МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕРЖДАЮ Директор института

д.ф.-м.н., проф. Вениг С.Б.

оризики

2021 г.

Рабочая программа дисциплины Практикум по решению профессиональных задач

Направление подготовки магистратуры **03.04.03 Радиофизика**

Профиль подготовки магистратуры Радиоэлектроника

Квалификация (степень) выпускника

Магистр

Форма обучения очная

> Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Глухова Ольга Евгеньевна	(08/18)	(6082021
Председатель НМК	Скрипаль Анатолий Владимирович	A.g.	16.03.2021
Заведующий кафедрой	Глухова Ольга Евгеньевна	(OEII)	16.09.2021
Специалист Учебного управления			

1. Цели освоения дисциплины

Целью освоения дисциплины «Практикум по решению профессиональных задач» является повышение способности обучаемых к решению научно-исследовательских задач путем подробного методологического разбора реальных случаев решения подобных задач, выполненного в формате «кейс-стади» (англ. case study - обучение на примере конкретных ситуаций).

2. Место дисциплины в структуре ООП

Данная учебная дисциплина относится к обязательной части Блока 1 «Дисциплины (Модули)» (Б1.О.05) учебного плана ООП бакалавриата и направлена на формирование у обучающихся общепрофессиональных компетенций (ОПК-1; ОПК-2). Преподавание дисциплины осуществляется в 3 семестре.

Данная дисциплина логически и содержательно связана со следующими дисциплинами Блока 1 «Дисциплины (модули)» учебного плана ООП: «Теория и практика профессиональной деятельности», «Основы организации научно-исследовательской работы», «Математические методы описания радиоэлектронных сигналов».

Для успешного освоения данной дисциплины студент должен обладать знаниями в областях дифференциального и интегрального исчислений, а также теории функции комплексного переменного.

3. Результаты обучения по дисциплине

Код и	Код и наименование	Результаты обучения
наименование	индикатора (индикаторов)	
компетенции	достижения компетенции	
ОПК-1	1.1_Б.ОПК-1. Владеет	Знать физические и
Способен	основными категориями и	математические сведения,
применять	понятиями фундаментальных	необходимые для решения задачи
фундаментальные	разделов физики и	построения математической
знания в области	радиофизики.	модели матричного
физики и	2.1_Б.ОПК-1. Применяет	фотоприемника.
радиофизики для	базовые аналитические и	Уметь осуществлять
решения научно-	численные методы физики и	методологически обоснованный
исследовательских	радиофизики для решения	вывод математической модели
задач, в том числе в	научно-исследовательских	матричного фотоприемника.
сфере	задач (в соответствии с	Владеть основными положениями
педагогической	профилизацией).	двумерной теории выборки.
деятельности.	3.1_ Б.ОПК-1. Способен	
	использовать в своей научно-	
	исследовательской	
	деятельности знание	
	современных достижений	
	физики и радиофизики.	
	4.1_Б.ОПК-1. Обладает	
	достаточной подготовкой для	
	применения приобретенных	
	фундаментальных знаний в	
	области физики и радиофизики	
	в сфере педагогической	
	деятельности.	
ОПК-2	1.1_ Б.ОПК-2. Проводит	Знать методологические причины
Способен	мониторинг актуальных	появления некорректных
определять сферу	проблем физики и радиофизики	математических моделей
внедрения	в области своей	матричного фотоприемника в
результатов	профессиональной	отечественной и зарубежной

Код и	Код и наименование	Результаты обучения			
наименование	индикатора (индикаторов)				
компетенции	достижения компетенции				
прикладных	деятельности.	научной литературе и пути их			
научных	2.1_Б.ОПК-2. Умеет обобщать	преодоления.			
исследований в	отечественный и зарубежный	Уметь проводить формальный,			
области своей	опыт по тематике прикладных	качественный и количественный			
профессиональной	научных исследований в	сравнительный анализ различных			
деятельности.	области своей	вариантов математической модели			
	профессиональной	матричного фотоприемника.			
	деятельности.	Владеть методами практического			
	3.1_Б.ОПК-2. Осуществляет	применения математической			
	критический анализ	модели матричного			
	результатов прикладных	фотоприемника для анализа			
	научных исследований,	влияния его геометрических			
	полученных эффектов.	параметров на спектральные			
	4.1_Б.ОПК-2. Обладает	свойства записываемого			
	представлениями об уровнях	пространственного сигнала.			
	внедрения результатов				
	прикладных научных				
	исследований.				

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	вкл	иды учеби ючая сам работу ст рудоемкос Практи заня Общая трудое мкость	остоятель удентов в сть (в час ческие	ьную и ах)	Формы текущего контроля успеваемости (по неделям семестра) Формы промежуточной аттестации (по семестрам)
1.	Раздел 1. Описание проблемы, постановка задачи и анализ решений, имеющихся в научной литературе (на примере задачи о построении математической модели матричного фотоприемника).	3	1-10	-	10	-	50	Устный / письменный опрос
2.	Раздел 2. Разработка плана решения поставленной научно-исследовательской задачи и его реализация (на примере задачи о построении математической модели матричного фотоприемника).	3	11- 18	-	8	-	40	Устный / письменный опрос

Промежуточная					Зачет
аттестация					Janei
Итого в 3 семестре - 108 ч.	0	18	0	90	
Общая трудоемкость дисциплины		108	3 ч.		

Содержание дисциплины

3 семестр

Раздел 1. Описание проблемы, постановка задачи и анализ решений, имеющихся в научной литературе (на примере задачи о построении математической модели матричного фотоприемника).

- 1.1 Предварительные сведения. Основные положения двумерной теории выборки.
- 1.2 Геометрическая модель и основные параметры реального матричного фотоприемника. Постановка задачи о построении математической модели матричного фотоприемника.
- 1.3 Формальный анализ различных вариантов математической модели матричного фотоприемника, имеющихся в научной литературе. Выявление структуры и составляющих имеющихся моделей, сбор необходимых для их понимания дополнительных математических сведений.
- 1.4 Качественный анализ различных вариантов математической модели матричного фотоприемника, имеющихся в научной литературе. Исключение выявленных некорректных моделей.
- 1.5 Количественный анализ различных вариантов математической модели матричного фотоприемника, имеющихся в научной литературе. Исключение выявленных некорректных моделей.

Раздел 2. Разработка плана решения поставленной научно-исследовательской задачи и его реализация (на примере задачи о построении математической модели матричного фотоприемника).

- 2.1 Анализ методологических причин появления некорректных математических моделей матричного фотоприемника в научной литературе и поиск путей их преодоления. Составление плана решения задачи о построении математической модели матричного фотоприемника.
- 2.2 Методологически обоснованный вывод математической модели матричного фотоприемника. Определение физических соображений, лежащих в основе вывода. Определение математических соображений, лежащих в основе вывода. Составление плана вывода и его реализация, получение формулы модели.
- 2.3 Сравнение полученной формулы математической модели матричного фотоприемника с имеющимися в научной литературе, выявление различий. Определение условий, при которых возможно преобразование полученной формулы к одной из имеющихся. Осуществление этого преобразования. Установление корректной формулы математической модели матричного фотоприемника.
- 2.4 Практическое применение корректной формулы математической модели матричного фотоприемника для анализа влияния его геометрических параметров на спектральные свойства записываемого пространственного сигнала.

5. Образовательные технологии, применяемые при освоении дисциплины

При проведении занятий по данному курсу используются активные и интерактивные формы проведения занятий. Эффективность применения интерактивных форм обучения обеспечивается реализацией следующих условий:

- нахождение проблемной формулировки темы занятий, заданий, вопросов;
- мониторинг личностных особенностей и профессиональной направленности студентов;

• оценка результата совместной деятельности.

Использование интерактивных форм и методов обучения направлено на достижение ряда важнейших образовательных целей:

- стимулирование мотивации и интереса к дисциплине в общеобразовательном, общекультурном и профессиональном плане;
 - повышение уровня активности и самостоятельности обучающихся;
 - развитие навыков анализа, критичности мышления, взаимодействия, коммуникации.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве. При этом основной формой организации учебного процесса является интегрированное обучение лиц с ограниченными возможностями здоровья, т.е. все студенты обучаются в смешенных группах, имеют возможность постоянно общаться со сверстниками, благодаря чему легче адаптируются в социуме.

В институте физики имеются возможности использования дистанционных образовательных технологий в доступных формах: электронные конспекты лекций, онлайн консультации преподавателей. В рамках очной формы обучения инвалиды могут обучаться по индивидуальному плану.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Самостоятельная работа студентов в рамках данного курса включает:

- 1. Работа с литературой и конспектами лекций.
- 2. Подготовка к опросам, проводимым на занятиях.
- 3. Подготовка к зачету.

Фонд оценочных средств оформляется в качестве приложения к учебной рабочей программе дисциплины.

Список контрольных вопросов соответствует содержанию дисциплины и приводится в ФОС к рабочей программе данной дисциплины.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1. Таблица максимальных баллов по видам учебной деятельности:

C	еместр	Лекции	Лабораторные занятия	Практическ ие занятия	Самостоятель ная работа	Автоматизирова нное тестирование	Другие виды учебной деятельност и	Промежуто чная аттестация	Итого
	3	0	0	40	20	0	0	40	100

Программа оценивания учебной деятельности студента

3 семестр

Лекции: не предусмотрены.

Лабораторные занятия: не предусмотрены.

Практические занятия: Оценивается посещение практических занятий и работа на занятиях, максимальное количество баллов за данный вид деятельности – 40.

Самостоятельная работа:

Качество самостоятельной подготовки студента оценивается в ходе устных и письменных опросов. Максимальное количество баллов за данный вид деятельности – 20.

Автоматизированное тестирование: не предусмотрено.

Другие виды учебной деятельности: не предусмотрены.

Промежуточная аттестация

Форма промежуточной аттестации – зачет; количество баллов – от 0 до 40.

Зачет проводится в устно-письменной форме в виде ответов на четыре вопроса из перечня вопросов к промежуточной аттестации. Критерий оценки ответа на каждый вопрос при проведении промежуточной аттестации:

- на вопрос дан правильный, полный, развернутый ответ (допускаются незначительные погрешности) 9-10 баллов;
- на вопрос дан правильный, но неполный ответ (например, при доказательстве теоремы, изложении метода отсутствуют отдельные логические шаги; допущена ошибка при вычислении; имеются другие неточности) 6-8 баллов;
- на вопрос дан краткий ответ, содержащий только верно сформулированные факты (допускаются незначительные погрешности) 5 баллов;
- в остальных случаях -0 баллов.

При проведении промежуточной аттестации выставляются баллы: ответ на «зачтено» оценивается от 11 до 40 баллов; ответ на «не зачтено» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 3-й семестр по дисциплине «Практикум по решению профессиональных задач» составляет 100 баллов.

Таблица 2.1. Таблица пересчета полученной студентом суммы баллов по дисциплине «Практикум по решению профессиональных задач» в оценку (зачет):

60-100 баллов	«зачтено»
0-59 баллов	«не зачтено»

8. Учебно-методическое и информационное обеспечение дисциплины.

а) литература:

- 1. Локшин Г. Р. Основы радиооптики: учеб. изд. / Г. Р. Локшин. Долгопрудный: Интеллект, 2009. 343 с. (Физтеховский учебник). ISBN 978-5-91559-020-4. В ЗНБ СГУ 14 экз.
- 2. Сигналы. Методы описания, модели, информационные возможности: учебное пособие для студентов физических специальностей / А. В. Хохлов, Т. Е. Вадивасова, А. В. Шабунин; под ред. В. С. Анищенко. Саратов: Издательство Саратовского университета, 2011. 254 с. ISBN 978-5-292-04061-3. В ЗНБ СГУ 35 экз.
- б) программное обеспечение и Интернет-ресурсы

Интернет-ресурсы:

- 1. Электронная библиотека СГУ http://library.sgu.ru/
- 2. Учебная физико-математическая библиотека EqWorld http://eqworld.ipmnet.ru/indexr.htm
- 3. Библиотека Естественных Наук РАН http://www.benran.ru/
- 4. Электронная библиотека «Наука и техника» http://n-t.ru/

программное обеспечение:

- 1. OC Windows (лицензионное ПО) или ОС Unix/Linux (свободное ПО).
- 2. Microsoft Office (лицензионное ПО) или OpenOffice/LibreOffice (свободное ПО).
- 3. Браузеры InternetExplorer, GoogleChrome (свободноеПО).

9. Материально-техническое обеспечение дисциплины

Учебная аудитория с доской для мела/маркеров. Расходные материалы для работы у доски (мел/маркеры).

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационно-образовательную среду СГУ им. Н. Г. Чернышевского.

Программа составлена в соответствии с требованиями ФГОС ВО для направления подготовки магистратуры 03.04.03 «Радиофизика» профиль «Радиоэлектроника».

Автор: заведующий кафедрой радиотехники и электродинамики, д.ф.-м.н., профессор Глухова О.Е.

Программа одобрена в 2021 года (заседание кафедры радиотехники и электродинамики от 16.09.2021 года, протокол № 3).