотелескопы, принцип работы. Различные типы антенн (параболические, дипольные, антенные решетки). Эффективная площадь антенны. Размер и форма диаграммы направленности.

- 7. Принцип интерферометрии. Радиоинтерферометры. Метод апертурного синтеза. Радиотелескопы с незаполненной апертурой. Интерферометрия со сверхдлинными базами. Угловое разрешение интерферометров.
- 8. Внеатмосферные наблюдения, решаемые задачи. Инфракрасные, ультрафиолетовые, рентгеновские и гамма-обсерватории.
- 9. Основные характеристики Солнца как звезды. Внутреннее строение. Фотосфера. Хромосфера. Корона. Солнечный ветер.
- 10. Активные образования на Солнце, связь с магнитными полями. Солнечные вспышки и сопровождающие их явления. Рентгеновское излучение Солнца.
- 11. Спектральная классификация звезд, ее физическая интерпретация.
- 12. Светимости, эффективные температуры и показатели цвета звезды. Прямые и косвенные методы определения из наблюдений размеров и масс звезд.
- 13. Источники энергии на различных стадиях эволюции звезд. Эволюционные треки звезд различной массы на диаграмме Герцшпрунга-Рассела (диаграмме цвет-светимость). Конечные стадии звездной эволюции. Вырожденные звезды (белые карлики), нейтронные звезды, черные дыры, их физические свойства и наблюдаемые проявления. Радиопульсары.
- 14. Двойные и кратные звезды. Затменно-переменные. Функция масс и оценка масс компонент в двойных системах.
- 15. Тесные двойные системы и особенности их эволюции. Аккреция на компактные звезды. Рентгеновские источники в двойных системах. Новые звезды. Барстеры.
- 16. Переменные и нестационарные звезды. Пульсирующие переменные (цефеиды, долгопериодические переменные, переменные типа RR Лиры). Звезды с оболочками (Ве, МК). Звезды типа Т Тельца. Объекты Ae/Be Хербига. Катаклизмические переменные.
- 17. Сверхновые звезды, типы сверхновых, наблюдаемые особенности. Процессы, приводящие к взрыву. Роль сверхновых в обогащении межзвездной среды тяжелыми элементами.
- 18. Элементарные процессы излучения и поглощения электромагнитных квантов. Космические источники теплового и нетеплового излучения в различных областях спектра.
- 19. Механизмы переноса энергии. Уравнение переноса. Локальное термодинамическое равновесие. Эддингтоновский предел светимости.
- 20. Источники поглощения в континууме в атмосферах звезд и форма непрерывных спектров для звезд различных классов.
- 21. Модели звездных атмосфер. Механизмы образования линий поглощения. Понятие эквивалентной ширины линий. Профили линий, механизмы уширения линий. Кривая роста. Химический состав звездных атмосфер.
- 22. Уравнения, описывающие внутреннее строение звезд. Строение звезд различных спектральных классов. Уравнение состояния вырожденного газа. Предельная масса белых карликов и нейтронных звезд.

- 23. Теория космического радиоизлучения. Тормозное излучение плазмы. Синхротронное излучение релятивистских электронов.
- 24. Строение Галактики. Звездные населения и подсистемы. Спиральная структура Галактики, наблюдаемые проявления. Ядро Галактики.
- 25. Звездные скопления и ассоциации. Интерпретация диаграмм цвет звездная величина.
- 26. Звездная кинематика. Движение Солнца относительно звезд. Вращение Галактики. Связь кинематических свойств с пространственным распределением объектов.
- 27. Физическое состояние межзвездного газа. Молекулярные облака, области HI и HII, корональный газ, мазерные конденсации. Механизмы излучения газа в различных состояниях.
- 28. Оптическое излучение межзвездного газа. Запрещенные линии. Газовые туманности различных типов. Радиолинии. Мазерные источники.
- 29. Ударные волны в межзвездной среде. Остатки сверхновых и их эволюция.
- 30. Гравитационная неустойчивость газовой среды и конденсация газа. Протозвезды и молодые звезды. Околозвездные диски. Области звездообразования.
- 31. Межзвездная пыль, наблюдаемые проявления. Собственное излучение пыли. Межзвездное поглощение и его учет.
- 32. Межзвездные магнитные поля, наблюдаемые проявления. Понятие вмороженности поля.
- 33. Космические лучи, их проявления, основные источники. Распространение космических лучей в магнитном поле Галактики.
- 34. Классификация галактик. Особенности структуры галактик разных морфологических типов. Содержание газа и звездообразование в галактиках.
- 35. Размеры, светимость, скорость вращения и масса галактик, принципы их оценок. Проблема существования темного гало. Карликовые галактики, наблюдаемые особенности.
- 36. Группы и скопления галактик. Взаимодействующие галактики. Межгалактический газ в системах галактик.
- 37. Галактики с активными ядрами. Квазары. Представление о механизмах активности.
- 38. Шкала расстояний, закон Хаббла. Крупномасштабное распределение галактик.
- 39. Фридмановские модели расширяющейся Вселенной, понятие критической плотности и космологической постоянной. Постоянная Хаббла и «возраст» Вселенной.
- 40. Реликтовое излучение, его происхождение. Флуктуации яркости. Ранние стадии расширения Вселенной. Первичный нуклеосинтез.

7. Данные для учета успеваемости студентов в БАРС

Балльно-рейтинговая система оценки теоретических знаний (зачет).

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лек- ции	Лабора- торные занятия	Практиче- ские заня- тия	Самостоя- тельная работа	Автоматизированное тестирование	Другие виды учебной деятельности	Промежу- точная аттестация	Итого
7	20	0	0	20	0	20	40	100

Программа оценивания учебной деятельности студента

7 семестр

Лекции

Посещаемость, ведение конспектов лекций, активность в ходе экспресс опросов — от 0 до 20 баллов. За хорошо оформленный конспект лекций студент имеет возможность получить до 10 баллов. За посещаемость студент может получить 10 баллов в случае 90% - 100% посещаемости. Если процент посещаемости ниже, то баллы вычитаются пропорционально.

Лабораторные занятия Не предусмотрены.

Практические занятия Не предусмотрены.

Самостоятельная работа

Выполнение домашних заданий, работа с дополнительной учебной литературой — от 0 до 20 баллов. Студент может получить 20 баллов за самостоятельную работу, если им были выполнены все домашние задания.

Автоматизированное тестирование Не предусмотрено.

Другие виды учебной деятельности

Презентация (реферат) — от 0 до 20 баллов. Темы для презентаций выбираются из представленного выше списка. Максимальные баллы за реферат (презентацию) ставятся студенту в том случае, если тема полностью раскрыта, форма представления соответствует принятым нормам, студент хорошо владеет материалом и правильно отвечает на вопросы по содержанию.

Промежуточная аттестация - зачет

Промежуточная аттестация проводится в форме устного экзамена. Студенты получают билеты, которые содержат 2 теоретических вопроса из разных разделов.

При проведении промежуточной аттестации ответ на «отлично» оценивается от 36 до 40 баллов; ответ на «хорошо» оценивается от 30 до 35 баллов; ответ на «удовлетворительно» оценивается от 20 до 29 баллов; ответ на «неудовлетворительно» оценивается от 0 до 19 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 7 семестр по дисциплине «Астрофизика с элементами общей теории относительности» составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Астрофизика с элементами общей теории относительности» в оценку (зачет):

51 баллов и более	«зачтено»
меньше 51 баллов	«не зачтено»

8. Учебно-методическое и информационное обеспечение дисциплины.

а) литература:

- 1. Роуэн-Робинсон, М. Космология [Электронный ресурс] / М. Роуэн-Робинсон. Москва, Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. 257 с. URL: https://www.iprbookshop.ru/91938.html ЭБС IPR BOOKS.
- 2. Кононович, Э. В. Общий курс астрономии : учебное пособие : учебник [Текст] / Э. В. Кононович, В. И. Мороз ; под ред. В. В. Иванова ; Моск. гос. ун-т им. М. В. Ломоносова. 4-е изд. Москва : Книжный дом "ЛИБ-РОКОМ", 2011. 542, [2] с.
- 3. Засов, А. В. Астрономия : учебное пособие [Текст] / А. В. Засов, Э. В. Кононович. Москва : ФИЗМАТЛИТ, 2011. 254, [2] с.
- 4. Ландау, Л. Д. Теоретическая физика : учебное пособие : в 10 томах [Текст] / Л. Д. Ландау, Е. М. Лифшиц ; под ред. Л. П. Питаевского. Москва : ФИЗМАТЛИТ. Т. 2 : Теория поля. 8-е изд., стер. Москва : ФИЗМАТЛИТ, 2006. 533, [3] с.
- 5. Бергман П.Г. Введение в теорию относительности [Электронный ресурс] / Бергман П.Г. Москва, Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. 380 с. URL: https://www.iprbookshop.ru/92034.html ЭБС IPR BOOKS.

б) программное обеспечение и Интернет-ресурсы

- 1. OC Windows (лицензионное ПО) или ОС Unix/Linux (свободное ПО)
- 2. Microsoft Office (лицензионное ПО) или Open Office/Libre Office (свободное ПО)

- 3. Браузеры Internet Explorer, Google Chrome, Opera и др. (свободное ПО)
- 4. Научная электронная библиотека. http://www.elibrary.ru/
- 5. Библиотека СГУ. http://library.sgu.ru/
- 6. Интернет-ресурс «Российская Астрономическая Сеть»: http://www.astronet.ru
- 7. Интернет-ресурс «National Aeronautics and Space Administration»: http://www.nasa.gov

9. Материально-техническое обеспечение дисциплины

Оборудование лекционной аудитории, мультимедийный проектор для лекционных презентаций, персональный компьютер, доступ к сети Интернет.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 03.03.02 «Физика» и профилю подготовки «Компьютерная физика».

Автор:	
доцент кафедры	
общей, теоретической и компьютерной физики,	
к.фм.н.	B.B. Дмитриев

Программа разработана в 2021 г. (одобрена на заседании кафедры теоретической физики, протокол \mathbb{N}_2 от 4 октября 2021 года)

Программа актуализирована в 2023 г. (одобрена на заседании кафедры общей, теоретической и компьютерной физики, протокол № 11 от 31 мая 2023 года).