МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАР-СТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Н.Г. ЧЕРНЫШЕВСКОГО» Институт физики

УТВЕРЖДАЮ
Директор института
проф., д.ф.-м.н.
С.Б. Вениг
20_ г.

Рабочая программа дисциплины Методика использования межпредметных связей в процессе решения задач по физике

Направление подготовки бакалавриата 44.03.01 Педагогическое образование

Профиль подготовки бакалавриата Физика

Квалификация (степень) выпускника

Бакалавр

Форма обучения Заочная

> Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватели- разработчики	Железовский Борис Емельянович Бурова Татьяна Геннадиевна	or my	
Председатель НМК	Скрипаль Анатолий Владимирович	AGN	
Заведующий кафедрой	Бурова Татьяна Геннадиевна	Son .	
Специалист Учебного управления	Юшинова Ирина Владимировна	077)	

THE STATE OF

1. Цели освоения дисциплины

Целями освоения дисциплины «Методика использования межпредметных связей в процессе решения задач по физике» являются: формирование у студентов компетентностно-ориентированных знаний, умений и навыков по изучению методических последствий изменений в физике, обусловленных сменой диады "экспериментальная физика — теоретическая физика" на триаду "экспериментальная физика — теоретическая физика — вычислительная физика" и отражение их в обучении решению физических задач в средней школе в качестве неотъемлемых компонентов системы универсальных, общепрофессиональных и профессиональных компетенций бакалавра. Формирование профессиональной компетентности бакалавра посредством подготовки студентов к обучению учащихся применению физических знаний при решении учебных и олимпиадных задач в сфере среднего школьного (основного, полного, вариативного) и дополнительного образования по физике.

2. Место дисциплины в структуре ООП

Дисциплина «Методика использования межпредметных связей в процессе решения задач по физике» (МИМС ПРЗФ) относится к дисциплинам обязательной части Блока 1 «Дисциплины (модули)» учебного плана ООП по направлению 44.03.01 Педагогическое образование, профилю «Физика». Логическая и содержательная связь этой дисциплины с дисциплинами «Механика», «Молекулярная физика и термодинамика» «Электричество и магнетизм», «Оптика», «Атомная и ядерная физика» основана на использовании основных физических понятий, определений, формулировок физических законов и их использования применительно к конкретным физическим явлениям и процессам. Связь с еще одной фундаментальной дисциплиной — математическим анализом основана на широком применении математических приемов и методов в процессе решения физических задач.

Использование межпредметных связей в процессе решения физических задач позволяет заложить у студентов, а в последующем — у школьников, основу единого восприятия естественнонаучной картины мира как с точки зрения математических и естественнонаучных дисциплин, так и с точки зрения гуманитарных (экономических) дисциплин, что, в свою очередь, отражает современные тенденции гуманизации и гуманитаризации среднего и высшего образования. Для успешного освоения данной дисциплины необходимы знания школьного курса физики, умения использовать методы элементарной математики.

Освоение курса МИМС ПРЗФ способствует более успешному изучению дисциплин «Общая и экспериментальная физика», «Основы теоретической физики», «Математические методы решения физических задач», «Методы решения олимпиадных задач», «Экспериментальная физика и компьютерное моделирование физических процессов», «Методика воспитания и обучения физике».

3. Результаты обучения по дисциплине

Код и наименование ком-	Код и наименование инди-	Результаты обучения	
петенции	катора (индикаторов) до-		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.	стижения компетенции 1.1_Б.УК-1. Анализирует задачу, выделяя ее базовые составляющие. Осуществляет декомпозицию задачи. 2.1_Б.УК-1. Находит и критически анализирует информацию, необходимую для решения поставленной задачи.	Знать: понятие «физическая задача», её базовые составляющие. Уметь: выделять из условия задачи необходимые для решения межпредметные составляющие, формулируя их краткую запись. Владеть: способами анализа условия задачи. Знать: структуру и содержание курса школьной физики, связь физики с другими науками и возможности использования межпредметных связей и метапредметных результатов при решении задач в учебном процессе. Уметь: применять необходимые законы, формулы и правила в соответствии со ступенью обучения и уровнем сложности задачи, а также согласно изученному на других дисциплинах материалу.	
	3.1_Б.УК-1. Рассматривает различные варианты решения задачи, оценивая их достоинства и недостатки.	Владеть: способами анализа отобранной информации. Знать: классификации задач с межпредметными связями, различные способы их решения. Уметь: подбирать наиболее оптимальный способ решения в соответствии с анализом условия задачи. Владеть: навыками решения задачи различными способами.	
ОПК-5 Способен осуществлять контроль и оценку формирования результатов образования обучающихся, выявлять и корректировать трудности в обучении	3.1_Б.ОПК-5. Применяет практику решения задач как критерий усвоения материала для оценки показателей уровня и динамики развития обучающихся в реальной и виртуальной образовательной среде.	Знать: систему оценки знаний учащихся. Уметь: применять решение задач для первичного закрепления знаний, для проверки усвоения материала, для текущего, промежуточного и итогового контроля знаний учащихся. Владеть: навыками подбора и составления задач для для первичного закрепления знаний, для проверки усвоения материала, для текущего, промежуточного и итогового контроля знаний учащих-	

ПК-2 Способен использовать возможности образовательной среды, образовательного	2.1_Б.ПК-2. Выявляет возможности образовательной среды, образовательного стандарта общего образования для достиже-	ся. Знать: метапредметные и предметные результаты обучения физике. Уметь: посредством решения физических задач формировать ме-
стандарта общего образования для достижения личностных, мета-предметных и предметных результатов обучения средствами преподаваемого предмета	ния личностных, метапредметных и предметных результатов обучения средствами преподаваемого предмета (физика).	тапредметные и предметные результаты обучения. Владеть навыками формулировки метапредметных и предметных результатов обучения при решении физических задач.
ПК-1 Способен осуществлять педагогическую деятельность по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования.	3.1_Б.ПК-1. Использует мето- дологические подходы и мате- матический аппарат при реше- нии задач по физике и астроно- мии.	Знать: формы организации учебной работы учащихся при решении задач по физике. Уметь: проводить уроки решения задач в разных классах. Владеть: навыками грамотного использования физического научного языка; различными технологии решения задач; математическим аппаратом для решения физических задач.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины – 4 зачетные единицы, 144 часа

№ п/ п	Раздел дисци- плины	Се-местр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			ель- гов и сах)	Формы текущего контроля успеваемости (по неделям семестра) Формы промежуточной аттестации (по семестрам)
				Лек	Пр	Лаб	Ср	
1.	Тема 1. 1.1. – 1.5.	1	1,2		6		6	опрос
2.	Тема 2. 2.1. – 2.5. Тема 3. 3.1. – 3.3.	1	3,4		6		6	опрос
	Тема 4. 4.1. – 4.4.	1	5,6		6		6	опрос
4.	Тема 4. 4.5.	1	7,8		6		6	опрос
	Тема 4. 4.6. – 4.7.	1	9, 10		6		6	опрос
	Тема 4. 4.8. – 4.9.	1	11, 12		6		6	опрос
	Тема 4. 4.10. – 4.11.	1	13, 14		6		6	опрос
	Тема 5. 5.1. – 5.4.	1	15, 16		6		6	опрос
	Тема 6. 6.1 – 6.3.	1	17		3		9	опрос
	Промежуточная аттестация – 36ч.	1						Дифференцированный зачёт
	ИТОГО – 144ч.			0	51	0	57	

Содержание дисциплины

Содержание лекционных и практических занятий, а также темы для самостоятельной работы студентов в рамках дисциплины МИМС ПРФЗ:

Тема 1. Общие вопросы решения физических задач.

- 1.1. Физическая формулировка и математическая форма записи задачи.
- 1.2. Классификация физических задач по требованию.
- 1.3. Классификация физических задач по содержанию.
- 1.4. Классификация физических задач по способу задания.
- 1.5. Классификация физических задач по способу решения.

Тема 2. Этапы решения физической задачи.

- 2.1. Анализ физического явления.
- 2.2. Формулировка идеи решения.
- 2.3. Составление систем уравнений, отвечающих содержанию задачи.
- 2.4. Решение задачи в общем виде.
- 2.5. Численный расчет.

Тема 3. Анализ решения.

- 3.1. Проверка размерностей выражений.
- 3.2. Оценка достоверности числовых значений.
- 3.3. Предельные случаи.

Тема 4. Использование геометрических методов при решении физических задач.

- 4.1. Относительный характер движения.
- 4.2. Теорема сложения скоростей.
- 4.3. Изменение системы отсчета.
- 4.4. Использование мгновенного центра скоростей.
- 4.5. Условия равновесия тел под действием плоской системы сходящихся сил.
- 4.6. Упругий удар.
- 4.7. Изменение импульса в процессе движения.
- 4.8. Кулоновское взаимодействие нескольких тел.
- 4.9. Расчет магнитных полей, создаваемых различными источниками.
- 4.10. Задачи на сложение колебаний с различными амплитудами и фазами.
- 4.11. Многолучевая интерференция и дифракция.

Тема 5. Задачи с физико-химическим содержанием.

- 5.1. Электролиз.
- 5.2. Термодинамический анализ физико-химических процессов.
- 5.3. Строение атома.
- 5.4. Межатомное взаимодействие.

Тема 6. Задачи с физико-биологическим содержанием.

6.1. Интенсивность электромагнитного излучения отдельных источников.

- 6.2. Радиоактивное излучение.
- 6.3. Предельно допустимые дозы облучения.

5. Образовательные технологии, применяемые при освоении дисциплины

В соответствии с требованиями ФГОС ВО по педагогическому направлению подготовки в рамках изучения дисциплины «Методика использования межпредметных связей в процессе решения задач по физике» по профилю «Физика» реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они составляют не менее 50% аудиторных занятий.

Основными педагогическими технологиями при изучении данной дисциплины являются индивидуализация и дифференциация обучения, развивающее обучение, проблемное обучение и деятельностный подход. Специфическими технологиями являются технологии организации учебной деятельности учащихся при обучении физике (формирование физических понятий, обобщение и систематизация знаний, формирование научного мировоззрения, обучение решению физических задач, формирование экспериментальных умений).

При изучении дисциплины используются следующие образовательные технологии:

- педагогическое проектирование;
- дидактические технологии как условие развития оптимизации учебного процесса;
- информационно аналитическое обеспечение учебного процесса и управление качеством образованием школьника;
- информационно-коммуникативные технологии в предметном обучении.

Обучение инвалидов и лиц с ограниченными возможностями здоровья должно проходить с учётом "Методических рекомендаций по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса".

Обучающиеся инвалиды и лица с ограниченными возможностями здоровья должны быть обеспечены печатными и электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Применение электронных образовательных ресурсов регламентируется «Положением об электронных образовательных ресурсах для системы дистанционного обучения IPSILON UNI» П 1.58.01-2016 и «Положением об

электронных образовательных ресурсах в системе создания и управления курсами MOODLE» П 1.58.02-2014.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Виды самостоятельной работы студентов: решение индивидуальных задач по заданной теме; подготовка к отчёту по каждой из решённых задач.

Для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины, а также для проверки выполнения самостоятельных заданий рекомендуются следующие оценочные средства.

Для оценивания результатов обучения в виде знаний используются следующие типы контроля:

- решение задачи;
- индивидуальное собеседование,
- ответы на вопросы.

Задачи должны охватывать содержание всего пройденного материала. Индивидуальное собеседование, письменная работа проводятся по индивидуально подобранным задачам как отдельному учебному элементу программы (дисциплине).

Для оценивания результатов обучения в виде умений и владений используются следующие типы контроля:

- практические контрольные задания, включающие одну или несколько задач (вопросов) в виде краткой формулировки действий (комплекса действий), которые следует выполнить, или описание результата, который нужно получить.

Типы практических контрольных заданий:

- задания на установление правильной последовательности, взаимосвязанности действий, выяснения влияния различных факторов на результаты выполнения задания;
- установление последовательности (описать алгоритм выполнения действия),
- нахождение ошибок в последовательности (определить правильный вариант последовательности действий);
- указать возможное влияние факторов на последствия реализации умения и т.д.
- задания на принятие решения в нестандартной ситуации (ситуации выбора, многоальтернативности решений, проблемной ситуации);
- задания на оценку последствий принятых решений;
- задания на оценку эффективности выполнения действия.

Балльно-рейтинговая оценка знаний студентов бакалавриата осуществляется на основе Положения о балльно-рейтинговой системе оценивания успеваемости, учета результатов текущей и промежуточной аттестации обучающихся, осваивающих образовательные программы бакалавриата, программы специалитета и программы магистратуры П 1.06.04.-2016, разработанного ФГБОУ ВПО «СГУ им. Н.Г. Чернышевского» и утверждённого на заседании Учёного совета СГУ от 30.06.2016.

Контроль за своевременностью и качеством выполнения заданий на самостоятельную работу осуществляется еженедельно на очередном практическом (аудиторного) занятии. Вариант задания на самостоятельное решение типовых задач представлены в фонде оценочных средств дисциплины.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Ce-	Лек-	Лаб. за-	Практ.	Самост.	Авт. те-	Др. виды	Проме-	Итого
мест	ции	нятия	занятия	работа	стиро-	уч. деят.	жуточн.	
p					вание		аттест.	
1	0	0	30	40	0	0	30	100

Программа оценивания учебной деятельности студента

1 семестр

Лекции – не предусмотрены Лабораторные занятия – не предусмотрены

Практические занятия – от 0 до 30 баллов

На практическом занятии текущий контроль осуществляется в форме индивидуального отчёта по решению и объяснению задач из списка студента. Студенту необходимо объяснить решение в форме разбора задачи с учащимися соответствующего класса.

Самостоятельная работа – от 0 до 40 баллов

Для самостоятельного решения студентам даётся список индивидуально подобранных задач для оформления письменно. Оценивается наличие решённых и оформленных задач.

Автоматизированное тестирование – не предусмотрено Другие виды учебной деятельности – не предусмотрены

Промежуточная аттестация – зачет с оценкой – от 0 до 30 баллов

Промежуточная аттестация представляет собой решение 5 любых задач на выбор преподавателя и объяснение решения в форме разбора задачи с учащимися соответствующего класса.

при проведении промежуточной аттестации ответ на «отлично» / «зачтено» оценивается от 26 до 30 баллов; ответ на «хорошо» / «зачтено» оценивается от 21 до 25 баллов; ответ на «удовлетворительно» / «зачтено» оценивается от 16 до 20 баллов; ответ на «неудовлетворительно» / «не зачтено» оценивается от 0 до 15 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 1 семестр по дисциплине «Методика использования межпредметных связей в процессе решения задач по физике» составляет **100** баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине «Методика использования межпредметных связей в процессе решения задач по физике» в оценку (диф. зачёт):

85-100 баллов	«отлично» / «зачтено»
75-84 баллов	«хорошо» / «зачтено»
60-74 баллов	«удовлетворительно» / «зачтено»
0-59 баллов	«не удовлетворительно» / «не зачтено»

- 8. Учебно-методическое и информационное обеспечение дисциплины.
- а) литература:
- 1. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс]: учебное пособие / И.В.Савельев.- 8-е изд., стер.- Санкт-Петербург: Лань, 2018.- 29 с.- ISBN 978-5-8114-0638-8. Б. ц. ЭБС ЛАНЬ.
- 2. Иродов, И. Е. Задачи по общей физике [Текст] : учеб. пособие для вузов / И. Е. Иродов. 8-е изд., стер. Москва : БИНОМ. Лаб. знаний, 2010.(264 экз)
- б) программное обеспечение и Интернет-ресурсы
 Лицензионное программное обеспечение: OS Microsoft Windows 7 (количество 5), OS Microsoft Windows Vista (количество 3), Пакет Microsoft Office 2010 (количество 8), Corel Draw x7 (количество 8)

Бесплатный доступ(не нужна лицензия): Free Pascal 2.6.4 (количество 8). Stellarium (количество 8)

www.physbook.ru) – электронный учебник физики, разработан по принципу свободной энциклопедии

www.phys.fobr.ru – физика для всех

http://questions-physics.ru/ Физика

http://teachmen.csu.ru/ - физика преподавателям и студентам

http://www.vargin.mephi.ru/index.html – физика студентам и школьникам http://w-site.narod.ru – физика в примерах.

http://www.physel.ru – интерактивный учебник по физике (в основе – элементарный учебник физики под ред. академика Г.С. Ландсберга).

http://www.alsak.ru/ – школьная физика для учителей и учеников.

http://www.physics-regelman.com – сборник тестов по всем разделам физики для старшей и средней школы

http://www.vipkro.wladimir.ru/elkursy/html/phisic/shaab.htm Решение задач по физике с использованием интерактивных технологий

9. Материально-техническое обеспечение дисциплины

Для изучения дисциплины должна быть подготовлена аудитория для чтения лекций и проведения практических занятий, оборудованная доской и персональным компьютером.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки бакалавриата 44.03.01 Педагогическое образование, профилю «Физика».

Автор (ы) доцент, к.ф.-м.н.

Вешнев В.П.

Программа одобрена на заседании кафедры физики и методико-информационных технологий от 06.05.2019 года, протокол № 10.