МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВИРЖДАЮ

Директор Института физики

С.Б. Вениг

Рабочая программа дисциплины «Механика»

Направление подготовки бакалавриата 11.03.02 «Инфокоммуникационные технологии и системы связи»

Профиль подготовки бакалавриата «Инфокоммуникационные технологии в системах радиосвязи»

Квалификация выпускника – бакалавр

Форма обучения очная

> Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Овчинников Сергей Владимирович	PI	19.10.2021
Председатель НМК	Скрипаль Анатолий Владимирович	15-	20.10.2021
Заведующий кафедрой	Игнатьев Александр Анатольевич	long	19.10.2021 2.
Специалист Учебного управления			10,11-202 [2,

1. Цели освоения дисциплины

Целями освоения дисциплины «Механика» являются:

- ознакомление с физической теорией механических явлений и процессов, их закономерностями как обобщениями наблюдений и эксперимента;
- развитие у обучающихся понимания роли фундаментальных законов физики как основы для описания и анализа природы разнообразных явлений окружающего мира;
- гармоничное сочетание предлагаемых форм обучения лекции, самостоятельная работа на практических (семинарских) и лабораторных занятиях, работа с литературой, интернет-источниками, включая предлагаемые интерактивные формы, подготовка рефератов, работа над курсовым проектом, докладом, включая проблемный, контроль преподавателем;
- приобретение навыков применять законы классической механики малых скоростей объектов и тел к современным средствам регистрации параметров (преобразователям физических величин, датчикам движения и физических силовых полей) и оценивать пределы измеряемых параметров, погрешности, а также приобретение навыков самостоятельного решения практических задач:
- умение оценивать прочностные характеристики различных тел и простейших сооружений, прогнозировать появление критических ситуаций, приводящих к возможным разрушениям механических конструкций.

2. Место дисциплины в структуре ООП бакалавриата

Дисциплина «Механика» (Б1.О.31) относится к обязательной части Блока 1 «Дисциплины (Модули)» рабочего учебного плана по направлению подготовки бакалавров 11.03.02 «Инфокоммуникационные технологии и системы связи» и профилю подготовки «Инфокоммуникационные технологии в системах радиосвязи».

Для освоения данной дисциплины необходимы:

- а) знания по математике и физике в пределах программы средней образовательной школы;
- б) умения:
- логически мыслить и выделять главное на лекциях, практических и лабораторных занятиях;
- конспектировать;
- работать с основной и дополнительной литературой, учебно-методическими пособиями, задачниками, справочной литературой;
 - получать информацию по интернет-сетям;
 - объяснять лаконично свои мысли и формулировать кратко полученные знания;
- в) готовность обучающегося:
- воспринимать большой объем информации, поступающей на лекциях, семинарах;
- интенсивно работать с основной и дополнительной литературой, учебной и методической литературой, справочниками;
- критически оценивать свои имеющиеся пробелы в знаниях, умениях, навыках и определять пути их устранения через различные формы (самообразование, дополнительные задания, дополнительные занятия с преподавателями);
- учиться работать с приборами учебного лабораторного оборудования;
- развивать методы самоконтроля.

Для усвоения дисциплины необходима содержательно-методическая взаимосвязь с базовыми математическими дисциплинами (Аналитическая геометрия и линейная алгебра, Математический анализ и ТФКП), а также с дисциплиной «Введение в математические основы физики», что дает возможность обучающимся корректно пользоваться языком физики – математикой.

Дисциплина «Механика» тесно связана со всеми базовыми дисциплинами естественнонаучного профиля учебного плана.

3. Результаты обучения по дисциплине

Код и наименование компетенции	Код и наименование индикатора (индикаторов) достижения компетенции	Результаты обучения
ОПК-1. Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ИД-1 _{ОПК-1} Знает фундаментальные законы природы и основные физические математические законы и методы накопления, передачи и обработки информации ИД-2 _{ОПК-1} Умеет применять физические законы и математически методы для решения задач теоретического и прикладного характера ИД-3 _{ОПК-1} Владеет навыками использования знаний физики и математики при решении практических задач.	Знать: - основные законы и модели механики; - основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; - фундаментальные физические опыты и их роль в развитии науки; - границы применимости законов классической физики. Уметь: - понимать, излагать и критически анализировать базовую общефизическую информацию; - описывать и качественно объяснять физические процессы, происходящие в естественных условиях, указывать законы, которым подчиняются физические явления, предсказывать возможные следствия. Владеть:
ОПК-2. Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ИД-1 _{ОПК-2} Знает основные методы и средства проведения экспериментальных исследований, обработки и представления результатов ИД-2 _{ОПК-2} Умеет выбирать способы и средства измерений и проводить экспериментальные исследования ИД-3 _{ОПК-2} Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений	 методами физикоматематического анализа для решения естественнонаучных задач. Знать: основные методы физического эксперимента и обработки опытных данных, правила техники безопасности при проведении физических экспериментов. Уметь: применять на практике законы и модели механики; оценивать основные параметры механических систем и процессов. Владеть: методами обработки и анализа экспериментальной и теоретической физической информации; навыками работы с основными измерительными приборами и экспериментальной аппаратурой; навыками обработка экспериментальных данных, методами оценки погрешностей измерений.

4. Структура и содержание дисциплины «Механика» Общая трудоемкость составляет 5 зачетных единиц, 180 часов.

№ п/п	оощил грудоенкоеть сос			Виды	учебн льную	ой работ работу икость (гы, вк. студен	лючая нтов и		Формы теку- щего контро- ля успеваемо-
	Раздел дисциплины	d.	местра		C	ктиче- кие іятия	Лабора- торные занятия		СРС	сти (по неделям) Формы про-
Таздел дисциплины	Семестр	Неделя семестра	Лекции	Общая трудоемкость	Из них – практическая подготовка	Общая трудоемкость	Из них – практическая подготовка		межуточной аттестации (по семестрам)	
1	Введение. Раздел 1. Тема 1.1	1	1	2	_	_	2	_	_	Контроль посещаемости.
2	Раздел 1. Темы 1.2 и 1.3	1	2	2	2	_	2	_	2	Контроль по- сещаемости
3	Раздел 2. Темы 2.1 и 2.2	1	3	2	2	_	4	_	1	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
4	Раздел 2. Темы 2.3 и 2.4	1	4	2	-	_	4	_	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
5	Раздел 3. Тема 3.1	1	5	2	1	_	4	_	1	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
6	Раздел 3. Тема 3.2	1	6	2	1	-	4	_	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
7	Раздел 3. Тема 3.3	1	7	2	1	_	4	_	1	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
8	Раздел 4. Тема 4.1	1	8	2	-	_	4	_	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
9	Раздел 5. Темы 5.1 и 5.2	1	9-10	4	2	_	4	_	2	Контроль по- сещаемости. Проверочный опрос/ пись- менная работа.

										Отчеты лаб. раб.
10	Раздел 6. Тема 6.1	1	11	2	_	_	2	ı	1	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
11	Раздел 7. Тема 7.1	1	12	2	2	ı	10	ı	2	Контроль по- сещаемости. Проверка зада- ний и лаб. ра- бот
12	Раздел 8. Темы 8.1 и 8.2	1	13	2	1	_	4	ı	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
13	Раздел 9. Темы 9.1 и 9.2	1	14	2	2	ı	8	ı	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
14	Раздел 9. Темы 9.3 и 9.4	1	15	2	2	_	8	-	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
15	Раздел 10. Темы 10.1 и 10.2	1	16	2	_	_	4	ı	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб.
16	Раздел 11. Темы 11. и 11.2	1	17	2	_	_	_	_	2	Контроль по- сещаемости. Проверка зада- ний. Отчеты лаб. раб. Ито- говая кон- трольная ра- бота.
	Итого:	1		34	16	0	68	0	26	
	Контроль			36						
	Промежуточная аттестация	1								Зачет по ла- бораторным работам. Экзамен
	Общая трудоемкость дисциплины					180				

Содержание дисциплины «Механика»

Введение. Предмет и задачи физики. Физика и естественные науки. Пространство и время. Размерные и безразмерные величины, системы единиц измерения. Механика, задачи механики. Модели и погрешности представления. Материальная точка. Абсолютно твердое тело. Механическая система. Векторная алгебра. Правило правого винта. Системы отсчета. Системы координат.

Раздел 1. Кинематика материальной точки

- **Тема 1.1.** Задачи кинематики. Виды движения механических тел. Траектория как большая совокупность элементарных участков. Перемещение, скорость и ускорение материальной точки, их координатные представления. Тангенциальное и нормальное ускорения.
- **Тема 1.2.** Описание вращательного движения вокруг неподвижной оси. Элементарный угол поворота как вектор. Угловая скорость и угловое ускорение. Связь между линейными и угловыми характеристиками движения.
- **Тема 1.3.** Сложное движение материальной точки. Абсолютные, относительные и переносные скорости и ускорения. Ускорение Кориалиса.

Раздел 2. Динамика материальной точки и системы материальных точек

- **Тема 2.1.** Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея. Преобразования Галилея, инварианты преобразования.
- **Тема 2.2.** Второй закон Ньютона. Сила как характеристика взаимодействия между механическими телами. Инертная масса тела. Принцип суперпозиции сил. Импульс тела и импульс силы.
- **Тема 2.3.** Второй закон Ньютона для тел, теряющих или приобретающих массу. Реактивная сила. Третий закон Ньютона. Границы применимости законов Ньютона.
- **Тема 2.4.** Классификация сил в механике. Фундаментальные взаимодействия. Взаимодействие тел при непосредственном контакте и на расстоянии (силовое поле). Силы трения. Класс упругих сил.

Раздел 3. Законы сохранения

- **Тема 3.1.** Уравнения движения и законы сохранения. Импульс системы материальных точек. Закон сохранения импульса. Центр масс.
- **Тема 3.2.** Момент импульса. Момент силы. Проекции момента импульса и момента силы на заданную ось. Уравнение движения в терминах моментов. Закон сохранения момента импульса.
- **Тема 3.3.** Работа сил. Кинетическая энергия. Теорема Кенега. Потенциальные силы и потенциальная энергия. Работа силы трения. Закон сохранения механической энергии.

Раздел 4. Поле тяготения

Тема 4.1 Законы Кеплера. Закон тяготения Ньютона. Гравитационная масса. Принцип эквивалентности. Сила тяжести. Ускорение свободного падения. Потенциальная энергия частицы в поле тяготения. Космические скорости.

Раздел 5. Динамика твердого тела

- **Тема 5.1.** Уравнение движения твердого тела. Вращательное движение тела относительно неподвижной оси. Момент инерции. Вычисление момента инерции относительно данной оси. Теорема Штейнера.
- **Тема 5.2.** Кинетическая энергия вращательного движения. Работа при вращательном движении. Кинетическая энергия произвольно движущегося твердого тела.

Раздел 6. Неинерциальные системы отсчета

Тема 6.1. Неинерциальные системы отсчета. Силы инерции при поступательном движении системы отсчета. Вращающиеся системы отсчета. Центробежная сила инерции. Зависимость веса тела от географической широты. Сила инерции Кориолиса. Маятник Фуко.

Раздел 7. Деформация твердых тел

Тема 7.1. Классификация деформаций. Элементарные деформации. Механические напряжения. Коэффициент Пуассона. Закон Гука. Модули упругости. Диаграмма растяжения однородного стержня. Работа по деформации. Работа при упругой силы. Потенциальная энергия упругой деформации.

Раздел 8. Соударение двух тел (в приближении шарообразности их формы)

- **Тема 8.1.** Понятие удара. Мгновенные ударные силы и их импульс. Фазы удара. Постулаты элементарной теории удара. Удар материальной точки о преграду. Нормальные и тангенциальные компоненты скоростей налета и разлета. Коэффициент восстановления. Импульс, передаваемой преграде.
- **Тема 8.2.** Прямой центральный удар двух поступательно движущихся шаров. Нецентральное столкновение двух шаров. Диаграммы рассеяния

Раздел 9. Колебательное движение

- **Тема 9.1.** Колебательный процесс. Характеристика колебаний, собственные и вынужденные колебания. Колебания в системе с одной степенью свободы. Физический и пружинный маятники. Уравнение собственных колебаний.
- Тема 9.2. Гармонические колебания. Амплитуда и начальная фаза. Энергия колебаний.
- **Тема 9.3.** Затухающие колебания. Частота колебательного процесса и условный период. Логарифмический декремент затухания. Оценка убыли энергии при малом затухании. Добротность.
- Тема 9.4. Вынужденные установившиеся колебания. Резонанс.

Раздел 10. Волны в сплошной упругой среде

- **Тема 10.1.** Распространение возмущений в сплошной упругой среде. Классификация волн. Волновое уравнение. Фазовая и групповая скорости. Энергия волны.
- **Тема 10.2.** Интерференция волн. Стоячие волны. Звуковые волны в газовой среде. Скорость звука в газовой среде. Эффект Доплера.

Раздел 11. О специальной теории относительности (СТО)

- **Тема 11.1** Исторические предпосылки. Постулаты Эйнштейна. Преобразование Лоренца. Следствия: относительность длины движущейся линейки, относительность промежутков времени. Собственное время.
- **Тема 11.2** Преобразование компонент скорости при переходе из одной ИСО в другую. Интервал между событиями. Импульс и энергия в СТО.

5. Образовательные технологии, применяемые при освоении дисциплины

- В преподавании дисциплины «Механика» используются активные и интерактивные формы обучения с применением следующих образовательных технологий:
 - информационно-коммуникационные технологии;
 - исследовательские методы в обучении;
 - проблемное обучение.

Активные формы включают лекции с использованием лекционных демонстраций, практические (семинарские) и лабораторные занятия: разбор конкретных ситуаций, обсуждение наблюдаемых при лекционных демонстрациях физических явлений и эффектов, компьютерные демонстрации, короткие выборочные опросы по разбираемому материалу.

Интерактивные формы:

- дискуссионные вопросы и проблемы, которые поднимаются студентами и инициируются преподавателем на лекциях, семинарах и при выполнении лабораторных работ;
- предусматривается связь преподавателя со студентами через компьютерные сети с целью индивидуализации процесса обучения (рефераты, презентации, консультации) и текущего контроля выполнения заданий по всем видам учебной деятельности.

Методы обучения, применяемые при изучении дисциплины, способствуют закреплению и совершенствованию знаний, овладению умениями и получению навыков в области статисти-

ческих методов оценки качества продукции и регулирования технологических процессов. Содержание учебного материала диктует выбор методов обучения:

- информационно-развивающие объяснение, демонстрация, решение типовых задач, самостоятельная работа с рекомендуемой литературой;
- проблемно-поисковые и исследовательские самостоятельная проработка предлагаемых проблемных вопросов по дисциплине, поиск решений проблемных заданий.

Лекционные аудиторные занятия сопровождаются демонстрацией простых наглядных физических опытов с помощью оборудования Музея физических приборов и лекционных демонстраций (см. п. 9.1 настоящей рабочей программы).

Практические (семинарские) занятия по дисциплине проводятся согласованно с материалом, рассматриваемым на лекциях. Решаются типовые задачи, требующие соответствующей математической подготовки и знания теоретического материала по изучаемой дисциплине.

При проведении части практических (семинарских) занятий в аудитории, оснащенной мультимедийной техникой (ноутбуком и проектором), излагаются и анализируются доклады студентов, выполненные в форме презентаций.

Каждое практическое занятие заканчивается конкретизацией домашнего задания на самостоятельную работу по закреплению пройденного материала и по знакомству с темой следующего семинара.

Часть семинаров происходит в форме беседы, позволяющей привлечь внимание студентов к наиболее важным вопросам темы и определяющей темп усвоения учебного материала с учетом особенностей студентов.

Лабораторные занятия проводятся в лаборатории «Механика и молекулярная физика» Общего физического практикума Института физики СГУ. Студенты в течение *учебного семестра* обязаны выполнить 10 лабораторных работ из Перечня плановых лабораторных работ (см. п.9.2 настоящей рабочей программы).

В рамках лабораторных занятий студенты приобретают навыки правильного проведения экспериментальных исследований, грамотного обращения с измерительными приборами и измерительной аппаратурой, обработки результатов измерений и оценки погрешностей измерений.

При работе в лаборатории «Механика и молекулярная физика» студенты:

- знакомятся с техникой безопасности, охраной труда, пожарной безопасностью в учебной лаборатории;
- самостоятельно знакомятся с теорией изучаемой лабораторной работы, основными закономерностями, определениями физических величин, моделями процессов;
- с помощью преподавателя знакомятся с лабораторной установкой, принципами её действия, ходом эксперимента, наглядным измерением величин и их регистрацией;
 - изучают основные методы обработки результатов эксперимента;
- изучают правила оформления протокола по лабораторной работе, содержащего общую теоретическую часть, цель и задачи лабораторной работы, схему экспериментальной установки, протокол измерений, результаты обработки измерений, выводы, используемые источники;
- самостоятельно работают с учебной, учебно-методической и справочной литературой,
 Интернет-ресурсами.

К активным формам проведения занятий в лаборатории относятся:

- отчеты обучающихся, включающие предварительный отчет по теоретической и экспериментальной частям выполняемой лабораторной работы, обсуждение результатов эксперимента и окончательный отчет по оформлению протокола по конкретной работе, включая устранение отмеченных преподавателем замечаний;
 - выполнение экспериментальной части лабораторной работы;
 - обработка результатов эксперимента, построение графиков, таблиц;
 - выполнение полного цикла лабораторных работ за семестр в учебной лаборатории.

Адаптивные технологии, применяемые при обучении инвалидов и лиц с ОВЗ

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве, средства дистанционного общения.

Основной формой организации учебного процесса является интегрированное обучение инвалидов, т.е. все студенты обучаются в смешанных группах, имеют возможность постоянно общаться со сверстниками, легче адаптируются в социуме.

Предусмотрены следующие формы организации учебного процесса и контроля знаний:

– для слабовидящих:

обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения контрольных заданий при необходимости предоставляется увеличивающее устройство или монитор с высоким разрешением; задания для выполнения, а также инструкция о порядке выполнения контрольных заданий оформляются увеличенным шрифтом;

— для лиц с тяжелыми нарушениями речи, глухих, слабослышащих обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости студентам предоставляется звукоусиливающая аппаратура индивидуального пользования;

Все контрольные задания по желанию студентов могут проводиться в письменной форме или с использованием компьютера (текстовые редакторы, электронная почта, zoom-cвязь).

Также предусмотрено:

- обеспечение учебно-методическими пособиями в печатном и электронном видах по согласованию с преподавателем, ведущим занятия,
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья,
- использование индивидуальных графиков обучения,
- использование дистанционных образовательных технологий.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 30% аудиторных занятий. Занятия лекционного типа для соответствующих групп студентов не могут составлять более 20% аудиторных занятий.

Оценка качества освоения дисциплины «Механика» производится на основе бальнорейтинговой системы и включает текущий контроль успеваемости, итоговый результат выполнения индивидуальных заданий, итоговый зачет по выполненным лабораторным работам, итоговый семестровый экзамен.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

6.1. Учебно-методическое обеспечение самостоятельной работы студентов

- 1. *Савельев И.В.* Курс общей физики [Электронный ресурс]: учеб. пособие : / И.В. Савельев = A course in general physics. М. : «Лань», 2011. URL: http://e.lanbook.com/books/?p_f_1_65=918&letter=%D0%A1. ЭБС «ЛАНЬ».
- 2. *Иродов И.Е.* Задачи по общей физике: учеб. пособие для вузов / И.Е. Иродов. -8 изд. М.: БИНОМ. Лаборатория знаний, 2010-431 с.
- 3. Физический практикум. Упругие деформации : учеб.-метод. пособие для студентов физического и других естественных факультетов / сост.: А.А.Игнатьев, В. А. Малярчук, Л. А. Романченко.— Саратов: Изд-во. Сарат. ун-та, 2012.—24 с.

- 4. Физический практикум. Момент инерции: учеб.-метод. пособие для студ. естественных факультетов / Сост.: А. А.Игнатьев, С. П.Кудрявцева, Т. Н.Тихонова. Саратов: Изд-во. Сарат. унта, 2012. 40 с.
- 5. Физический практикум. Механика. Собственные колебания механической системы с одной степенью свободы: учеб.-метод. пособие для студентов физического и других естественных факультетов / сост.: С.В. Овчинников. Саратов: Изд-во. Сарат. ун-та, 2012. 24 с.
- 6. Физический практикум. Измерение скорости полета пули методом баллистического маятника: учеб.-метод. пособие для студентов естественных факультетов / сост.: Страхова Л. Л., Хвалин А. Л., Л. С. Сотов. В. А.— Саратов: Изд-во. Сарат. ун-та, 2012. — 20 с.
- 7. Обработка результатов измерений в физическом практикуме : учеб.-метод. пособие для студентов естественных факультетов / сост. : В.А. Костяков, А.А.Игнатьев, Т. Н.Тихонова, А. В. Ляшенко.— Саратов: Изд-во. Сарат. ун-та, 2012.—40 с.
- 8. Описания лабораторных работ Общего физического практикума СГУ: http://www.sgu.ru/node/302/uchebnaya-rabota/obshchiy-fizicheskiy-praktikum.
- 9. Лабораторный практикум по физике с использованием виртуальных приборов. URL: http://www.cdi.spbstu.ru/CD_ED/virt-lab/labview.html.

К самостоятельной работе обучающегося относятся:

- знакомство с учебно-методической и учебной литературой, теоретической и практической (экспериментальной) частями лабораторной работы;
- работа с конспектами лекций, обязательной, рекомендованной и справочной литературой, интернет-ресурсами;
 - выполнение домашних заданий по практическим занятиям;
 - подготовка к проверочным опросам и контрольным работам;
 - подготовка рефератов и/или презентаций;
- подготовка к предварительному отчету преподавателю по теоретической и экспериментальным частям конкретной лабораторной работы, предполагаемого эксперимента, методам обработки и интерпретации полученных результатов;
 - выполнение экспериментальной части лабораторной работы;
 - оценка предварительной и итоговой погрешностей измерений;
 - оформление предварительных и окончательных протоколов лабораторных работ.

Методические указания по выполнению лабораторных работ

- 1. Ознакомиться с инструкцией по технике безопасности, охране труда и пожарной безопасности. Расписаться в журнале. Получить у преподавателя задание на выполнение лабораторной работы и методическое описание к ней.
- 2. Ознакомиться с содержанием методического описания к лабораторной работе. Выделить главные моменты работы: какое физическое явление изучается в данной работе, какие физические величины измеряются в данной работе и каковы единицы их измерения, какой метод измерения используется в данной работе и как работает экспериментальная установка, какие соотношения используются для нахождения искомой величины по результатам прямых измерений вспомогательных величин.
- 3. Проработать контрольные вопросы по методическому описанию и рекомендованной основной и дополнительной литературе, интернет-ресурсам. Подготовиться к предварительному отчету преподавателю.
- 4. Предварительно отчитаться преподавателю по конкретной лабораторной работе, ответить на все поставленные преподавателем вопросы. Получить допуск (разрешение) на выполнение экспериментальной части работы.

- 5. Выполнить экспериментальную часть лабораторной работы, оформить по полученным данным предварительный протокол, таблицы, графики. Показать полученные результаты преподавателю и получить разрешение на завершение работы.
- 6. Оформить протокол отчета по выполненной лабораторной работе, включающий цель, теоретическую часть, рабочую формулу, экспериментальную часть, таблицы, графики, расчет погрешности измерения, выводы.
- 7. Показать протокол отчета по выполненной лабораторной работе преподавателю, получить зачет по лабораторной работе с указанием количества баллов, полученных за ее выполнение, и роспись преподавателя с датой на протоколе.

Методические указания для решения задач

- 1. Приступая к решению задачи, хорошо вникните в её смысл и постановку вопроса. Установите все ли данные, необходимые для решения задачи, приведены. Недостающие данные можно найти в таблицах. Если позволяет характер задачи, обязательно сделайте схематический рисунок, поясняющий её сущность, это во многих случаях резко облегчает как поиск решения, так и само решение.
- 2. Каждую задачу решайте, как правило, в общем виде (т. е. в буквенных обозначениях), так, чтобы искомая величина была выражена через заданные величины. Решение в общем виде придает окончательному результату особую ценность, ибо позволяет установить определенную закономерность, показывающую, как зависит искомая величина от заданных величин. Кроме того, ответ, полученный в общем виде, позволяет судить в значительной степени о правильности самого решения, например, исходя из соображений размерности.
- 3. Приступая к вычислениям, помните, что числовые значения физических величин всегда являются приближенными. Поэтому при расчетах руководствуйтесь правилами действия с приближенными числами. В частности, в полученном значении вычисленной величины нужно сохранить последним тот знак, единица которого еще превышает погрешность этой величины. Все следующие цифры надо отбросить.
- 4. Получив цифровой ответ, оцените его правдоподобность. Такая оценка может в ряде случаев обнаружить ошибочность полученного результата. Так, например, дальность полета брошенного человеком камня не может быть порядка 1 км, скорость тела не может оказаться больше скорости света в вакууме и т. п.

Методические рекомендации

для самостоятельной работы студентов по освоению дисциплины

- 1. Рекомендуется два уровня самостоятельной проработки материала. Первый на уровне материалов, полученных на лекциях и на практических занятиях. Второй на уровне углубленного изучения материала по учебникам. Работа с учебником требует постоянного уточнения сущности и содержания категорий посредством обращения к энциклопедическим словарям и справочникам. Также рекомендуется использование электронных справочников и систем поиска по ключевым словам в Internet.
- 2. Необходимо прорабатывать материалы с карандашом и бумагой при выводе формул и графической интерпретации результатов.
- 3. Важную роль в самостоятельной работе студентов играет самоконтроль, который рекомендуется осуществлять по контрольным вопросам и заданиям рабочей программы дисциплины.
- 4. Рекомендуется каждому студенту выработать собственные способы запоминания большого объема информации, умение ориентироваться и выделять основополагающие понятия каждого раздела и подраздела дисциплины.

6.2.Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

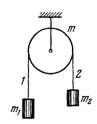
Типовые задачи, используемые при проведении практических занятий по дисциплине «Механика»

	100 00000	multi (Incauluru)
<u>NoNo</u> n/n	Тема	Номера задач по задачнику: Иродов И.Е. Задачи по общей физике: учеб. пособие для вузов / И.Е. Иродов. – М.: БИНОМ. Лаборатория знаний, 2010 – 431 с.
1.	Кинематика материальной точки и твердого тела	1.19, 1.24, 1.29, 1.30, 1.34 – 1.50
2.	Принцип относительности в клас- сической механике	1.6 – 1.9
3.	Динамика материальной точки и системы материальных точек	1.61 – 1.69, 1.73, 1.76, 1.80 – 1.86, 1.88 – 1.91
4.	Законы сохранения	1.117, 1.118, 1.122, 1.126, 1.147–1.151, 1.158–1.161
5.	Столкновения	1.194, 1.198, 1.199, 1.203 – 1.205
6.	Движение в поле тяготения	1.237 – 1.241, 1.246
7.	Динамика твердого тела	1.272, 1.273, 1.277–1.281, 1.284, 1.287, 1.289, 1.292, 1.293
8.	Неинерциальные системы отсчета	1.110 – 1.115
9.	Механика жидкостей и газов	1.367 – 1.370, 1.394, 1.395
10.	Колебательное движение	3.1, 3.3 – 3.6, 3.8, 3.16, 3.17
11.	Волны в сплошной среде и элементы акустики	3.177, 3.179, 3.180, 3.186
12.	Деформация в твердых телах	1.351 – 1.354
13.	Движение при наличии трения	1.87 – 1.89, 1.97 – 1.99

Примерные темы рефератов и теоретических заданий для самостоятельной работы студентов:

- 1) Пример сложного движения твердого тела: плоское движение твердого тела, мгновенная ось вращения,
- 2) Пример сложного движения твердого тела: качение конуса с шарнирно закрепленной вершиной по горизонтальной поверхности.
- 3) Опыты Ньютона по определению связи между гравитационной и инертной массами тела.
- 4) Опыты Г. Кавендиша по определению значения гравитационной постоянной.
- 5) Сложное движение материальной точки при вращательном движении подвижной системы отсчета. Ускорение Кориолиса.
- 6) Проявление сил инерции: маятник Фуко.
- 7) Проявления сил инерции: зависимость веса тела от географической широты местности.
- 8) Приливы.
- 9) Гравитационное взаимодействие между шаровым слоем и точечной пробной массой.
- 10) Собственная гравитационная энергия однородного шара, гравитационный коллапс и критический гравитационный радиус.
- 11) Нецентральный абсолютно упругий удар, диаграмма (треугольник) импульсов, углы рас-
- 12) Законы Кеплера как следствие законов движения частицы в центральном консервативном силовом поле.
- 13) Отталкивание частицы от силового центра, прицельный параметр, угол рассеяния.
- 14) Скорость звука в газовой среде (на основе модели идеального газа).
- 15) Акустический эффект Доплера.
- 16) Идеальная жидкость. Закон Паскаля. Гидростатическое давление. Закон Архимеда. Условие

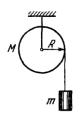
плавания тел.


- 17) Движение идеальной жидкости. Трубка тока. Уравнение неразрывности. Уравнение Бернулли. Давление в движущейся жидкости.
- 18) Предпосылки создания А. Эйнштейном специальной теории относительности. Постулаты Эйнштейна. Преобразования Лоренца и следствия из них.

При выполнении индивидуального задания студент по заданной теме оформляет отчет (реферат или презентацию) в электронном виде. Предварительное обсуждение с преподавателем хода выполнения индивидуальных заданий производится как непосредственно, так и с помощью электронной почты.

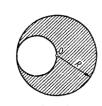
Типовые задания итоговой контрольной работы

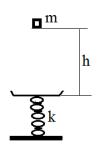
Вариант 1


- 1. Материальная точка начинает двигаться по окружности радиусом R=12,5 см с постоянным тангенциальным ускорением $a_{\tau}=0,5$ см/с². Определить: 1) момент времени, при котором вектор полного ускорения \vec{a} точки образует с вектором скорости \vec{v} угол $\alpha=45^{\circ}$; 2) путь, пройденный движущейся точкой за это время.
- 2. Из духового ружья стреляют в спичечную коробку, лежащую на расстоянии l=30 см от края стола. Пуля массы m=1 г, летящая горизонтально со скоростью $v_0=150$ м/с, пробивает коробку и вылетает из нее со скоростью $v_0/2$. Масса коробки M=50 г. При каком максимальном значении коэффициента трения μ между коробкой и столом коробка упадет со стола?
- 3. Решите задачу о движении двух грузов на блоке в случае, когда блок имеет конечную массу M. Блок представляет собой сплошной диск радиуса R. Массы грузов равны m_1 и m_2 . Трение в оси блока отсутствует. Нить нерастяжима, проскальзывание нити относительно блока отсутствует. В каком случае можно пренебречь массой блока?

4. Математический маятник с длиной l_0 = 40 см и тонкий однородный стержень длины l = 60 см совершают синхронно малые колебания вокруг горизонтальной оси. Найти расстояние от центра масс стержня до этой оси.

Вариант 2


- 1. Частица движется в положительном направлении оси х так, что ее скорость меняется по закону $v = \sqrt{b(x)}$, где b>0 некоторая постоянная. Имея в виду, что в начальный момент времени t=0 частица находилась в точке x=0, найти:
- зависимость от времени скорости и ускорения частицы:
- среднюю скорость частицы за время, в течении которого она пройдет первые s метров пути.
- 2. Вычислить радиус круговой экваториально орбиты стационарного спутника Земли, который остается неподвижным относительно ее поверхности. Какова скорость его движения?
- 3. На однородный сплошной цилиндр массы M и радиуса R плотно намотана легкая нить, к концу которой прикреплен груз массы m. В момент $\tau = 0$ система пришла в движение. Пренебрегая трением в оси цилиндра, найти зависимость от времени: 1) модуля угловой скорости цилиндра, 2) кинетической энергии всей системы.


4. Физический маятник совершает малые колебания вокруг горизонтальной оси О с круговой частотой ω_1 =15,0 рад/с. Если в положении равновесия к нему прикрепить под осью О на расстоянии l=20 см от нее материальную точку с массой m=50 г, то частота колебаний станет равной ω_2 =10,0 рад/с. Найти момент инерции первоначального маятника относительно оси О.

Вариант 3

- 1. Тело брошено горизонтально со скоростью v_0 = 15 м/с. Пренебрегая сопротивлением воздуха, определить радиус кривизны траектории тела через t=2 с после начала движения.
- 2. Планета, имеет форму тонкого кольца радиуса R и массы M. Найдите силу, с которой эта планета притягивает маленькое тело массы m, расположенное на оси кольца на расстоянии r от его плоскости. Покажите, что на больших расстояниях от планеты полученное выражение для силы взаимодействия превращается в закон всемирного тяготения для материальных точек. По-кажите, что вблизи центра кольца сила притяжения линейно зависит от Γ .
- 3. Однородный диск радиуса R имеет круглый вырез (см. рис.). Масса оставшейся (заштрихованной) части диска равна m. Найти момент инерции такого диска относительно оси, перпендикулярной плоскости диска и проходящей:
 - а) через точку О, б) через его центр масс.

4. Тело массы m упало с высоты h на чашку пружинных весов, см. рис., и прилипло. Начали происходить малые колебания тела на пружине в вертикальном направлении. Массы пружины и чашки пренебрежимо малы, жесткость пружины k. Найти амплитуду колебаний и их энергию.

Вариант 4

- 1. Цилиндр радиуса R = 20 см вращается вокруг своей оси с частотой n = 20 об/мин. Вдоль образующей цилиндра движется тело с постоянной скоростью v = 30 см/с относительно поверхности цилиндра. Определить полную скорость u и ускорение a этого тела.
- 2. Докажите, что два одинаковых шара после нецентрального удара разлетаются под прямым углом, если первоначально один из шаров покоился.
- 3. На ступенчатый блок (см. рис.) намотаны в противоположных направлениях две нити. На конец одной нити действуют постоянной силой F, а к концу другой нити прикреплен груз массы m. Известны радиусы R_1 и R_2 и его момент инерции J относительно оси вращения. Трения нет. Найти угловое ускорение блока.

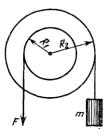


Рис. 1.54

4. Пусть Земля — однородный шар. Имеется шахта, пронизывающая Землю по оси вращения (от полюса до полюса). Пренебрегая сопротивлением воздуха, найти: 1) уравнение движения тела, упавшего в шахту, 2) скорость тела в центре Земли, 3) время полета до противоположного конца шахты.

Оценочные средства при выполнении лабораторных работ в Общем физическом практикуме:

- 1) Контрольные вопросы по конкретной лабораторной работе (сформулированы в руководстве к каждой лабораторной работе).
- 2) Результаты измерений и оформленный протокол лабораторной работы.
- 3) Оценка предварительной погрешности метода измерений и погрешности конечного результата.

Вопросы для проведения промежуточной аттестации по итогам освоения дисциплины Вопросы экзамена

- 1. Понятия материальной точки и абсолютно твердого тела. Размерные и безразмерные величины. Формула размерности. Система единиц интернациональная. Что означает термин «однородность и изотропность пространства»? Время в классической физике, принцип причинности.
- 2. Правая прямоугольная система координат. Векторы в декартовой системе координат. Операции с векторами: сложение и вычитание, скалярное произведение, векторное произведение координатное представление операций. Полярная, цилиндрическая и сферическая координатные системы.
- 3. <u>Кинематика материальной точки</u>: Система отсчета, траектория движения материальной точки, координатное представление положения материальной точки и с помощью радиусвектора, проекции радиус-вектора на координатные оси. Представление траектории в виде совокупности элементарных участков. Путь и перемещение, скорость и ускорение представления в прямоугольной системе координат с разложением на координатные оси.
- 4. Тангенциальная и нормальная компоненты ускорения материальной точки. Мгновенный радиус кривизны элемента траектории.
- 5. Кинематический анализ движения тела, брошенного под углом к горизонту (поле силы тяжести однородное, сопротивлением воздуха пренебрегаем): зависимости v_x (t), v_y (t), x(t) и y(t), дальность полета, высота подъема, радиус кривизны произвольной точки траектории.
- 6. <u>Кинематика выделенной точки механического тела, вращающегося вокруг неподвижной оси:</u> элементарный угол поворота как вектор, угловая скорость и угловое ускорение точки. Связь между линейными и угловыми характеристиками ее движения.
- 7. Переносное и относительное движения материальной точки во вращающейся системе отсчета (относительно абсолютной системы). Ускорение Кориолиса.
- 8. <u>Первый закон Ньютона</u>: формулировка и смысл. Инерциальные системы отсчета. Принцип относительности Галилея.
- 9. <u>Преобразования Галилея, инварианты преобразования</u>: условно неподвижная и подвижная системы отсчета, абсолютность времени и инвариантность длин отрезков, треугольник радиус-векторов и определение из него связь между скоростями и ускорениями материальной точки в двух системах отсчета, при каких условиях ускорение материальной точки будет инвариантом преобразования.
- 10. Второй закон Ньютона. Формулировка второго закона Ньютона. Сила как характеристика взаимодействия между механическими телами. Принцип линейной суперпозиции сил. Импульс тела и импульс силы. Координатная запись второго закона Ньютона.
- 11. Инертная масса тела, свойства массы в классической механике.
- 12. Второй закон Ньютона для тел, теряющих массу или приобретающих дополнительную массу (зависимость массы тела от времени). Реактивная сила. Пример: формула Циолковского.
- 13. Третий закон Ньютона. Область действия законов Ньютона.
- 14. Силы в механике. Сила трения, сухое и вязкое трение. Класс упругих сил. Взаимодействие тел при непосредственном контакте и на расстоянии (понятие силового поля поле силы Кулона, гравитационное поле).

- 15. Силы инерции при поступательном движении системы отсчета. Невесомость и перегрузка...
- 16. Центробежная сила инерции. Сила Кориолиса.
- 17. Законы Кеплера. Постоянная Кеплера. Закон всемирного тяготения Ньютона.
- 18. Понятия силы тяжести и веса тела, ускорение свободного падения на Земле, его зависимость от высоты над уровнем моря. Понятие напряженности гравитационного поля.
- 19. Гравитационная масса, пропорциональность гравитационной и инертной масс механического тела. Принцип эквивалентности сил инерции и тяготения.
- 20. Эффективное (геофизическое) ускорение свободного падения. Его зависимость от широты местности (для шарообразной модели Земного шара).
- 21. Задача о гравитационном взаимодействии материальной точки, помещенной внутрь однородной тонкой сферы, с этой сферой. Изменение ускорения свободного падения с глубиной в приближении однородности Земного шара.
- 22. Полный импульс механической системы, как можно изменить полный импульс механической системы, при каких условиях полный импульс сохраняется (закон сохранения импульса).
- 23. <u>Центр масс механической системы</u>, *x*, *y* и *z* координаты центра масс системы материальных точек, скорость центра масс. Связь между скоростью центра масс, массой системы и ее полным импульсом. Система отсчета, связанная с центром масс.
- 24. <u>Механическая работа</u>. Общее определение элементарной работы и работы силы на конечном участке траектории. Различие в работе потенциальной силы и силы непотенциальной. Работа силы трения. Работа силы упругости.
- 25. Понятие кинетической энергии механического тела. Как влияет положительная работа силы на кинетическую энергию перемещаемого тела. Преобразование кинетической энергии тела при переходе из одной системы отсчета в другую.
- 26. Работа гравитационной силы. Гравитационная сила сила консервативная.
- 27. <u>Потенциальная энергия взаимодействия</u>. Работа потенциальной силы и силовая функция. Связь между изменением кинетической энергии и приращением силовой функции. Переход от силовой функции к понятию потенциальной энергии. Потенциальная энергия взаимодействия и потенциальная энергия тела во внешнем силовом поле относительность этих понятий. Полная механическая энергия механической системы, закон сохранения механической энергии.
- 29. Космические скорости; вывод выражений для них.
- 30. <u>Понятие момента силы</u>. Момент силы относительно заданной оси вращения Z. Вычисление проекции момента силы на заданную ось Z. Тангенциальные силы. Момент пары сил.
- 31. <u>Момент импульса системы материальных тел.</u> Понятие момента импульса. Вычисление проекции момента импульса на заданную ось вращения Z. Полный момент импульса системы материальных точек.
- 32. Связь между полным моментом импульса механической системы и моментами сил, действующими на нее (уравнение движения в терминах моментов). Как можно изменить полный момент импульса механической системы. При каких условиях полный момент импульса механической системы сохраняется (закон сохранения полного момента импульса механической системы).
- 33. Вращение твердого тела вокруг неподвижной оси, уравнение вращательного движения в проекции на ось, момент инерции тела. Основное уравнение динамики вращательного движения вокруг неподвижной оси (с учетом возможного изменения момента инерции тела при вращении).

- 34. Свободные оси вращения, главные моменты инерции. Теорема Штейнера. Вычисление момента инерции однородного диска и тонкого стержня относительно заданной оси.
- 35. Гироскоп, гироскопические силы, гироскопический компас, прецессия волчка.
- 36. Деформация. Элементарные деформации растяжения-сжатия и сдвига. Коэффициент Пуассона. Механические напряжения.
- 37. Закон Гука. Модуль Юнга. Диаграмма растяжения-сжатия. Характерные значения механических напряжений.
- 38. Работа по деформации. Энергия упругой деформации.
- 39. Соударение двух тел (в приближении шарообразности их формы). Понятие удара. Мгновенные ударные силы и их импульс. Фазы удара. Постулаты элементарной теории удара.
- 40. Абсолютно упругий и абсолютно неупругий удары их определение и используемые законы сохранения (в приближении шарообразности сталкивающихся тел).
- 41. Удар материальной точки о преграду. Нормальные и тангенциальные компоненты скоростей налета и разлета. Коэффициент восстановления. Импульс, передаваемой преграде.
- 42. Прямой центральный удар двух поступательно движущихся шаров.
- 43. Нецентральное столкновение двух шаров.
- 44. Диаграммы рассеяния при абсолютно упругом столкновении двух частиц при условии неподвижности одной частицы перед столкновением.
- 45. Характеристики колебательного процесса. Собственные и вынужденные колебания. Собственные колебания пружинного маятника без учета сил сопротивления: уравнение колебаний, определение амплитуды и начальной фазы колебаний, закон сохранения энергии при гармонических собственных колебаниях.
- 46. Физический маятник и крутильный маятник уравнения колебаний, период колебаний.
- 47. Свободные затухающие колебания на примере пружинного маятника. Уравнение затухающих колебаний и его решение, коэффициент затухания, частота и условный период колебаний, определение начальной амплитуды и начальной фазы колебаний, логарифмический декремент и добротность. Потеря механической энергии за один период при слабом затухании.
- 48. Вынужденные колебания на примере механической системы типа пружинного маятника. Установившиеся колебания, амплитуда колебаний, резонанс, резонансная частота, отставание колебаний по фазе от колебаний вынуждающей силы.
- 49. Сложение колебаний одного направления. Метод векторных диаграмм. Условия минимума и максимума амплитуды результирующего колебания в зависимости от разности фаз колебаний.
- 50. Механические волны, распространяющиеся в упругой среде. Элемент среды. Периодическая деформация элементов среды. Волны продольные и поперечные. Уравнение бегущей волны, гармоническая волна, периодичность во времени и пространственная периодичность (длина волны). Волновой фронт и волновая поверхность, плоская, сферическая и цилиндрическая волны.
- 51. Распространение колебаний в упругой среде. Для плоской гармонической волны: смещение элемента среды от положения равновесия, скорость смещения, относительная деформация элемента и связь скорости смещения с относительной деформацией. Одномерное дифференциальное уравнение для плоской волны.
- 52. Скорость распространения упругих волн на примере плоской волны (вывод).
- 53. Энергия плоской волны. Кинетическая энергия элемента среды. Потенциальная энергия упругой деформации этого элемента. Полная механическая энергия элемента и вывод о характере ее изменения. Объемная плотность энергии и плотность потока энергии (вектор Умова).
- 54. Постулаты Эйнштейна. Преобразование компонент скорости при переходе из одной ИСО в другую.

- 55. Следствия из преобразований Лоренца: относительность длины движущейся линейки, относительность промежутков времени
- 56. Импульс и энергия в СТО.

7. Данные для учета успеваемости студентов в БАРС

7.1 Учебный рейтинг по дисциплине «Механика» при проведении промежуточной аттестации в форме экзамена

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности при проведении промежуточной аттестации в форме экзамена

1	2	3	4	5	6	7	8	9
Семестр	Лекции		Практиче- ские заня- тия	Самостоя- тельная работа	тестирова-	учеонои	Промежу- точная аттестация	Итого
1	10	0	20	20	0	10	40	100

Программа оценивания учебной деятельности студента

Семестр 1

Лекции

Посещаемость, опрос, активность и др. за один семестр — от 0 до 10 баллов. 10 баллов при 100% посещаемости и при наличии качественных конспектов лекций. При неполной посещаемости баллы уменьшаются пропорционально.

Лабораторные занятия

Не предусмотрены

Практические занятия

Посещаемость, активность на аудиторных занятиях, выполнение домашних заданий, выполнение проверочной и контрольной работы — от 0 до 20 баллов. 20 баллов при качественном 100% выполнении учебных заданий.

Самостоятельная работа

Подготовка к практическим занятиям, контрольным работам, работа с дополнительной учебной литературой, ведение конспектов лекций — от 0 до 20 баллов. 20 баллов при регулярном и качественном выполнении заданий.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности – от 0 до 10 баллов

Подготовка реферата/презентации и доклад по данной теме. Качественное и содержательное выполнение задания -10 баллов.

Промежуточная аттестация (экзамен)

Экзамен проводится в устно-письменной форме и предполагает ответ на 2 вопроса экзаменационного билета. Возможны дополнительные уточняющие вопросы.

При проведении промежуточной аттестации:

ответ на «**отлично**» оценивается от **31** до **40** баллов;

ответ на «хорошо» оценивается от 21 до 30 баллов;

ответ на «**удовлетворительно**» оценивается от 10 до 20 баллов:

ответ на «**неудовлетворительно**» оценивается от **0** до **9** баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 1-й семестр по дисциплине «Механика» при проведении промежуточной аттестации в форме экзамена составляет **100** баллов.

Таблица 2.2. Таблица пересчета полученной студентом суммы баллов по дисциплине «Механика» в оценку (экзамен)

81 – 100	«отлично»
61 – 80 баллов	«хорошо»
50 – 60 баллов	«удовлетворительно»
Менее 50 баллов	«неудовлетворительно»

Оценка студентам, успешно прошедшим обучение по дисциплине, может быть проставлена без сдачи ими экзамена на основании рейтинговой оценки по решению преподавателя.

Текущие индивидуально набранные студентами баллы доводятся до их сведения 2 раза за семестр – в середине и конце семестра.

7.2 Учебный рейтинг по дисциплине «Механика» при проведении промежуточной аттестации в форме зачёта

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности при проведении промежуточной аттестации в форме зачёта

	1	2	3	4	5	6	7	8
Семестр 1	Лекции	Лабора- торные занятия	Практиче- ские заня- тия	Самостоя- тельная работа	Автомати- зированное тестирова- ние	учебной	Промежу- точная аттестация	Итого
	0	40	0	40	0	20	0	100

Программа оценивания учебной деятельности студента

Семестр 1.

Лекции – не предусмотрены.

Лабораторные занятия

Итоговые 40 баллов предусматривают выполнение 10 лабораторных работ. Требуется качественное выполнение всех заданий, входящих в них, и соответствующее оформление отчета по лабораторной работе по принятым правилам оформления. Максимальный балл по одной выполненной лабораторной работе -4^1 . При неполном выполнении заданий баллы уменьшаются пропорционально.

Практические занятия – не предусмотрены.

Самостоятельная работа Подготовка к теоретическим и заключительным отчетам по лабораторным работам, работа с дополнительной учебной литературой, указанной в описаниях к лабораторным работам, выполнение вычислений и оформление протоколов выполненных работ — от 0 до 40 баллов. 40 баллов при качественной подготовке к отчетам по всем лабораторным работам.

Автоматизированное тестирование – не предусмотрено.

Другие виды учебной деятельности

¹ При уменьшении аудиторных часов занятий по объективным обстоятельствам и снижении общего числа выполняемых работ максимальный балл за выполнение одной лабораторной работы может быть увеличен до 5.

Расчет для каждой выполняемой работы предварительной погрешности используемого метода и итоговой погрешности в определении искомой величины — от 0 до 4 баллов за одну выполненную работу. Суммарный максимальный балл за данный вид учебной деятельности — 20.

Промежуточная аттестация (зачет)

Зачет выставляется по результатам выполнения лабораторных работ. Итоговое оценивание проводится на основе суммы баллов, полученных за выполнение лабораторных работ, самостоятельную работу и другие виды учебной деятельности.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 2 семестр по дисциплине «Механика» при проведении промежуточной аттестации в форме зачёта составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Механика» в оценку (зачет):

60 баллов и более	«зачтено»	
меньше 60 баллов	«не зачтено»	

Оценка студентам, успешно прошедшим обучение по дисциплине, может быть проставлена без сдачи ими экзамена на основании рейтинговой оценки по решению преподавателя.

Текущие индивидуально набранные студентами баллы доводятся до их сведения 2 раза за семестр – в середине и конце семестра.

8. Учебно-методическое и информационное обеспечение дисциплины

- 1. *Сивухин Д.В.* Общий курс физики: учеб. пособие в 5 т. **Т. 1**: Механика. М.: ФИЗМАТЛИТ, 2010 и 2014 гг. Гриф МО (2010 г. изд. в ОУОЕН НБ СГУ 114 экз. и 2014 г. изд. в ОУОЕН 31 экз.).
- 2. *Иродов И.Е.* Задачи по общей физике: учеб. пособие для вузов / И.Е. Иродов. 8 изд. М.: $\sqrt{8}$ БИНОМ. Лаборатория знаний, 2010-431 с.
- 3. Механика. Основные законы : учеб. пособие / И. Е. Иродов. 10-е изд. Москва : БИНОМ. Лаб. знаний, 2010. Свободно в ОУОЕН 44 экз. То же: изд. 6-M., Лаб. Базовых знаний, 2003. Свободно ОУОЕН 166 экз.
- 4. *Савельев И.В.* Курс общей физики [Электронный ресурс]: учеб. пособие : / И.В. Савельев = A course in general physics. М. : «Лань», 2011. URL: \http://e.lanbook.com/books/?p f 1 65=918&letter=%D0%A1.—ЭБС «ЛАНЬ».
- 5. Савельев, И. В. Курс общей физики: учебник для вузов: в 3 томах / И. В. Савельев. 17-е изд., стер. Санкт-Петербург: Лань, 2021 Том 1: Механика. Молекулярная физика 2021. 436 с. ISBN 978-5-8114-8003-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/171889.
- 6. Савельев, И. В. Сборник вопросов и задач по общей физике: учебное пособие для вузов / И. В. Савельев. 10-е изд., стер. Санкт-Петербург: Лань, 2022. 292 с. ISBN 978-5-8114-9199-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/187820.
- 7. Описания лабораторных работ Общего физического практикума СГУ: http://www.sgu.ru/node/302/uchebnaya-rabota/obshchiy-fizicheskiy-praktikum.

б) программное обеспечение и Интернет-ресурсы

1. Microsoft Windows XP Professional, Microsoft Windows 7, Microsoft Windows 8 – лицензия № 61137891).

- 2. Microsoft Office профессиональный 2007 (Word, Excel, Access, PowerPoint, Outlook, InfoPath, Publisher) лицензия № 42226296.
- 3. Microsoft Office Standart 2010 лицензия № 67334291.
- 4. Spaysep Google Chrome.
- 5. http://library.sgu.ru/ Зональная научная библиотека им. В.А. Артисевич Саратовского государственного университета им. Н.Г. Чернышевского.
- 6. http://www.physbook.ru/ : Электронный учебник физики.
- 7. Лабораторный практикум по физике с использованием виртуальных приборов. URL: http://www.cdi.spbstu.ru/CD_ED/virt-lab/labview.html.

9. Материально-техническое обеспечение дисциплины

- Учебные аудитории 3-го и 8-го учебных корпусов Саратовского государственного университета с возможностью использования мультимедийной техники.
- Мультимедийное оборудование Института физики СГУ.
- Помещение «Лаборатории механики и молекулярной физики» Общего физического практикума Института физики СГУ (3-й учеб. корпус). Помещение соответствует действующим санитарным и противопожарным нормам, а также требованиям техники безопасности и охраны труда при проведении учебных работ.
- Действующая экспозиция Музея физических приборов и лекционных демонстраций (см. п. 9.1 Перечень лекционных демонстраций по дисциплине).
- Действующие учебные лабораторные установки Общего физического практикума Института физики СГУ по дисциплине « Механика» (см. п.9.2 «Перечень действующих лабораторных работ Общего физического практикума»).

9.1 Перечень используемых лекционных демонстраций по дисциплине «Механика»

ЛД 1.1	Тангенциальное направление скорости
лд 1.2	Инерция гири (1-й закон Ньютона)
лд 1.3	Законы Ньютона – тележки на «воздушной подушке»
лд 1. 3 ЛД 1.4	«Послушная» и «непослушная» катушки (момент силы и момент им-
лд 1.4	пульса)
ПП 15	
ЛД 1.5	Сложение поступательного и вращательного движений
ЛД 1.6	Тележка Поля (сохранение импульса)
ЛД 1.7	Пушка (сохранение импульса)
ЛД 1.8	Векторный характер импульса (падение шара под углом на плоскость)
ЛД 1.9	Скамья Жуковского с гантелями (сохранение момента импульса)
ЛД 1.10	Математический маятник (сохранение энергии)
ЛД 1.11	Шарик на нитке переменной длины (сохранение момента импульса);
	случай наматывания нитки на стержень (невыполнение закона сохране-
	ния момента импульса)
ЛД 1.12	Движение ракеты с воздушным «топливом»
ЛД 1.13	Движение ракеты с жидким «топливом»
ЛД 1.14	Упругий удар шаров
ЛД 1.15	Неупругие соударения
ЛД 1.16	Упругие соударения на дорожке с «воздушной подушкой»
ЛД 1.17	Распространение импульса по цепочке шаров
ЛД 1.18	Упругий удар о стенку
ЛД 1.19	Действующая модель опыта Кавендиша
ЛД 1.20	Скатывание с наклонной плоскости сплошного и полого цилиндров оди-
	наковой массы
ЛД 1.21	Перевороты велоколеса на скамье Жуковского (сохранение момента им-

	пульса системы)
ЛД 1.22	Перемещение молота на скамье Жуковского (момент импульса системы)
ЛД 1.23	Вращение тел различной формы на установке с мотором (свободные оси
, ,	вращения)
ЛД 1.24	Велогироскоп (устойчивость оси гироскопа)
ЛД 1.25	Прецессия велогироскопа
ЛД 1.26	Прецессия массивного маховика
ЛД 1.27	Прецессия волчка
ЛД 1.28	Однорельсовая дорога
ЛД 1.29	Массивный шар на тележке (система отсчета с тангенциальным ускоре-
	нием)
ЛД 1.30	Математический маятник на тележке
ЛД 1.31	Центробежная сила инерции:
	- отвесы на вращающейся платформе;
	- модель сплющивания Земли;
	- центробежный регулятор (регулятор Уатта);
TT 1 22	- «бегущая» цепочка;
ЛД 1.32	Маятник Фуко
ЛД 1.33	Модель маятника Фуко
ЛД 1.34	Движение шарика на вращающейся платформе (сила Кориолиса)
ЛД 1.35	Рамка Любимова
ЛД 1.36	Сближение двух картонных пластинок
ЛД 1.37 ЛД 1.38	Шарик в потоке воздуха
лд 1.3 0 ЛД 1.39	Эффект Магнуса (скатывание цилиндра) Вихри из конусного барабана
ЛД 1.39	Вихри – смерчи в воронке
лд 1. 4 0 ЛД 1.41	Математические маятники
ЛД 1.42	Пружинный маятник
лд 1.43	Незатухающие колебания
ЛД 1.44	Затухающие колебания систем с разной добротностью
ЛД 1.45	Бегущая волна вдоль резинового шнура
ЛД 1.46	Волновая машина
ЛД 1.47	Распространение деформации возмущения вдоль упругого стержня
ЛД 1.48	Стоячая волна на закрепленной струне
ЛД 1.49	Падение тел в безвоздушном пространстве.
ЛД 1.50	Падение металлического и бумажного кружков.
ЛД 1.51	Отклонение от прямолинейного движения под действием силы.
ЛД 1.52	Деформация тела при ускоренном движении.
ЛД 1.53	Ломание палки в бумажных кольцах.
ЛД 1.54	Опыт с маятниками.
ЛД 1.55	Момент инерции (маятник Обербека).
ЛД 1.56	Момент силы (маятник Обербека).
ЛД 1.57	Движение центра масс (двух конусное тело).
ЛД 1.58	Опрокидывающийся гироскоп.
0.2 17	

9.2 Перечень действующих лабораторных работ Общего физического практикума Лаборатория «Механика. Молекулярная физика».

Дисциплина: Механика

ЛР	1.	Точное взвешивание те	ЭЛ
----	----	-----------------------	----

- **ЛР 2.** Измерение моментов инерции тел с помощью крутильного маятника
- **ЛР 3.** Измерение моментов инерции тел с помощью трифилярного подвеса.

- **ЛР 4.** Проверка основного закона вращательного движения.
- **ЛР 5.** Гироскоп.
- **ЛР 6.** Измерение ускорения силы тяжести методом физического маятника.
- **ЛР 7.** Крутильный баллистический маятник.
- **ЛР 8.** Измерение скорости полета пули.
- **ЛР 9.** Изучение законов столкновения тел.
- **ЛР 10.** Наклонный маятник.
- **ЛР 11.** Проверка закона сохранения момента количества движения.
- **ЛР 12.** Исследование колебаний связанных маятников.
- **ЛР 13.** Исследование колебаний пружинного маятника.
- **ЛР 14.** Измерение скорости звука в воздухе методом интерференции.
- **ЛР 15.** Измерение скорости звука в воздухе методом стоячей волны.
- **ЛР 16.** Измерение модулей упругости из растяжения.
- **ЛР 17.** Измерение модулей упругости из изгиба.
- **ЛР 18.** Измерение модулей упругости из кручения.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки бакалавров 11.03.02 «Инфокоммуникационные технологии и системы связи» и профилю подготовки «Инфокоммуникационные технологии в системах радиосвязи»

Автор: к.ф.-м.н., доцент С.В. Овчинников.

Программа рассмотрена и одобрена на заседании кафедры общей физики от 18 октября 2021 г., протокол № 2.