МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Географический факультет

УТВЕРЖДАЮ

Декан факультета, профессор, д.г.н.

В.З.Макаров 2024 г

lead ?

Рабочая программа дисциплины <u>ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ В</u> <u>ГИДРОМЕТЕОРОЛОГИИ</u>

Направление подготовки **05.04.05 Прикладная гидрометеорология**

Профиль подготовки **Метеорология и климатология**

Квалификация (степень) выпускника ${\it Mazucmp}$

Форма обучения <u>очная</u>

> Саратов, 2021

Статус	ФИО	Подпись	Дата		
Преподаватель- разработчик	Короткова Н.В.	Kopfi-	P1.05.21		
Председатель НМК	Кудрявцева М.Н.	Siekyff	11.05.21		
Заведующий кафедрой	Червяков М.Ю.	du	11.05.21		
Специалист Учебного управления					

1. Цели освоения дисциплины «Информационно-измерительные системы в гидрометеорологии»

«Информационно-измерительные Цель дисциплины системы В гидрометеорологии» подготовка магистров прикладной гидрометеорологии, обучающихся ПО профилю Метеорология климатология, владеющих углубленными знаниями, умениями и навыками в области обработки, хранения, передачи информации. информационная система представляет собой совокупность технических средств программного обеспечения. Целью данной дисциплины является ознакомление магистров программным сбора, обработки обеспечением, предназначенным ДЛЯ хранения В гидрометеорологической информации. задачи дисциплины входит обучение использованию существующих, проектированию и созданию баз геоинформационных систем, направленных на решение

2. Место дисциплины «Информационно-измерительные системы в гидрометеорологии» в структуре ООП

Дисциплина «Информационно-измерительные системы в гидрометеорологии» относится к обязательной части блока Б1 Дисциплины.

прикладных гидрологических задач.

Для освоения данной дисциплины, обучающиеся должны освоить разделы дисциплин бакалавриата: «Математика», «Информатика», «Методы и средства гидрометеорологических измерений», «Методы статистической обработки и анализа гидрометеорологической информации», «Компьютерные технологии в гидрометеорологии».

3. Результаты обучения по дисциплине «Информационноизмерительные системы в гидрометеорологии»

Код и наименование	Код и наименование	Результаты обучения			
компетенции	индикатора (индикаторов)				
	достижения компетенции				
ОПК-5 Способен решать	1.1_М.ОПК-5.	Знать:			
исследовательские задачи	Использует	основные термины и			
профессиональной	информационно-	понятия; специфику			
деятельности с	измерительные системы в	построения			
использованием	гидрометеорологии для	гидрометеорологических			
информационно-	решения профессиональных	ГИС и организации базы			
коммуникационных, в т.ч.	задач.	гидрометеорологических			
технологии		данных.			
геоинформационных систем		Уметь:			
		самостоятельно осваивать			
		дополнительную			
		литературу; выполнять			
		практические задания по			

различным разделам дисциплины; анализировать
результаты расчетов;
полно и логично излагать
освоенный учебный
материал.
Владеть:
статистической обработкой
гидрометеорологических
данных, обработкой
гидрометеорологической
информации, составлением
алгоритмов

4. Структура и содержание дисциплины «Информационноизмерительные системы в гидрометеорологии»

Общая трудоемкость дисциплины составляет 3 зачётные единицы (108 часов).

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	Виды учебно работы, вклю самостоятельно работу студент трудоемкость часах) Практиче ские занятия			ная тую ов и	Формы текущего контроля успеваемости (по неделям семестра) Формы	
			Неде	Лекции	Общая трудоемкость	нэ пих практическая	КСР	промежуточной аттестации (по семестрам)	
1	2	3	4	5	6	7	8	9	
1	Определение геоинформационных систем (ГИС)		1-3	6	4		18	Устный и письменный контроль	
2	Базы данных. Организация баз данных в гидрометеорологических ИС		4-7	2	8		9	Устный и письменный контроль	
3	Обработка гидрометеорологических данных. Вывод и визуализация данных		8- 11	2	10		17	Устный и письменный контроль	
4	Особенности применение математического моделирования в гидрометеорологических ИС	2	12- 13	2	4		10	Устный контроль	

5	Обзор современных 2 14-		2	4	10	Устный контроль	
	гидрометеорологических информационных систем		15				
Всего:			I	14	30	64	зачет

1 Определение геоинформационных систем (ГИС)

Понятие ГИС. Их структура. Классификации ГИС: по назначению, по проблематической ориентации, по территориальному охвату, по способу организации географических данных. Функциональные требования к ГИС: автоматизированное картографирование, пространственный анализ, управление данными. Применение ГИС в научных исследованиях. Компьютерные технические средства и устройства поддержки ГИС. Программное обеспечение: системное, базовое и прикладное. История развития ГИС.

Общие представления о гидрометеорологической информационной системе: специфика гидрометеорологической информационной системы (ИС), задачи гидрометеорологической ИС, требования к техническим средствам, поддерживающим гидрометеорологические ИС.

2 Базы данных. Организация баз данных в гидрометеорологических ИС

Основные понятия и определения. Элементы архитектур баз данных. Гидрометеорологические Проектирование базы данных. синоптическая информация, аэрологические данные, океанологическая и гидрологическая съемки, данные спутникового мониторинга атмосферы и ГИС. гидросферы Т.Д. Ввод данных В Организация гидрометеорологических данных: географические сведения, морфология, гидрометеорологическая информация.

3 Обработка гидрометеорологических данных. Вывод и визуализация данных

Расчет статистической информации. Методы восстановления гидрометеорологических полей: оптимальная интерполяция, метод взвешенных коэффициентов, сплайн-интерполяция и др. Редактирование и обновление базы данных (БД). Расчет дополнительных параметров по этим данным.

Технические средства. Методы визуализации данных: растровая и векторная графика. Особенности создания компьютерных гидрометеорологических карт и атласов. Отображение пространственновременных гидрометеорологических характеристик.

4 Особенности применение математического моделирования в гидрометеорологических ИС

Информационное единство динамической модели и измерений. Адаптация модели к исходным данным. Мультимедийная визуализация результатов моделирования. Имитационное моделирование.

5 Обзор современных гидрометеорологических информационных систем

Обзор современных гидрометеорологических информационных систем. Региональные гидрометеорологические ИС. Океанологическая информационная система OCEAN DATA VIEW. Интернет портал NOAA.

Перечень практических работ

- 1. Создание тематической карты, с нанесением на нее метеорологических данных.
 - 2. Создание базы данных.
- 3. Построение гидрометеорологических таблиц в табличных редакторах. Предварительная обработка данных
- 4. Расчет основных статистических характеристик, используя метеорологические данные.
- 5. Получение и обработка гидрометеорологических данных с помощью компьютерных технологий.
- 6. Написать программу для расчета на ПК парциального давления водяного пара, давления насыщения, при известных показаниях сухого и смоченного термометров и об атмосферном давлении, с использованием психрометрических формул. Вычислить относительную влажность, дефицит насыщения, абсолютную влажность.
- 7. Разработать алгоритм и составить программу для вычисления скорости градиентного ветра в циклоне и в антициклоне на широте 60 и на высоте, где плотность воздуха равна 0,800 кг/м³. Результаты сравнить между собой и со значениями скорости геострофического ветра.

5. Образовательные технологии, применяемые при освоении дисциплины «Информационно-измерительные системы в гидрометеорологии»

С целью реализации компетентностного подхода предусматривается широкое использование в учебном процессе активных форм проведения занятий: постановка вопросов перед аудиторией, дополнение ответов другими участниками, кейс-методы, ролевые интеллектуальные игры, виртуальные лаборатории, мультимедийные компьютерные программы.

При реализации учебной дисциплины используются различные формы визуализации наглядного материала. При выполнении практических работ в течение семестра обучающиеся должны овладеть методами сбора, обработки, анализа и систематизации научно-технической информации, умением выбора методик и средств решения задачи.

При проведении занятий с инвалидами и лицами с ограниченными возможностями здоровья они могут не вызываться к доске, а отвечать на устные вопросы с места. Лицам с затруднениями речи могут даваться индивидуальные задания с последующими письменными ответами.

По всему изучаемому материалу предусматривается проведение индивидуальных и групповых консультаций.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины «Информационно-измерительные системы в гидрометеорологии»:

Самостоятельная работа проводится в форме изучения дополнительной литературы и анализа гидрометеорологической информации интернет ресурсов для подготовки к устным и письменным отчетам, к написанию реферата.

Примерные темы рефератов:

- 1. Особенности восстановления гидрометеорологических полей.
- 2. Методика построения карт распределения гидрометеорологических параметров в прибрежной зоне морей и океанов.
- 3. Гидрометеорологические информационные интернет-сайты.
- 4. Использование результатов математического моделирования прибрежной циркуляции вод в современных ГИС.
- 5. Принципы построения региональных метеорологических информационных систем.
- 6. ГИС переноса загрязнений в районе промышленных объектов.

Контрольные вопросы для проведения промежуточной аттестации по итогам освоения дисциплины «Информационно- измерительные системы в гидрометеорологии»

- 1. Определение геоинформационной системы и история развития
- 2. Структура и классификация ГИС.
- 3. Специфика гидрометеорологической ГИС.
- 4. Организация баз данных в гидрометеорологических ИС.
- 5. Расчет статистической информации.
- 6. Методы восстановления гидрометеорологических полей.

- 7. Понятие базы данных.
- 8. Редактирование и обновление базы данных.
- 9. Расчет дополнительных параметров.
- 10. Технические средства вывода и визуализации данных.
- 11. Методы визуализации данных.
- 12. Особенности создания компьютерных гидрометеорологических карт.
- 13. Отображение пространственно-временных гидрометеорологических характеристик.
- 14. Применение математического моделирования в гидрометеорологических ИС.
- 15. Критерии качества гидрометеорологических ИС.
- 16. Средства защиты баз данных в гидрометеорологических ИС.
- 17. Обзор современных гидрометеорологических информационных систем.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1. Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекции	Лаборато рные занятия	Практичес кие занятия	Самостоятел ьная работа	Автоматизиро ванное тестирование	учебной	Промежут очная аттестация	Итого
2	14	0	28	10	0	18	30	100

Программа оценивания учебной деятельности студента

Лекшии

Посещаемость, опрос, активность за один семестр – от 0 до 14 баллов

- 0 баллов отсутствие на лекции
- 1 балл присутствие
- 2 балл присутствие и активное участие

Лабораторные работы

не предусмотрены

Практические занятия (всего 7 работ)

Контроль выполнения практических работ в течение одного семестра от 0 до 28 баллов

- 0 б отсутствие на практическом занятии
- 2 балла работа выполнена с ошибкой
- 4балла работа выполнена верно

Самостоятельная работа

Подготовка к устному и письменному контролю

Опросы по пройденному материалу 0 – 10 баллов Всего 5 опросов. Максимальный балл за один опрос – 2 балла

Автоматизированное тестирование не предусмотрено

Другие виды учебной деятельности от 0 до 18 баллов

Представление реферативных работ (от 0 до 18 баллов);

- 0 баллов отсутствие реферата;
- 5 баллов предоставление реферата в письменной форме;
- 9 баллов представление реферата в устной форме
- 14 баллов представление реферата в устной форме с использованием презентации;
- 18 баллов представление реферата в устной форме с презентацией, ответы на дополнительные вопросы. Высокое качество исполнение. Полное раскрытие темы.

Промежуточная аттестация

- 0-12 баллов неудовлетворительный ответ
- 13-18 баллов удовлетворительный ответ
- 19-24 баллов хорошо
- 25-30 баллов отличный ответ

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 3 семестр по дисциплине «Информационно-измерительные системы в гидрометеорологии» составляет 100 баллов.

Таблица 2.1 Таблица пересчета полученной студентом суммы баллов по дисциплине «Информационно-измерительные системы в гидрометеорологии» в зачет:

16-30	«зачтено»
0-15 баллов	«не зачтено»

8. Учебно-методическое и информационное обеспечение дисциплины «Информационно-измерительные системы в гидрометеорологии»

а) литература:

1. С.И. Пряхина, С.В.Морозова, Н.В. Семенова, Н.В.Короткова. Методы и приборы гидрометеорологических измерений. Саратов ИЦ «Наука», 2016 г. 178 с.

2. Информатика (курс лекций): учебное пособие / В.Т. Безручко. - М.: ИД ФОРУМ: ИНФРА-М, 2012. 432 с.

http://znanium.com/bookread.php?book=335801

3. Вязилов Е.Д. Информационные ресурсы о состоянии природной у среды. М.: Эдиториал УРСС, 2001, 309 с.

4. Цветков В.Я. Геоинформационные системы и технологии. М.: ФиС.

1998

5. Григоров Н.О., Симакина Т.Е. Задачник по дисциплине «Методы и средства гидрометеорологических измерений». Изд. РГГМУ, С-Пб, – 2006 44с. ЭБС IPR books

б) программное обеспечение и Интернет-ресурсы:

1 Microcoft Word

2 ABBYY FinReader 9.0 Corporate Edition

3 Наставление по Глобальной системе обработки данных и прогнозирования - BMO- http://meteoinfo.ru/gdpfs-manual

4 Обучающие программы по информатике - http://markx.narod.ru/sch/

5 Обучающий комплекс по сети Интернет. Средства телекоммуникаций и мировые компьютерные сети. - http://marklv.narod.ru/book/urok24.htm

6 Система Мировых центров данных (МЦД) - http://meteo.ru/mcd

7 Система обслуживания гидрометеорологической информацией - http://cliware.meteo.ru/meteo/

9. Материально-техническое обеспечение дисциплины «Информационно-измерительные системы в гидрометеорологии»

Литературные источники, конспекты лекций, тематические словари, тематические справочники, атласы.

Компьютеры, программные средства, включая ГИС-программы, техническое оборудование, станция приема спутниковой информации.

Бумажные и цифровые карты, видеотека.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 05.04.05 Прикладная гидрометеорология и профилю Метеорология и климатология.

Автор: Короткова Н.В., к.г.н., доцент кафедры метеорологии и климатологии географического факультета СГУ.

Программа одобрена на заседании кафедры метеорологии и климатологии от $\underline{11.05.2021}$ года, протокол \underline{N} $\underline{7}$.