МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

Директор Института физики, д.ф.-м.н., профессор МНСТИТУТА ФИЗИКИ

С.Б. Вениг

Рабочая программа дисциплины Общая биофизика

Специальность 30.05.02 Медицинская биофизика

Квалификация (степень) выпускника Врач-биофизик

Форма обучения

очная

Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Правдин А.Б.	In	14.10.2h
Председатель НМК	Скрипаль Ан.В.	1.91	14. 10. 212
Заведующий кафедрой	Тучин В.В.	The same of	14.10. dl2
Специалист Учебного управления	Юшинова И. В.	Hows	14.10.dlr.

1. Цели освоения дисциплины:

Целями освоения дисциплины Общая биофизика служат: дать студентам базовую систему знаний о физических принципах, механизмах и моделях функционирования биологических систем на молекулярном, клеточном и организменном уровне, практические навыки, необходимые для применения физических законов к решению биологических задач при проведении эксперимента, представления о возможности применения биофизических методов исследования микро- и макросостояния биологических объектов.

2. Место дисциплины в структуре ООП специалитета:

Дисциплина является дисциплиной модуля «Современное естествознание» обязательной части блока 1 «Дисциплины (модули)» учебного плана ООП и изучается в 5, 6 семестрах.

Для успешного освоения данной дисциплины необходимы базовые знания по биохимии, органической химии, общей химии, физике, цитологии, биологии и экологии.

Знания и навыки, приобретенные при изучении курса «Общая биофизика», потребуются студентам при освоении курсов «Медицинская биофизика», «Медицинские биотехнологии», «Медицинская электроника и измерительные преобразователи», «Лучевая диагностика и терапия».

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование индикатора	Результаты обучения
компетенции	(индикаторов) достижения компетенции	т сзультаты обучения
·	•	AHATI • OQUODUU IA HOUGTUG TAODUU
УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	1.1_Б.УК-1. Анализирует задачу, выделяя ее базовые составляющие. Осуществляет декомпозицию задачи. 2.1_Б.УК-1. Находит и критически анализирует информацию, необходимую для решения поставленной задачи. 3.1_Б.УК-1. Рассматривает различные варианты решения задачи, оценивая их достоинства и недостатки. 4.1_ Б.УК-1. Грамотно, логично, аргументированно формирует собственные суждения и оценки. Отличает факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности. 5.1_ Б.УК-1. Определяет и оценивает	знать: основные понятия, теории и законы биологической физики; уметь: использовать приобретенные знания и навыки для решения задач медицинской биохимии, биофизики, биотехнологии, биологического контроля окружающей среды; владеть: навыками экспериментальной работы при исследовании физикохимических механизмов разнообразных биологических процессов, протекающих в живых системах.
ОПК-1 Способен использовать и применять фундаментальные и прикладные медицинские, естественнонаучные знания для постановки и решения стандартных и инновационных задач профессиональной деятельности	практические последствия возможных решений задачи. 1.1_Б.ОПК-1. Использует фундаментальные естественнонаучные знания для решения профессиональных задач. 2.1_Б.ОПК-1. Применяет прикладные естественнонаучные знания для решения профессиональных задач. 3.1_Б.ОПК-1. Использует фундаментальные медицинские знания для решения профессиональных задач. 4.1_Б.ОПК-1. Применяет прикладные медицинские знания для решения	знать: теоретические основы, достижения и проблемы современной биохимии, биофизики и молекулярной биологии; уметь: применять знания в практической деятельности; владеть: методами наблюдения и интерпретации экспериментальных данных.
ОПК-3 Способен	профессиональных задач. 1.1 Б.ОПК-3. Применяет диагностическое	знать: классификацию, методы
использовать	оборудование для решения профессиональных	работы, свойства биофизических
специализированное диагностическое и лечебное оборудование,	задач. 2.1_Б.ОПК-3. Применяет лечебное оборудование для решения профессиональных	систем; уметь: выполнять несложные лабораторные исследования;

применять медицинские изделия, лекарственные средства, клеточные продукты и генно-инженерные технологии, предусмотренные порядками оказания медицинской помощи	задач. 3.1_Б.ОПК-3. Использует медицинские изделия, лекарственных средства, клеточные продукты и генно-инженерные технологии в медицинских и научных исследованиях.	владеть: навыками работы в области биофизики, биотехнологии, радиоэкологии.
ОПК-4 Способен определять стратегию и проблематику исследований, выбирать оптимальные способы их решения, проводить системный анализ объектов исследования, отвечать за правильность и обоснованность выводов, внедрение полученных результатов в практическое	1.1_Б.ОПК-4. Планирует научное исследование. 2.1_Б.ОПК-4. Анализирует результаты научного исследования. 3.1_Б.ОПК-4. Формулирует выводы на основании результатов исследования с оценкой возможности внедрения полученных результатов в практическое здравоохранение.	знать: основные представления о миграции энергии и электрических явлениях в живых объектах; уметь: делать выводы, оформлять результаты эксперимента; владеть: широким спектром аналитических методов и подходов биоорганической и биологической химии, молекулярной биологии, иммунохимии.
здравоохранение ОПК-5 Способен к организации и осуществлению прикладных и практических проектов и иных мероприятий по изучению биофизических и иных процессов и явлений, происходящих на клеточном, органном и системном уровнях в организме человека	1.1_Б.ОПК-5. Планирует прикладные и практические проекты и иные мероприятия по изучению биофизических и иных процессов и явлений, происходящих на клеточном, органном и системном уровнях в организме человека. 2.1_Б.ОПК-5. Организует и осуществляет реализацию прикладных и практических проектов и иных мероприятий по изучению биофизических и иных процессов и явлений, происходящих на клеточном, органном и системном уровнях в организме человека. 3.1_Б.ОПК-5. Контролирует и корректирует реализацию практических проектов и иных мероприятий по изучению биофизических и иных процессов и явлений, происходящих на клеточном, органном и системном уровнях в	знать: современные достижения и проблемы биофизики; уметь: осуществлять реализацию прикладных и практических проектов и иных мероприятий по изучению биофизических и иных процессов и явлений, происходящих на клеточном, органном и системном уровнях в организме человека; владеть: навыками коррекции реализации практических проектов на основе промежуточных результатов.
ПК-4 Способен к организации и проведению научных исследований, включая выбор цели и формулировку задач, подбор адекватных методов, сбор, обработку, анализ данных и публичное их представление с учетом требований информационной	организме человека. 1.1_Б.ПК-4. Выполняет фундаментальные научные исследования в области медицины и биологии. 2.1_Б.ПК-4. Способен публично представлять результаты научных исследований. 3.1_Б.ПК-4. Планирует медикобиологические, клинические исследования, внедряет результаты в практику с использованием методов доказательной медицины.	знать: молекулярные механизмы ферментативного катализа и основы клеточной биоэнергетики; уметь: публично представлять результаты научных исследований; владеть: навыками планирования медикобиологических, исследований.
безопасности ПК-5 Готов к определению новых областей исследования и проблем в сфере разработки биофизических и физико-химических технологий в здравоохранении	1.1_Б.ПК-5. Выполняет прикладные и поисковые научные исследования в области медицины и биологии. 2.1_Б.ПК-5. Осуществляет прикладные и поисковые научные исследования, направленные на улучшение и разработку новых методов скрининга и ранней диагностики патологических процессов, технологий персонифицированной медицины, эффективности лечения.	знать: основы биофизики, медицины и биологии; уметь: осуществлять прикладные и поисковые научные исследования, направленные на улучшение и разработку новых методов скрининга и ранней диагностики патологических процессов, технологий персонифицированной

3.1_Б.ПК-5.	Способен	подготовить	медицины,	эффективности
предложения	ПО	дальнейшему	лечения;	
совершенствованию	методов	диагностики и	владеть:	способностью
лечения, направлени	ных на сохр	занение жизни и	подготовить	предложения по
здоровья человека.			дальнейшему	
			совершенствова	анию методов
			диагностики	и лечения,
			направленных	на сохранение
			жизни и здоров:	ья человека.

4. Структура и содержание дисциплины.

Общая трудоемкость дисциплины составляет 9 зачетных единиц, 324 часа.

№ п/п	Раздел дисциплины	Сем	Виды у	чебной рабо		амостоятельную сть (в часах)		Формы текущего контроля успеваемости (по неделям
			Лек- ции	Практич. занятия.		CP	Иная конта	
				Общая трудоем кость	Из них – практическая подготовка		ктная работ а	семестра) Формы промежуточной аттестации (по семестрам)
1	2	3	4	5	6	7	8	9
1	Введение. Биофизика как наука. История развития биофизики.	5	2			2		
	P	аздел	1 «Моле		иофизика»			
2	Тема 1. Термодинамика биологических процессов Основные термодинамические параметры и функции.	5	2	6	2	2	6	Опрос
3	Законы термодинамики.	5	2	4	2	2	4	Опрос
4	Миграция энергии	5	2	4	2	2	4	Опрос
5	Тема 2. Биофизические аспекты строения биомакромолекул. Типы связей в веществах. Строение белков и углеводов.	5	2	8	4	2	8	Опрос, рефераты
6	Строение нуклеиновых кислот, макроэргических соединений и липидов	5	2	8	2	2	8	Опрос
7	Тема 3. Основы радиобиологии Строение ядра атома. Виды распадов	5	2	8	2	2	8	Опрос
8	Закон радиоактивного распада	5	2	8	2	2	8	Опрос
9	Действие радиации на живую материю	5	2	8	2	2	8	Рефераты Коллоквиум
	Промежуточная аттестация	5						Зачёт
	Итого в 5 семестре – 144ч.		18	54	18	18	54	
	Pa	здел 2	«Функц	иональная	<u> </u> биофизика»	1		
10	Тема 4. Транспорт. Клеточные мембраны	6	2	6	2	2	6	Опрос

	Всего по дисциплине			'	324	'		
	Итого за 6 семестр – 180ч.		18	54	18	18	54	
	Промежуточная аттестация – 36ч.	6						Экзамен
18	Биофизика деления клеток	6	2	6	2	2	6	Опрос, Коллоквиум
17	Биофизика репликации, трансляции, транскрипции	6	2	6	2	2	6	Опрос
10	внутриклеточных процессов Биоэнергетика. Митохондриальное окисление.	0	2	O	Z	2	O	Опрос
15 16	Механизм ферментативного катализа. Константа Михаэлиса-Ментен Тема 7. Биофизика	6	2	6	2	2	6	Опрос
14	Тема 6. Ферментативный катализ. Ферменты - биокатализаторы	6	2	6	2	2	6	Опрос
13	Электропроводность живых систем.	6	2	6	2	2	6	Опрос
12	Тема 5. Биоэлектрогенез Современное представление о биоэлектрогенезе.	6	2	6	2	2	6	Опрос
11	Транспорт веществ.	6	2	6	2	2	6	Рефераты Коллоквиум

Содержание дисциплины

Биофизика как наука. История развития биофизики.

Роль отечественных ученых в развитии биофизики. Диалектическая соподчиненность структурных уровней материи на базе их единства — основа методологического подхода в изучении живых систем. Критический анализ механических и физических аналогов при рассмотрении биологических процессов. Проникновение идей физики и химии и роль этих наук в изучении биологических систем. Своеобразие проявления законов физики и физической химии в живых организмах. Особенности использования физических методов в биофизических исследованиях.

Раздел 1. Молекулярная биофизика

Тема 1. Термодинамика биологических процессов

Основные термодинамические параметры и функции.

Принципы деления термодинамических систем на закрытые и открытые. Биологические системы - открытые системы. Основные термодинамические параметры и функции Определение внутренней энергии системы и выражение ее через термодинамические функции.

Законы термодинамики.

Первый закон термодинамики. Теплота и работа в термодинамических процессах, термодинамическое состояние.

Понятие градиента. Свободная энергия, энтропия и коэффициент полезного действия термодинамических систем. Характер изменения энтропии при обратимом и необратимом процессах. Кажущееся противоречие биологических систем закону возрастания энтропии. Сопряжение процессов синтеза и распада в живом организме. Основы теории открытых систем. Отличие стационарного состояния от термодинамического равновесия, экстремальные уровни.

Миграция энергии.

Схема миграции энергии в кристаллической решетке. Проводники, полупроводники, изоляторы. Электронная и дырочная проводимость. Экситонный механизм миграции энергии. Резонансный механизм миграции энергии. Условия миграции энергии в биологических структурах с помощью протонов и электронов.

Тема 2. Биофизические аспекты строения биомакромолекул

Типы связей в веществах. Строение белков и углеводов

Связи в органических полимерах и биополимерах. Ковалентные полярные и неполярные связи. Ионные связи. Водородные связи. Распространение в вещствах. Формирование.

Особенности строения белков, углеводов. Механизмы формирование связей в молекуле белка. Зависимость конформации вторичной, третичной и четвертичной структур от первичной структуры белка. Формирование и прочность гликозидных сязей. Типы гликозидных связей в биомакромолекулах.

Строение нуклеиновых кислот, макроэргических соединений и липидов.

Связи в молекулах нуклеиновых кислот. Основные физико-химические параметры биополимеров, обусловленные их строением. Макроэргические связи в молекулах АТФ и её аналогах. Амфифильность жиров. Гидрофобные взаимодействия в молекулах липидов.

Тема 3. Основы радиобиологии

Строение ядра атомов. Виды распадов.

История открытия атома. Теория атомизма. Модель атома по Резерфорду и Бору. Изотопы, изотоны. Альфа и бета распады. Условия протекания распада. Гамма-излучение и рентген. Механизм возникновения.

Закон радиоактивного распада.

Математическая модель закона радиоактивного распада. Период полураспада. Срок жизни изотопов.

Действие радиации на живую материю.

Действие ионизирующего излучения на молекулярном уровне. Последствия действия ионизирующего излучения на клеточном, тканевом, организменном уровнях. Лучевая болезнь.

Раздел 2. Функциональная биофизика

Тема 4. Транспорт.

Клеточные мембраны.

Общая характеристика структуры и функций биологических мембран. Классическая модель строения мембраны по Даниели-Давсону. Современные методы изучения структуры мембран (электронная микроскопия, рентгеноструктурный анализ, оптические и химические методы). Химический состав биологических мембран. Соотношение белков и липидов в мембранах.

Транспорт веществ.

Закон диффузии. Уравнение Фика. Правила Овертона. Физический смысл правил Овертона. Проницаемость кислот и оснований. Проницаемость слабых и сильных кислот и оснований в клетки. Явление односторонней проницаемости. Физико-химические основы коллоидно-осмотического давления и его нарушения.

Тема 5. Биоэлектрогенез.

Современное представление о биоэлектрогенезе.

Классификация биопотенциалов, потенциал покоя и действия. Передача нервного импульса. Явление деполяризации, реполяризации. Тетанус.

Электропроводность живых систем.

Проводимость и сопротивление клеток и субклеточных структур электрическому току. Импеданс.

Тема 6. Ферментативный катализ.

Ферменты – биокатализаторы.

Сходства и различия ферментов с неорганическими биокатализаторами. Классификация ферментов по типу катализируемой реакции. Строение ферментов. Роль АТФ в процесса биокатализа.

Механизм ферментативного катализа. Константа Михаэлиса-Ментен.

Схема протекания ферментативной реакции. Фермент-субстратный комплекс. Константа Михаэлиса-Ментен. Химический и биологический смысл константы Михаэлиса-Ментен. Схема протекания реакций на примере тризо-фосфат-изомеразы.

Тема 7. Биофизика внутриклеточных процессов

Биоэнергетика. Митохондриальное окисление.

Запасание энергии в формате макроэргических связей АТФ, а также в протонном потенциале. Митохондриальная цепь переноса электронов, механизм. Механизм работы АТФ-синтетазы на кристах митохондрий. Реакции окисления, протекающие в митохондриях, их энергетический баланс.

Биофизика репликации, транскрипции, трансляции.

Механизм протекания репликации, транскрипции и трансляции на молекулярном уровне. Особенности активности ДНК-полимераз, РНК-полимераз разных классов.

Биофизика деления клеток.

Активность белков в процессе митоза и мейоза. Схема протекания процессов на молекулярном уровне.

5. Образовательные технологии, применяемые при освоении дисциплины

При реализации учебной дисциплины используются следующие формы обучения:

- 1) традиционные: лекции, семинары, практические занятия.
- 2) современные интерактивные технологии: создание проблемных ситуаций, ролевые, деловые игры, интерактивные лекции, дискуссии.
- В ходе реализации программы используются следующие образовательные технологии:
- интерактивное обучение диалоговое обучение, в ходе которого осуществляется взаимодействие преподавателя и обучаемого; вовлечение в процесс познания, максимального количества учащихся, в атмосфере доброжелательности и взаимной поддержки. Для этого на лекциях предполагается использовать систему презентации с демонстрацией отдельных задач виртуального практикума;
- на лекциях и семинарах использовать образовательные технологии: тестирование, «Мини-лекция», мастер-классы с привлечением специалистов по реализации инструментальных методов анализа; разработка «Проекта (схемы) исследования»; приобретение навыков работы на приборах; экскурсии в центры коллективного пользования для знакомства с уникальным оборудованием;
 - подготовка рецензий на рефераты и доклады на семинарах, научные статьи;
 - привлечение студентов к научной работе на кафедре.

Занятия лекционного типа по данной дисциплине составляют 25% аудиторных занятий.

Удельный вес интерактивных форм обучения составляет около 15% аудиторных занятий.

Профессиональные навыки формируются при выполнении функциональной, ультразвуковой и лучевой диагностики органов и систем организма человека; проведении и оценке результатов лабораторных, инструментальных и иных исследований в целях распознавания состояния или установления факта наличия или отсутствия заболевания; выполнении научных исследований в рамках научной тематики специальности; формирование понятийного аппарата, понимание принципов, законов и методологии медицинской биофизики происходит в рамках индивидуальных отчетов, коллоквиумов, разборов конкретных ситуаций, деловых игр.

Иная контактная работа представляет собой индивидуальные консультации, оказываемые очно и дистанционно с использованием информационных и

телекоммуникационных технологий с учетом образовательных возможностей обучающихся.

Особенности организации образовательного процесса для инвалидов и лиц с ограниченными возможностями здоровья

- использование индивидуальных графиков обучения и сдачи экзаменационных сессий;
- организация коллективных занятий в студенческих группах с целью оказания помощи в получении информации инвалидам и лицам с ограниченными возможностями здоровья;
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья;
- для лиц с ограничениями по слуху для облегчения усвоения материала предусматривается максимально возможная визуализация лекционного курса, в том числе широкое использование иллюстративного материала, мультимедийной техники, дублирование основных понятий и положений на слайдах;
- для лиц с ограничениями по зрению предусматривается использование крупномасштабных наглядных пособий.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

При реализации данной дисциплины используются следующие виды самостоятельной работы — подготовка к практическим и семинарским занятиям. Самостоятельная работа студентов подкреплена учебно-методическим и информационным обеспечением, включающим учебники, учебно-методические пособия, конспекты лекций, Интернет-ресурсы. Текущий контроль включает опросы и тестирование

6.1. Вопросы для промежуточного контроля

- 1. Содержание и задачи биофизики. Своеобразие проявления законов физики и физической химии в живых организмах. Особенности использования физических методов в биофизических исследованиях. Роль отечественных ученых в развитии биофизики.
- 2. Классификация термодинамических систем и их функций. Первый закон термодинамики, его формулировка и приложимость к живым объектам.
- 3. Накопление и распределение энергии в живых организмах. Приложимость закона сохранения энергии к живым организмам, коэффициент полезного действия протекающих в них процессов.
- 4. Второй закон термодинамики и его значение для биологии. Понятие градиента. Свободная и связанная энергия. Энтропия. Работоспособность системы.
- 5. Понятие энтропии. Связь энтропии с упорядочностью системы. Роль энтропии в жизнедеятельности организмов.
- 6. Стационарное состояние в живых системах. Отличие стационарного состояния от термодинамического равновесия. Значение теории открытых систем в биологии.
- 7. Баланс энтропии в открытых системах. Уравнение Пригожина. Роль энтропии в направленности процессов обмена в живых системах.
- 8. Методы изучения проницаемости веществ в клетки (объемный, индикаторный, химический, метод меченых атомов и искусственных фосфолипидных мембран). Положительные стороны и недостатки этих методов.
 - 9. Закон диффузии. Уравнение Фика. Коэффициент диффузии и проницаемости.
- 10. Мембраны клеток, их строение и функции. Полиморфизм биологических мембран (ламеллярная, мицеллярная и глобулярная формы).
- 11. Химический состав биологических мембран. Ферментно-транспортные системы мембран.
- 12. Мембранная теория проницаемости веществ в клетки и ее критика. Современное состояние мембранной теории.

- 13. Сорбционная (фазовая) теория проницаемости и ее критика. Современное представление о свойствах протоплазмы в свете теории полиэлектролитов. Роль протоплазмы в распределении веществ между клеткой и средой.
- 14. Типы транспорта (переноса) веществ через клеточные мембраны (роль градиентов).
- 15. Активный транспорт ионов через мембрану на примере переноса натрия и калия через кожу лягушки, стенки почечных канальцев.
- 16. Энергетика активного транспорта ионов через мембрану. Модель работы магнием активируемой натрий-калиевой АТФ-азы. Гипотетическая схема активного транспорта.
- 17. Пассивный транспорт веществ в клетки на примере переноса сахаров через мембрану. Схема пассивного транспорта. Отличие пассивного транспорта от диффузии.
- 18. Проникновение в клетку кислот и оснований. Значение активной реакции среды и внутриклеточного содержимого для проникновения слабых электролитов в клетки. Зависимость проницаемости в клетки от рН среды и от концентрации во внешней среде.
- 19. Роль коллоидно-осмотического давления белков плазмы и гидродинамического давления крови в водном балансе организма. Физико-химические основы явления отека и воспаления.
 - 20. Осмотическое давление и коллоидно-осмотическое давление.
 - 21. Электропроводность живых систем. Явление поляризации.
- 22. Поведение протоплазмы в поле постоянного тока. Сопротивление и сила постоянного тока, проходящего через клетки в ткани.
 - 23. Поведение протоплазмы в поле переменного тока. Импеданс.
- 24. Дисперсия электропроводности живых систем в поле переменного тока на низких частотах. Коэффициент жизнеспособности.
- 25. Классификация биопотенциалов по физиологическим процессам, с которыми они связаны. Физико-химические основы возникновения потенциалов в модельных системах. Значение биопотенциалов для жизнедеятельности организмов.
- 26. Мембранная и альтерационная теории возникновения биопотенциалов. Современное представление о потенциале покоя. Уравнение Нернста для расчета величины потенциала покоя.
- 27. Потенциал действия. Роли ионов натрия и калия в генерации потенциала действия в гигантском аксоне кальмара (потоки этих ионов в различные фазы развития потенциала действия).
- 28. Метод меченых атомов как один из универсальных методов современных биологических исследований. Основные принципы метода меченых атомов.
- 29. Строение атома и атомного ядра. Электроны, протоны, нейтроны. Изотопы и изобары.
- 30. История открытия радиоактивности. Стабильные и радиоактивные изотопы. Их применение в биологических исследованиях.
 - 31. Характеристика α-излучения, первое правило смещения.
 - 32. Характеристика β-излучения, второе и третье правило смещения.
- 33. γ-излучение, его взаимодействие с веществом (фотоэффект, эффект Комптона, эффект образования пар). Отличие γ-излучения от рентгеновского.
- 34. Способность производить ионизацию вещества, как одно из главных свойств ядерного излучения (первичная и вторичная ионизация).
- 35. Понятие об активности радиоактивных изотопов. Единицы измерения радиоактивности (кюри, резерфорд).
- 36. Закон радиоактивного распада (математическое выражение, графическое представление). Константа распада.
- 37. Период полураспада. Средняя продолжительность жизни атомов радиоактивных изотопов. Значение периода полураспада в биологических исследованиях.

- 38. Искусственные радиоактивные изотопы История открытия искусственной радиоактивности. Методы получения искусственных изотопов. Значение их для биологических исследований.
- 39. Период полувыведения. Эффективный период полувыведения (математическое выражение). Критические органы.
- 40. Методы обнаружения и регистрации радиоактивных изотопов (авторадиографический, калориметрический, химический, метод счета сцинцилляций, радиометрический).
- 41. Принцип работы счетной трубки на примере ионизационной камеры. Вольтамперная характеристика ионизационной камеры.
- 42. Применение радиоактивных изотопов в качестве меченых атомов в биологических исследованиях. Изотопный эффект. Понятие об активности радиоактивных препаратов.
- 43. Пептидная связь. Причины прочности. Первичная структура белка. Условия распада.
- 44. Ковалентные и водородные связи во вторинчой структуре белка. Их природа и роль.
 - 45. Ван-дер-Ваальсовы взаимодействия в молекуле белка.
- 46. Гидрофильно-гидрофобные эффекты и особенности формирования третичной структуры белка. Виды третичной структуры.
- 47. Четвертичная структура белка. Условия формирования в зависимости от соотношения аминокислот.
 - 48. Первичная структура ДНК и РНК. Природы связей.
- 49. Вторичная структура ДНК. Формирования спирали ДНК. Виды взаимодействий между азостистыми основаниями.
 - 50. Неравнозначность разных сторон мембран. По составу окружающих их ионов.
- 51. Процесс передачи нервного импульса на примере гигантского аксона кальмара. Явление деполяризации и реполяризации. Электрическая природа нервного импульса. Тетанус.
 - 52. Ферменты как биокатализаторы. Классификация.
 - 53. Механизм ферментативного катализа.
 - 54. Константа Михаэлиса-Ментен, химический и биологический смысл.
- 55. Миграция энергии в неорганическом мире и в живых системах. Основные признаки миграции энергии.
- 56. Теории миграции энергии в жестких структурах и в жидкой фазе (перенос электрона, протонная теория, гипотеза экситона, принцип резонанса). Роль АТФ при миграции энергии в живых организмах.
- 57. Классификация биопотенциалов по физиологическим процессам, с которыми они связаны. Физико-химические основы возникновения потенциалов в модельных системах. Значение биопотенциалов для жизнедеятельности организмов.
- 58. Доннановская разность потенциалов в модельных системах. Ее связь с потенциалом покоя.
- 59. Мембранная и альтерационная теории возникновения биопотенциалов. Современное представление о потенциале покоя. Уравнение Нернста для расчета величины потенциала покоя.
- 60. Методы измерения биопотенциалов (микроэлектроды, компенсационный и электрометрический методы).
- 61. Потенциал действия. Роли ионов натрия и калия в генерации потенциала действия в гигантском аксоне кальмара (потоки этих ионов в различные фазы развития потенциала действия).

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

Семестр	Лекции	Лабора торные занятия	Практи- ческие занятия	Самостоя- тельная работа	Автоматизи- рованное тестирование	Другие виды учебной деятельности	Промежу точная аттестация	Итого
5	18	0	27	18	0	17	20	100
6	18	0	27	18	0	17	20	100

Программа оценивания учебной деятельности студента

5 семестр

Лекшии

Посещаемость, опрос, активность и др. за один семестр - от 0 до 18 баллов.

Лабораторные занятия

Не предусмотрены

Практические занятия

Устный и письменный опрос на занятиях - от 0 до 27 баллов.

Самостоятельная работа

Подготовка рефератов – от 0 до 18 баллов

Автоматизированное тестирование

Не предусмотрено

Другие виды учебной деятельности

Проверочная работа (коллоквиум) – от 0 до 17 баллов

Промежуточная аттестация (зачёт)

11-20 баллов - «зачтено»

0-10 баллов — «не зачтено».

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за пятый семестр по дисциплине «Общая биофизика» составляет **100** баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Общая биофизика» в оценку (зачет):

60 и менее баллов	«незачёт»
61-100 баллов	«зачтено»

6 семестр

Лекции

Посещаемость, опрос, активность и др. за один семестр - от 0 до 18 баллов.

Лабораторные занятия

Не предусмотрены

Практические занятия

Устный и письменный опрос на занятиях - от 0 до 27 баллов.

Самостоятельная работа

Подготовка рефератов – от 0 до 18 баллов

Автоматизированное тестирование

Не предусмотрено

Другие виды учебной деятельности

Проверочная работа (коллоквиум) – от 0 до 17 баллов

Промежуточная аттестация (экзамен)

18-20 баллов - ответ на «отлично»

14-17 баллов – ответ на «хорошо»

11-13 баллов – ответ на «удовлетворительно»

0-10 баллов – неудовлетворительный ответ.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за шестой семестр по дисциплине «Общая биофизика» составляет **100** баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине «Общая биофизика» в оценку (экзамен):

60 и менее баллов	«неудовлетворительно»			
61-70 баллов	«удовлетворительно»			
71-90 баллов	«хорошо»			
91-100 баллов	«отлично»			

8. Учебно-методическое и информационное обеспечение дисциплины

- а) литература:
- 1. Антонов В.Ф., Физика и биофизика, учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш. 2-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2013. 472 с. Режим доступа (ЭБС "Консультант студента")
- 2. Биофизика [Электронный ресурс] / М. В. Волькенштейн. Москва : Лань, 2012. 594, [1] с. [1] с. : ил. ; 22 см. (Классическая учебная литература по физике) (Учебники для вузов. Специальная литература). Библиогр.: с.583-586. ISBN 978-5-8114-0851-1 : Б. ц. Доступ в ЭБС «Лань».
- 3. Антонов В.Ф. Биофизика. М.: Владос, 2006. 287 с.

б) программное обеспечение и Интернет-ресурсы

- 1. Волькенштейн М.В. Биофизика. М.: Наука, 1988 djvu. Размер: 6,45 МВ
- 2. http://ihtik.lib.ru/dreamhost chem 8janv 2007.html
- 3. Ревин З.З., Максимов Г.В., Кольс О.Р. Биофизика. djvu. Размер 1.38 МВ
- 4. http://ihtik.lib/ru/servage med 29oct 2006n. html
- 5. Волькенштейн М.В. Общая биофизика. М.: Наука, 1978 djvu. Размер: 4.78 МВ
- 6. http://ihtik.lib.ru/dreamhost.chem.8janv.2007.html
- 7. Волькенштейн М.В. Молекулярная биофизика. М.: Наука, 1975 djvu. Размер: 4.78 MB
- 8. http://ihtik.lib.ru/dreamhost.chem.8janv.2007.html
- 9. Windows XP Professional.
- 10. Антивирус Касперского 6.0 для Windows Workstations.
- 11. Microsoft Office Professonal 2007.
- 12. Каталог образовательных Интернет-ресурсов (http://window.edu.ru)

9. Материально-техническое обеспечение дисциплины.

Занятия по дисциплине проводятся в аудиториях, оснащенных компьютерной техникой, проекторами, измерительными приборами, лабораторным оборудованием, наглядными демонстрационными материалами, мультимедийными установками и пр. (презентации, программное обеспечение), в том числе:

- Измеритель мощности лазерного излучения
- Спектрофлуориметр
- Мост сопротивления
- Аналитические и торсионные весы
- рН-метр
- Термостаты
- Сушильный шкаф
- Аквадистиллятор
- Вытяжной шкаф
- Спектрофотометр для биологических исследований
- Люминесцентный микроскоп
- Центрифуга
- Микродозаторы

Место проведения практической подготовки: учебные лаборатории Института физики.

Программа составлена в соответствии с требованиями ФГОС ВО по специальности: 30.05.02 Медицинская биофизика.

Автор(ы): Правдин А.Б., к.х.н., доцент кафедры оптики и биофотоники института физики СГУ.

Программа разработана в 2021 году и одобрена на заседании кафедры оптики и биофотоники от 14.10.2021 года, протокол №13/21.