МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕРЖДАЮ Директор Института физики,

д.ф.м.н.,профессор

С.Б. Вениг

202/ г.

Рабочая программа дисциплины **Квантовая и оптическая электроника**

Направление подготовки бакалавриата 11.03.04 «Электроника и наноэлектроника»

Профиль подготовки бакалавриата «Микро- и наноэлектроника, диагностика нано- и биомедицинских систем»

Квалификация (степень) выпускника Бакалавр

> Форма обучения очная

> > Саратов, 2021 г.

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Названов В.Ф.	BACI	05.10,21
Председатель НМК	Скрипаль Ан.В.	1.60	05.10.21
Заведующий кафедрой	Скрипаль Ал.В.	1 lh	05.10.21
Специалист Учебного управления			

1. Цели освоения дисциплины

<u>Целью</u> освоения дисциплины «Квантовая и оптическая электроника» является формирование у студентов комплекса профессиональных знаний и умений (владений) и усвоение фундаментальных физических процессов, лежащих в основе квантовой и оптической электроники, принципов действия и возможностей практического использования приборов и устройств квантовой и оптической электроники.

Задачами освоения дисциплины являются:

- формирование и углубление <u>знаний</u> об основных направлениях развития современной квантовой и оптической электроники;
- формирование и углубление <u>знаний</u> о физических процессах и явлениях, определяющих функционирование различных приборов и устройств квантовой и оптической электроники;
- формирование <u>умений</u> и <u>владений</u> экспериментальными и компьютерными методами исследования в этой области;
- формирование навыков практического использования приборов и устройств квантовой и оптической электроники различного назначения.

2. Место дисциплины в структуре ООП бакалавриата.

Дисциплина «Квантовая и оптическая электроника» относится к обязательной части блока 1 «Дисциплины (модули)» основной образовательной программы и изучается студентами очной формы обучения Института физики СГУ, проходящими подготовку по направлению 11.03.04 «Электроника и наноэлектроника», в течение 8 учебного семестра. Материал дисциплины опирается на ранее приобретенные студентами знания по физике, математике, химии, термодинамике и статистической физике, электродинамике сплошных сред, теоретическим основам радиоэлектроники, физике полупроводников, физическим основам твердотельной электроники и подготавливает студентов к изучению в том же семестре таких дисциплин, как «Микроэлектроника и наноэлектроника», а также ряда дисциплин при продолжении обучения в магистратуре.

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование	Результаты обучения			
компетенции	индикатора				
	(индикаторов)				
	достижения компетенции				
ОПК-1. Способен	1.1_Б.ОПК-1.	Знать основные положения,			
использовать положения,	Понимает важность	законы и методы естественных			
законы и методы	применения	наук и математики, используемые			
естественных наук и	фундаментальных законов	в области квантовой и			
математики для решения	природы и основных	оптической электроники;			
задач инженерной	физических и	современное состояние и			
деятельности	математических законов.	перспективы развития квантовой			
	2.1_Б.ОПК-1.	и оптической электроники, ее			

ОПК-2. Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных ланных

Аргументированно применяет физические законы и математические методы для решения задач теоретического и прикладного характера.

3.1 Б.ОПК-1.

Использует знания физики и математики при решении конкретных задач инженерной деятельности.

1.1 Б.ОПК-2.

Находит и критически анализирует информацию, необходимую для решения поставленной задачи.

2.1 Б.ОПК-2.

Рассматривает возможные варианты решения задачи, оценивая их достоинства и недостатки.

4.1 Б.ОПК-2.

Аргументированно выбирает способы и средства измерений и проведения экспериментальных исследований.

5.1 Б.ОПК-2.

Способен применять методы обработки и представления полученных данных и оценки погрешности результатов измерений.

ПК-3

Способен проводить работы по обработке и анализу научнотехнической информации и результатов исследований в области электроники и наноэлектроники

1.1 Б. ПК-3.

Проводит критический анализ современной научно-технической литературы и информационных ресурсов.

2.1 Б. ПК-3.

Проводит теоретические и экспериментальные исследования в области электроники и наноэлектроники.

3.1 Б. ПК-3.

Обрабатывает и

связь со смежными областями науки и техники; физические модели процессов и явлений, лежащих в основе принципа действия приборов и устройств квантовой и оптической электроники.

Уметь аргументированно применять физические законы и математические методы для решения задач теоретического и прикладного характера в области квантовой и оптической электроники; находить и критически анализировать информацию, необходимую для решения поставленной задачи; рассматривать возможные варианты решения задачи, оценивая их достоинства и недостатки; решать конкретные задачи по проведению исследований характеристик приборов квантовой и оптической электроники.

знаниями физики и Владеть математики, необходимыми при решении конкретных задач инженерной деятельности в области квантовой и оптической электроники; методами организации и проведения измерений и исследований приборов и устройств квантовой и оптической электроники; методами обработки, анализа и представления результатов теоретических и экспериментальных исследований, оценки погрешности результатов измерений.

анализирует результаты	
теоретических и	
экспериментальных	
исследований в области	
электроники и	
наноэлектроники.	

4. Структура и содержание дисциплины. Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

№ п\п	Раздел дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				Формы текущего контроля успеваемости (по неделям семестра) Формы промежуточной аттестации (по семестрам)	
				Лек	Лабора	торные	Пр	C	
					Общая трудо- емкость	Из них — практи ческая подго- товка			
1.	Введение	8	1	1					
2.	Взаимодействие света с твердым телом	8	1-2	3				6	Проверка выполнения заданий самостоятельной работы
3.	Генерация оптического излучения	8	3-4	4				10	Проверка выполнения заданий самостоятельной работы
4.	Условия инверсной населенности в полупроводниках	8	5-6	4				10	Проверка выполнения заданий самостоятельной работы
5.	Методы создания инверсной населенности в полупроводниках	8	7-8	4				10	Проверка выполнения заданий самостоятельной работы
6.	Физические принципы и основные элементы для модуляции и отклонения излучения	8	9-10	4				10	Проверка выполнения заданий самостоятельной

	Итого: Контроль Промежуточная аттестация Общая трудоемкость	8 8		30	30	36	84	работа. Реферат
				30	30		84	
	Итого:	8		30	30	0	84	
<i>)</i> .	перспективы развития квантовой и оптической электроники	8	12-14	4	10		14	выполненным лабораторным работам. Контрольная
9.	Физические принципы и основные элементы для трансформации излучения, передачи и обработки информации Основные тенденции и	8	9-11	2	10		14	Отчет по выполненным лабораторным работам Отчет по
7.	Физические принципы и основные элементы для регистрации излучения. Приемники оптического излучения	8	7-8	4	10		10	работы Отчет по выполненным лабораторным работам

Содержание учебной дисциплины

1. Введение.

Предмет квантовой и оптической электроники, история становления, связи с другими областями знаний.

Характерные свойства оптоэлектронных систем. Преимущества фотонной связи. Способы описания и характеристики электромагнитного излучения оптического диапазона.

2. Взаимодействие света с твердым телом.

Физические основы взаимодействия оптического излучения с квантовыми системами. Энергетические состояния квантовых систем, оптические переходы, структура спектров; ширина, форма и уширение спектральных линий.

Оптические явления в средах с различными агрегатными состояниями. Поглощение света в полупроводниках, основные механизмы поглощения.

Собственное поглощение. Влияние внешних воздействий (давление, температура, электрическое и магнитное поля, примеси) на собственное поглощение света в полупроводниках.

Экситонное поглощение. Внутризонное (неселективное и селективное) поглощение. Примесное поглощение.

3. Генерация оптического излучения.

Генерация света в твердых телах. Спонтанное излучение. Фото-, катодо- и электролюминесценция. Стимулированное излучение. Системы с инверсной населенностью. Усиление оптического излучения. Активные среды и методы создания инверсной населенности. Насыщение усиления в активных средах. Нелинейно-оптические эффекты. Основные типы некогерентных и когерентных источников излучения. Полупроводниковые и органические светодиоды. Газовые, твердотельные и полупроводниковые лазеры.

4. Условия инверсной населенности в полупроводниках.

Условия инверсной населенности при прямых и непрямых переходах "зона-зона" в полупроводниках. Условия инверсной населенности с участием экситонных и примесных состояний.

О возможности получения лазерного излучения в полупроводниках при непрямых переходах с участием свободных носителей заряда.

5. Методы создания инверсной населенности в полупроводниках.

Метод возбуждения полупроводников импульсами электрического поля. Стримерные лазеры. Метод оптического возбуждения. Метод накачки электронным пучком. Квантоскопы. Метод инжекции через p-n- переход вырожденных полупроводников. Пороговые напряжение и ток, соответствующие началу генерации. P-n-лазеры. Метод инжекции с помощью гетеропереходов. Гетеролазеры, типы.

Проблемы уменьшения порогового тока. Микрорезонаторные лазеры. Полупроводниковые лазеры на квантовых ямах и точках. Поверхностно-излучающие лазеры. Квантово-каскадные лазеры. Основные области применения полупроводниковых лазеров.

6. Физические принципы и основные элементы для модуляции и отклонения оптического излучения.

Модуляторы и дефлекторы оптического излучения. Модуляция амплитуды, фазы, частоты или поляризации светового луча. Управление направлением излучения или положением светового луча в пространстве. Использование электро-, акусто- и магнитооптических эффектов в полупроводниках для модуляции и отклонения оптического излучения. Управление светом с помощью света. Полупроводниковые модуляторы и дефлекторы света.

7. Физические принципы и основные элементы для регистрации оптического излучения. Приемники оптического излучения.

Основные физические эффекты, используемые в фотоприемниках. Полупроводниковые фотоприемники.

Фотоприемники для оптронов и волоконно-оптических линий связи.

8. Физические принципы и основные элементы для трансформации излучения, передачи и обработки информации.

- 8.1. Оптроника. Элементная база, типы и устройство оптронов. Оптроны (оптопары) и оптронные интегральные схемы. Проблемы и перспективы. Волоконно-оптические линии связи.
- 8.2. Оптоэлектронные устройства отображения информации и преобразования изображений.

Электро- и катодолюминесцентные, светодиодные, жидкокристаллические индикаторы и дисплеи. Органические индикаторы и дисплеи. Усилители света и преобразователи изображения.

Твердотельные аналоги видиконов. Формирователи изображений на основе приборов с зарядовой связью.

- 8.3. Среды для оптической записи информации. Физические принципы оптической записи информации и материалы (среды). Оптические ЗУ.
 - Голографический метод записи и считывания информации. Голографические ЗУ. Управляемые (реверсивные) оптические среды. Основные проблемы и тенденции развития.
- 8.4. Интегральная оптика. Элементы и устройства интегральной оптики (волноводной оптоэлектроники). Пассивные интегрально-оптические устройства ввода-вывода излучения. Активные интегрально-оптические элементы и устройства. Микро-опто-электромеханические системы (МОЭМС) в интегральной оптике и их применение для целей связи и сенсорики.
- **9.** Основные тенденции и перспективы развития квантовой и оптической электроники. Проблемы создания оптических компьютеров. Элементная база, материалы. Эффект оптической бистабильности в полупроводниках.

Фотонные кристаллы, перспективы их использования в квантовой и оптической оптоэлектронике. Оптико-микроволновая электроника и другие направления. Нанофотоника.

Перечень лабораторных работ

- 1. Исследование характеристик фотоэлемента с продольным фотоэффектом.
- 2. Исследование работы фоторезистора при СВЧ смещении.
- 3. Исследование спектральных характеристик фотоответа фотодиодов на основе р-п-перехода и барьера Шоттки.
- 4. Исследование работы оптронов.
- 5. Исследование электрооптических эффектов в жидких кристаллах.
- 6. Исследование работы фотоприемника на основе фотоэлектромагнитного эффекта.

Описания перечисленных лабораторных работ имеются на кафедре физики твердого тела, а также содержатся в электронном пособии:

Названов В.Ф. Лабораторные работы по квантовой и оптической электронике (учебное пособие для студентов) [Электронный ресурс]: 2007.// http://solid.sgu.ru/Education/Optoelectronics-lab.pdf

5. Образовательные технологии, применяемые при освоении дисциплины

- В преподавании дисциплины «Квантовая и оптическая электроника» используются следующие образовательные технологии:
 - Исследовательские методы в обучении
 - Проблемное обучение

В процессе обучения предусматривается широкое использование в учебном процессе активных и интерактивных форм проведения занятий: адресация аудитории вопросов и коллективный поиск ответов на них в форме дискуссий, встречи с известными специалистами и экспертами.

При проведении лабораторных занятий выполняются натурные эксперименты в лабораторном практикуме.

Практическая подготовка при реализации данной дисциплины направлена на формирование и закрепление практических навыков и компетенций по профилю образовательной программы в процессе выполнения лабораторных работ, в ходе которых студенты осваивают специфику и овладевают навыками проведения измерений характеристик оптоэлектронных приборов с использованием оборудования, аналогичного применяемому для этих целей на предприятиях электронной промышленности.

Условия обучения инвалидов и лиц с ограниченными возможностями здоровья:

- предоставление инвалидам по зрению или слабовидящим возможностей использовать крупноформатные наглядные материалы;
- организация коллективных занятий в студенческих группах с целью оказания помощи в получении информации инвалидам и лицам с ограниченными возможностями по здоровью;
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья.
 - использование индивидуальных графиков обучения
 - использование дистанционных образовательных технологий

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Самостоятельная работа студентов по дисциплине проводится в течение всего периода освоения и заключается в чтении и изучении литературы, подготовке к лекциям, лабораторным работам, выполнении заданий лектора, написании реферата. Рекомендуется:

- для качественного усвоения материала лекций разбирать вопросы, излагаемые в каждой очередной лекции, по трудным (непонятным) деталям консультироваться у лектора, читать соответствующую литературу;
- при подготовке к выполнению лабораторных работ и отчетов по ним тщательно изучать описание работы, задавать уточняющие вопросы преподавателю и дежурному инженеру, иметь дежурную тетрадь по лабораторному практикуму, для выполнения заданий и оформления отчетов;
- задания, которые даются лектором во время лекции по отдельным вопросам, должны выполняться в обязательном порядке, а качество их выполнения проверяться во время экзамена.

<u>Перечень заданий (тем) самостоятельной работы, предлагаемых студентам в</u> ходе чтения лекций:

- 1. Влияние внешних воздействий (давление, температура, примеси, электрическое и магнитное поля) на собственное поглощение света.
- 2. Системы с инверсной населенностью. Газовые, твердотельные и полупроводниковые лазеры.
- 3. Условия инверсной населенности в полупроводниках. Случай с участием экситонных и примесных состояний.
- 4. Полупроводниковые лазеры на квантово-размерных структурах.
- 5. Управление направлением излучения или положением светового луча в пространстве. Полупроводниковые модуляторы и дефлекторы излучения.
- 6. Полупроводниковые фотоприемники. Фотоприемники для ВОЛС.
- 7. Интегральная оптика. Элементы и устройства волноводной оптоэлектроники. Пассивные и активные интегрально-оптические элементы и устройства. Микроопто-электро-механические системы (МОЭМС) в интегральной оптике.
- 8. Фотонные кристаллы, перспективы их использования в квантовой и оптической электронике.

Оптико-микроволновая электроника и другие направления.

При реализации программы дисциплины «Квантовая и оптическая электроника» студентам предлагается ряд тем для написания рефератов, соответствующих содержанию курса.

Примерный перечень предлагаемых тем рефератов:

- 1. Полупроводниковые лазеры на квантово-размерных структурах.
- 2. Экситоны в квантово-размерных структурах.

- 3. Фотодетекторы на квантово-размерных структурах.
- 4. Униполярные квантово-каскадные полупроводниковые лазеры.
- 5. Фотонные кристаллы.

Рефераты выполняются под руководством преподавателя и должны содержать элементы литературного обзора по теме, анализа в соответствии с конкретной спецификой выбранной темы. Рефераты следует выполнять в течение всего семестра с периодическим обсуждением результатов с преподавателем.

В ходе освоения дисциплины в часы лекционных занятий студенты выполняют контрольную работу.

При подготовке к контрольной работе необходимо использовать пройденный материал и соответствующую учебно-методическую литературу.

Контрольная работа.

Вариант А.

- 1. Эффект Келдыша Франца в полупроводниках и его применение.
- 2. Спонтанное излучение в полупроводниках. Полупроводниковые светодиоды.

Вариант Б.

- 1. Эффект Бурштейна Мосса в сильнолегированных полупроводниках.
- 2. Вынужденное излучение в полупроводниках. Лазеры.

При выполнении контрольной работы студент должен продемонстрировать знания по основным положениям пройденных тем.

Результаты выполнения контрольной работы учитываются при проведении промежуточной аттестации студентов.

Промежуточная аттестация проводится в форме экзамена (8-й семестр).

Контрольные вопросы для проведения промежуточной аттестации по итогам освоения дисциплины

- 1. Поглощение света в полупроводниках, основные механизмы поглощения. Коэффициент поглощения света.
- 2. Фундаментальное поглощение света в полупроводниках. Прямые и непрямые переходы. Зависимость коэффициента поглощения от энергии фотона.
- 3. Влияние температуры на фундаментальное поглощение света в полупроводниках. Применение эффекта.
- 4. Влияние электрического поля на край фундаментального поглощения света в полупроводниках. Эффект Келдыша-Франца, применение.
- 5. Фундаментальное поглощение света в сильно легированных полупроводниках. Эффект Бурштейна-Мосса, применение.

- 6. Фундаментальное поглощение света в полупроводниках в магнитном поле. Эффект магнитоосцилляционного поглощения, использование.
- 7. Экситонное поглощение света в полупроводниках.
- 8. Внутризонное поглощение света в полупроводниках. Неселективное и селективное поглощение, применение.
- 9. Основные виды генерации света в полупроводниках.
- 10. Рекомбинационное излучение в полупроводниках. Время жизни излучательной рекомбинации.
- 11. Основные требования к полупроводниковым материалам, пригодным для изготовления источников излучения.
- 12. Спонтанное излучение в полупроводниках. Светодиоды.
- 13. Вынужденное излучение в полупроводниках. Связь между спонтанным и вынужденным излучением.
- 14. Системы с инверсной населенностью. Условие для начала усиления (генерации) излучения в системе с инверсной населенностью.
- 15. Лазеры. Пороговый коэффициент усиления (для начала генерации) излучения. Основные модели лазерных переходов. Типы лазеров.
- 16. Условия достижения инверсной населенности в полупроводниках. Случаи прямых и непрямых переходов зона-зона.
- 17. Условия достижения инверсной населенности в случаях участия экситонных и примесных уровней в полупроводниках.
- 18. Методы достижения инверсной населенности в полупроводниках (методы накачки).
- 19. Метод оптического возбуждения полупроводниковых лазеров, особенности, преимущества, недостатки.
- 20. Метод накачки электронным пучком, особенности, преимущества, недостатки, использование.
- 21. Метод накачки с помощью инжекции p-n-переходом вырожденных полупроводников. Преимущества, недостатки. Пороговое напряжение, соответствующее началу генерации.
- 22. Метод накачки с помощью инжекции гетеро-р-п-переходом. Основные особенности, преимущества.
- 23. Гетеролазеры. Проблема уменьшения порогового тока. Микрорезонаторные лазеры. Полупроводниковые лазеры на квантовых ямах и квантовых точках.
- 24.Основные методы модуляции излучения. Полупроводниковые модуляторы и дефлекторы излучения.
- 25. Полупроводниковые фотоприемники. Фотоприемники для волоконно-оптических линий связи.
- 26. Устройства отображения информации. Индикаторы и дисплеи.
- 27. Принципы оптической записи информации, материалы и оптические среды.
- 28. Элементы и устройства интегральной оптики. Пассивные и активные элементы и устройства.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекции		Практичес кие занятия	Самостояте льная работа	тестирован	виды учебной	Промежут очная аттестация	Итого
8	20	20	0	20	0	10	30	100

Программа оценивания учебной деятельности студента

8 семестр

Лекции

Посещаемость, опрос, активность и др. – от 0 до 20 баллов.

Лабораторные занятия

Техническая грамотность при выполнении лабораторных работ — от 0 до 5 баллов

Оформление отчётов в соответствии с установленными требованиями — от 0 до 5 баллов

Степень раскрытия материала при отчёте по лабораторным работам — от 0 до 10 баллов

Практические занятия:

Не предусмотрены.

Самостоятельная работа

Выполнение заданий на самостоятельную работу - от 0 до 20 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности:

Контрольная работа, реферат - от 0 до 10 баллов

Промежуточная аттестация (экзамен)

Экзамен проводится в устной форме и предполагает ответ на 2 вопроса билета.

При проведении промежуточной аттестации ответ на «отлично» оценивается от -21 до 30 баллов; ответ на «хорошо» оценивается от -11 до 20 баллов; ответ на «удовлетворительно» оценивается от -6 до 10 баллов; ответ на «неудовлетворительно» оценивается от 0 до 0 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 8 семестр по дисциплине «Квантовая и оптическая электроника» составляет 100 баллов.

Таблица 2. 2 Таблица пересчёта полученной студентом суммы баллов по дисциплине «Квантовая и оптическая электроника» в оценку (экзамен):

86 - 100 баллов	«отлично»
70 - 85 баллов	«хорошо»
50 - 69 баллов	«удовлетворительно»
меньше 50 баллов	«неудовлетворительно»

8. Учебно-методическое и информационное обеспечение дисциплины

а) литература:

- 1. Оптика и фотоника. Принципы и применения: учеб. пособие: в 2 т. / Б. Е. А. Салех, М. К. Тейх; пер. с англ. В. Л. Дербова. Долгопрудный: Изд. дом "Интеллект", 2012. (в ЗНБ СГУ по 10 экз. каждого тома).
- 2. Игнатов А. Н. Оптоэлектроника и нанофотоника: учеб. пособие. Санкт-Петербург; Москва ; Краснодар : Лань, 2011.-538 с. **Гриф УМО** (в ЗНБ СГУ 12 экз.)
- 3. Игнатов А. Н. Оптоэлектроника и нанофотоника [Электронный ресурс]: учеб. пособие. 4-е изд., стер. Санкт-Петербург : Лань, 2020. 596 с. ЭБС "ЛАНЬ".
- 4. Щука А. А. Электроника В 4 ч. Часть 3 Квантовая и оптическая электроника [Электронный ресурс]: 2-е изд., испр. и доп. Учебник для академического бакалавриата/ под ред. Сигова А.С.-М.: Юрайт, 2019 . 117 с. ЭБС «ЮРАЙТ»
- 5. Фотонные кристаллы в примерах и задачах / В. Ф. Названов. Саратов : Новый ветер, 2015.-143 с. (в ЗНБ СГУ 5 экз.)
- 6. Розеншер Э., Винтер Б. Оптоэлектроника. 2-е изд. М.: Техносфера, 2006. 588 с. (в ЗНБ СГУ 14 экз.)
- 7. Нанотехнологии для микро- и оптоэлектроники / Дж. М. Мартинес-Дуарт, Р. Дж. Мартин-Палма, Ф. Агулло-Руеда; пер. с англ. М.: Техносфера, 2007. 367 с. (в ЗНБ СГУ 2 экз), 2009 (2 экз.)
- 8. Названов В.Ф. Основы оптоэлектроники: учеб. пособие. Изд. СГУ, 1980. 231.с. (в ЗНБ СГУ 27 экз.).

б) программное обеспечение и Интернет-ресурсы:

- 1. Windows XP Prof
- 2. Антивирус Касперского 6.0 для Windows Workstations
- 3. Microsoft Office профессиональный 2010
- 4. MathCad 14.0

- 5. Названов В.Ф. Лабораторные работы по квантовой и оптической электронике (учебное пособие для студентов) [Электронный ресурс]: 2007.- Режим доступа: http://solid.sgu.ru/Education/Optoelectronics-lab.pdf (дата обращения: 28.08.2019).
- 6. Каталог образовательных Интернет-ресурсов (http://window.edu.ru)

9. Материально-техническое обеспечение дисциплины

Занятия по дисциплине «Квантовая и оптическая электроника» проводятся в аудиториях, оснащенных компьютерной техникой, измерительными приборами, лабораторным оборудованием, наглядными демонстрационными материалами и пр. (презентации, плакаты).

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 11.03.04 «Электроника и наноэлектроника» с учётом профиля подготовки «Микро- и наноэлектроника, диагностика нано- и биомедицинских систем».

Автор

Профессор Названов В.Ф.

Программа разработана в 2019 г. и одобрена на заседании кафедры физики твёрдого тела от $\underline{03}$ декабря 2019 года, протокол $\underline{\mathbb{N}}$ 4.

Программа актуализирована в 2021 г. и одобрена на заседании кафедры физики твёрдого тела от 05 октября 2021 года, протокол № 3.

Приложение

Учебно-методическое и информационное обеспечение дисциплины

Рекомендуемая литература:

- 1. Основы оптоэлектроники : учебное пособие / А. И. Астайкин, М. К. Смирнов. Москва : Высшая школа, 2007. 275 с. Гриф УМО (в ЗНБ СГУ 10 экз.)
- 2. Скляров О. К. Волоконно-оптические сети и системы связи: учеб. пособие. 2-е изд., стер. Санкт-Петербург; Москва; Краснодар: Лань, 2010. 260 с. (в ЗНБ СГУ 11 экз.)
- 3. Физические основы интегральной оптики: учеб. пособие для студентов вузов / М. Ф. Панов, А. В. Соломонов, Ю. В. Филатов. Москва: Изд. центр "Академия", 2010. 426 с. Гриф УМО (в ЗНБ СГУ 4 экз.)
- 4. Твердотельная фотоэлектроника. Физические основы / А.М. Филачев, И.И. Таубкин, М.А. Тришенков. М.: Физматкнига, 2007. 384 с. (в ЗНБ СГУ 2 экз.). 2005 (3 экз.).
- 5. Шуберт Ф.Е. Светодиоды / Пер. с англ. М.: Физматлит, 2008. 496 с. (в ЗНБ СГУ 5 экз.).
- 6. Оптоэлектронные элементы и устройства систем специального назначения [Электронный ресурс] / В. Н. Легкий, Б. В. Галун, О. В. Санков. Новосибирск : Новосибирский государственный технический университет (НГТУ), 2011. 455 с. ЭБС "IPRBOOKS"