МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕРЖДАЮ

Директор института физики

MHCHAPIT

д.ф.-м.н. профессор

Вениг С.Б.

2021 г.

Рабочая программа дисциплины Физика

Направление подготовки **27.03.03 Системный анализ и управление**

Профиль Системный анализ и исследование операций

Квалификация (степень) выпускника бакалавр

Форма обучения Очная

> Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Черкасова Ольга Алексеевна	Bufus	17,09.2021,
Председатель НМК	Скрипаль Анатолий Владимирович	A.gn	2009 2047
Заведующий кафедрой	Аникин Валерий Михайлович	Mes	17.09.2021
Специалист Учебного управления	Юшинова Ирина Владимировна	Howed	20.09.2h.

1. Цели освоения дисциплины

Цель освоения дисциплины «Физика» состоит, прежде всего, в формировании у студентов представления о физической теории как обобщения наблюдений и эксперимента явлений окружающего мира. Знакомство студентов с основными физическими системами как части материального пространства, с методами количественного описания в математической форме происходящих в них процессов на основе модельных представлений, способствует формированию профессиональных навыков и умений как специалиста.

2. Место дисциплины в структуре ООП

Данная учебная дисциплина относится к обязательной части Блока 1 «Дисциплины (Модули)» (Б1.О.12) учебного плана ООП бакалавриата и направлена на формирование у обучающихся универсальных и общепрофессиональных компетенций.

Дисциплина является хорошим основанием для углубленного изучения работы современных вычислительных систем и комплексов. Для освоения данной дисциплины студенту необходимо обладать:

- базовыми знаниями фундаментальных разделов математики, классической и квантовой физики;
- начальными навыками создания упрощенных моделей физических систем и их математического описания.

3. Результаты обучения по дисциплине

Результаты освоения ООП определяются приобретёнными выпускником компетенциями т.е. его способностью применять знания, умения и личные качества в соответствии с задачами профессиональной деятельности.

Код и наименование компетенции	Код и наименование индикаторов) достижения компетенции	Результаты обучения		
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	1.1_Б.УК-1. Анализирует задачу, выделяя ее базовые составляющие. Осуществляет декомпозицию задачи. 2.1_Б.УК-1. Находит и критически анализирует информацию, необходимую для решения поставленной задачи. 3.1_ Б.УК-1. Рассматривает различные варианты решения задачи, оценивая их достоинства и недостатки. 4.1_ Б.УК-1. Грамотно, логично, аргументированно формирует собственные суждения и оценки. Отличает факты от мнений, интерпретаций, оценок и т.д. в рассуждениях других участников деятельности. 5.1_ Б.УК-1. Определяет и оценивает практические последствия возможных решений задачи.	Знать: физические основы механики, природу колебаний и волн; основы молекулярной физики и термодинамики, электричества и магнетизма, оптики, атомной и ядерной физики; физические основы ЭВМ; Уметь: выделить главные свойства анализируемой системы при переходе к её модели, составить уравнения (законы) математического описания процесса (задачи) Правильно задать граничные и начальные условия. Владеть: методами решения дифференциальных и интегральных уравнений, приемами использования ЭВМ для решения задач и обработки результатов. Адекватно оценивать полученные результаты экспериментальных наблюдений и теоретических расчётов.		
ОПК-1. Способен	ОПК-1.1. Знает основы высшей	Знать: основные приемы и методики исследования		

анализировать задачи профессиональной деятельности на основе положений, законов и методов в области естественных наук и математики

математики и физики.

ОПК-1.2. Умеет применять положения, законы и методы естественных наук и математики для анализа задач профессиональной деятельности.

ОПК-1.3. Владеет навыками анализа задач управления на основе знаний основных законов и методов математики и физики.

естественных систем, их природу и проявления в различных областях деятельности.

Уметь: определять главные свойстваанализируемых систем, находить и выделять аналоги и подобия с моделями классически структур.

Владеть: методами построения математических моделей, приемами использования ЭВМ для решения задач и обработки результатов.

ОПК-2. Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических и естественнонаучных дисциплин (модулей)

ОПК-2.1. Знает способы и порядок формулирования задач профессиональной деятельности.

ОПК-2.2. Умеет определять цель и границы решаемой задачи, использовать знания из профильных разделов математических и естественнонаучных дисциплин для уточнения постановок задач.

ОПК-2.3. Владеет навыком формулирования задач профессиональной деятельности.

Знать: основные алгоритмы построения модели исследования, границы их применимости в реальных системах.

Уметь: выделить оптимальные пути математического описания процесса (задачи). При задании граничных и начальных условий предусмотреть возможность внесения дополнений и уточнений Владеть: системой знаний фундаментальных законах. методов И средств создания оптимальных моделей, понимании основанных на физических явлений

ОПК-8. Способен принимать научно обоснованные решения в области системного анализа автоматического управления на основе знаний профильных разделов математики, физики, информатики, методов системного и функционального анализа. теории управления и теории знаний

ОПК-8.1. Знает высшую математику, физику, информатику, методы системного и функционального анализа, теорию управления и теорию знаний.

ОПК-8.2. Умеет проводить научные исследования в области системного анализа и автоматического управления.

ОПК-8.3. Владеет способностью принимать научно обоснованные решения в области системного анализа и автоматического управления.

Знать: методы и алгоритмы построения модели исследуемой практической задачи. Взаимосвязи основных параметров состояния системы и её модели.

Уметь: решать конкретные задачи в рамках принятых приближений; использовать знания закономерностей в вопросах взаимодействия компонентов системы для объяснения физических явлений и процессов, анализировать модели и результаты исходя из различных критериев, например, оптимальности.

Владеть: методами оптимизации и обработки экспериментальных данных, используя системы автоматического управления данными.

4. Структура и содержание дисциплины Общая трудоемкость дисциплины составляет 7 зачетных единиц, 252 часа.

	Оощая трудоемкость дисци	1171111111	COCTUBIL	101 /	Ju TOTTIBI	СДПППЦ	, 252	raca.
№ п/п	Раздел дисциплины	Семе-	Неделя семес- тра	вкл	1.5	остоятель удентов мкость асах)	ьную	Формы текущего контроля успеваемости (по неделям) Формы аттестации (по семестрам)
						овка		
Ч.1	. Механика	2		26	1	4	40	
1.	Раз.1. Кинематическая теория М. С.	2	1-2	4	2	-	6	Контрольная работа №1
2.	Раз.2. Динамическая теория	2	3-6	8	4	-	8	Отчёт по лаб.
3	Раз.3. Неинерциальные системы	2	7	2	-	-	4	
4	Раз.4. Элементы ТО	2	8	2	-	-	2	Док. рефераты
5.	Раз.5. Законы сохранения	2	9-11	6	4	-	10	Отчёт по лаб
6.	Раз.6. Гравитационное поле	2	12-13	4	4	-	10	Отчёт по лаб
Ч.2	Ч.2. Молекулярная физика			6	2	-	20	
7.	Раз.1. Динамическая теория ТДС	2	14	2	-	-	8	
8.	Раз.2. Элементы стат.физики	2	15	2	2	-	10	Отчёт по лаб
9.	Раз.3. Термодинамический метод	2	16	2	-	_	2	Док.рефераты
Пр	омежуточная аттестация	2						Зачёт, контр. работа
	Итого часов за 2 семестр – 10	8ч.		32	16	0	60	
маі	Ч.3. Электродинамика и магнетизм. Физические основы построения ЭВМ							
10.	Раз.1. Электромагнитное поле как система. Свойства, параметры состояния	3	1-2	4	2	-	6	Отчёт по лаб. работе
11.	Раз.2,3. Электрическое поле ввеществе. Токи.	3	3-4	4	2	-	4	Отчёт по лаб. работе
12.	Раз.4. Магнитное поле. Свойства.Законы	3	5-6	4	2	-	8	Индив. задания
13.	Раз.5 Электромагнитная индукция. Переменный ток.	3	7-10	8	4	-		Отчёт по лаб. работе

Итого часов за 3 семестр –144ч. Общая трудоемкость дисциплины		ины	36 18 0 54 252 ч.			54		
Промежуточная аттестация – 36 ч.		3						Экзамен, контр. работа
17.	Раздел 9. Перспективные направления развития IP технологий и элементной базыЭВМ	3	17-18	4	2	-	12	Конференция по СРС
16.	Раз.8. Физические основы работы базовых элементов ЭВМ	3	15-16	4	2	-	12	Отчёт по лаб. работе
15.	Раз.7. Элементы квантовой теории твердотельной электроники	3	13-14	4	2	-	6	-
14.	Раз.6. Электромагнитные колебания и волны	3	11-12	4	2	-	6	Контрольная работа №2

Содержание дисциплины «Физика» Часть 1. Механика

Введение. Физические системы и методы их исследования

Раздел 1. Кинематическая теория описание механических систем.

Простейшая модель механической системы – материальная точка. Параметры состояния, системы отсчёта. Классификация движения. Кинематические уравнения движения материальной точки. Кинематика движения твердого тела. Теорема Эйлера о произвольном движении твердого тела

Раздел 2. Динамическая теория движения механических систем.

Основная задача динамики. Первый закон Ньютона. Инерциальные системы отсчета. Сила. Масса и импульс тела. Второй закон Ньютона- дифференциальное уравнение движения точки. Уравнения динамики колебательного и волнового движений. Твёрдое тело. Момент импульса, момент силы, момент инерции. Уравнение моментов - дифференциальное уравнение движения твёрдого тела

Раздел 3. Движение в неинерциальных системах отсчета.

Поступательные и центробежные силы инерции. Силы инерции в общем случае. Сила Кориолиса

Раздел 4 Элементы теории относительности.

Постулаты СТО. Зависимость массы тел от скорости. Преобразование координат и времени. Новые результаты в релятивистской механике: сокращение длины, замедление времени, связь массы и энергии.

Раздел 5. Законы сохранения.

Равновесное состояние ФС и законы сохранения. Закон сохранения импульса. Закон сохранения момента импульса и его особенности. Энергия и работа. Работа сил. Кинетическая и потенциальная энергия. Закон сохранения механической энергии. Особенности законов сохранения в неинерциальных и релятивистских системах.

Раздел 6. *Гравитационное поле*. Закон всемирного тяготения. Гравитационное поле. Гравитационная энергия. Гравитационный радиус. "Черные дыры". Движение в поле тяготения Земли. Космические скорости

Часть 2. Молекулярная физика

Раздел 1. Динамическая теория описания ТДС.

Предмет и методы молекулярной физики и термодинамики. Развитие представлений о строении вещества. Молекулярно-тепловое движение. Межмолекулярные силы. Равновесное состояние системы. Температура. Давление и среднее энергия молекул газа. Основное уравнение молекулярно- кинетической теории газа. Изопроцессы. Столкновения молекул. Средняя длина свободного пробега молекул. Явления переноса в газах: диффузия, внутренне трение, теплопроводность

Раздел 2. Элементы статистической физики.

Случайные величины и их описание. Функция распределения. Средние значения, математическое ожидание, дисперсия и флуктуация. Распределение в системах с большим количеством элементов. Распределение Максвелла-Больцмана. Каноническое распределение Гиббса.

Раздел 3. Термодинамический метод

Начала классической термодинамики Термодинамические процессы превращение тепла в работу. Циклические процессы. Энтропия и энергия. «Энтропийная» формулировка второго начала термодинамики. Энтропия и вероятность, статистический смысл энтропии. Информационный смысл энтропии

Часть 3. Электродинамика и магнетизм. Физическиеосновы построения ЭВМ

Введение. Развитие представлений об электричестве и магнетизме.

Раздел 1. Электромагнитное поле как физическая система.

Классический и квантовый подход к описанию электромагнитных явлений. Электрические заряды-источник электрического поля. Фундаментальные свойства заряда - сохранения и квантование заряда. Электрическое поле и его свойства Внутренние параметры ФС - электрическое поле: напряженность, разность потенциалов и потенциал Поток вектора напряженности. Теорема Остроградского-Гаусса

Раздел 2. Электрическое поле в веществе.

Классификация веществ по энергетическому спектру электронов. Зоннаятеория. Проводники и диэлектрики в электростатическом поле. Условия равновесия зарядов на проводнике. Диэлектрическая проницаемость вещества. Конденсаторы. Полупроводники. Собственная и примесная проводимость.

Раздел 3. Постоянный электрический ток.

Основные параметры тока и элементов электрических цепей. Законы Ома, Джоуля - Ленца. Сверхпроводимость.

Раздел 4. Магнитное поле как часть ФС-электромагнитное поле.

Свойства магнитного поля. Вектор магнитной индукции. Закон Ампера. Сила Лоренца. Закон Био- Савара –Лапласа. Магнитное поле в веществе. Магнитный момент атома. Магнитная проницаемость вещества. Современное объяснение диа-, пара- и ферромагнетизма.

Раздел 5. Электромагнитная индукция. Переменный ток.

Закон электромагнитной индукции Фарадея. Само— и взаимоиндукция. Энергия магнитного поля. Особенности переменного синусоидального тока. Закон Ома для переменного тока в общем случае.

Раздел 6. Электромагнитные колебания и волны.

Колебательный контур. Вихревое электрическое поле. Ток смещения. Основные положения теории Максвелла. Электромагнитные волны и их свойства.

Раздел 7. Элементы квантовой теории твердотельной электроники.

Классификация веществ. Строение и общие свойства кристаллов. Физические типы кристаллов. Квантовое представление твердого тела. Затруднения классической теории. Функция Шредингера, волновое уравнение. Простейшие решения волнового уравнения. Пространственная и энергетическая модель кристалла. Распределение Ферми-Дирака. Уровень Ферми. Работа выхода электрона. Электронная эмиссия Контактные явления в металлах и полупроводниках.

Раздел 8. Физические основы работы базовых элементов ЭВМ.

Полупроводниковые материалы. Р-п переход и его свойства. Диоды, (диод Ганна, ЛПД).). Контакт металл-диэлектрик-полупроводник (МДП). Транзисторы: биполярные униполярные (c управляемым p-n переходом, МДП-транзисторы). Элементы оптоэлектроники. Гетеропереходы и сверхрешетки. Спонтанное и вынужденное излучение. Лазеры и их применение. Интерференция и дифракция света. Голографии. Голографическая запись информации

Раздел 9. Перспективы и направления развития элементной базы ЭВМ. (Рекомендуются в качестве тем СРС. Темы могут дополнительно предлагаться студентами.)

Элементы молекулярной электроники. Молекулы-проводники и молекулы-изоляторы. Молекулярные диоды, транзисторы и элементы памяти. Молекулярные интегральные микросхемы: полупроводниковые пластины, эпитаксиальные структуры, полупроводниковые сверхрешетки, квантовые нити, квантовые точки, углеродные и полупроводниковые нанотрубки. Понятия о квантовых элементах компьютерных систем, ДНК-компьютеры.

План лабораторных занятий

На лабораторных занятиях студенты должны приобрести умения применять теоретические знания к исследованию конкретных практических задач; овладеть приёмами оценки погрешностей измерения; знать основные правила оформления результатов эксперимента, уметь сделать обобщающие выводы.

Занятия проводятся на стандартном оборудовании общефизических практикумов для университетов.

упиверенте	1021				
№ занятия	Тема	Задания для лабораторного практикума			
эшили		T V M II CDV II			
		Физический практикум «Механика», Изд. СГУ. Две			
№1- 6	Механика	работы из 14 наименований по усмотрению			
7421-0	2-ой семестр	преподавателя. Рекомендации: работы №3, 4, 5, 7, 8,			
		10, 13			
	Молекулярная и	Физический практикум «Молекулярная физика», Изд.			
№7- 9	статистическая физика.	СГУ.			
	2-ой семестр	Одна работа, рекомендуется № 4			
		Физический практикум «Электричество и			
Электродинамика,		магнетизм», Изд. СГУ. Три работы из 30			
№ 10-17 магнетизм		наименований по усмотрению преподавателя.			
	3-ий семестр	Рекомендуются работы: №3, 4, 6, 8, часть 1.			
		Работы №18, 19, часть 2.			

5. Образовательные технологии, применяемые при освоении дисциплины

Дисциплина «Физика» в методическом плане решает несколько взаимосвязанных задач:

- познакомить студента с основными явлениями и законами теоретической и прикладной физики, принципами и методами их экспериментального исследования;
 - дать необходимый объём научного описания физических законов и явлений в

адекватной математической форме;

- научить студента применять теоретические знания и умения для решения практических задач в различных областях научного естествознания и производства.

Первый аспект неразрывно связан с проведением лабораторных работ в общефизических практикумах и лабораториях.

Второй - с чтением лекционного курса, в том числе с использованием активных и интерактивных форм, сопровождаемых, как правило, лекционными демонстрациями.

Третий аспект отрабатывается в процессе самостоятельной работы и работы в спецлабораториях под руководством преподавателей различных, в том числе и смежных областей знаний.

В учебном процессе предусмотрено широкое применение интерактивных форм проведения занятий (16 часов) с использованием мультимедийного оборудования. При реализации различных видов учебной работы (лекции, лабораторные занятия, самостоятельная работа) используются следующие современные образовательные технологии:

- Информационно-коммуникационные технологии
- Проектные методы обучения
- Исследовательские методы в обучении
- Проблемное обучение

В соответствии с требованиями ФГОС ВО по направлению подготовки 27.03.03 «Системный анализ и управление» реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся. Эффективность применения интерактивных форм обучения обеспечивается реализацией следующих условий:

- создание диалогического пространства в организации учебного процесса;
- использование принципов социально-психологического обучения в учебной и внеучебной деятельности;
- мониторинг личностных особенностей и профессиональной направленности студентов;
- формирование психологической готовности преподавателей к использованию интерактивных форм обучения, направленных на развитие внутренней активности студентов.

Особая проблема – организация учебного процесса интегрированного профессионального образования инвалидов и лиц с ограниченными возможностями здоровья, предусматривающая:

- создание специальных технологий профессионального образования;
- формирование без барьерной среды общения.

На факультете КНиИТ и институте физики имеются возможности использования дистанционных образовательных технологий в доступных формах: электронные конспекты лекций, онлайн консультации преподавателей. В рамках очной формы обучения инвалиды могут обучаться по индивидуальному плану.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве. При этом основной формой организации учебного процесса является интегрированное обучение лиц с ограниченными возможностями здоровья, т.е. все студенты обучаются в смешенных группах, имеют возможность постоянно общаться со сверстниками, благодаря чему легче адаптируются в социуме.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Самостоятельная работа студентов заключается в углубленном изучении материала курса по соответствующей тематике недели с использованием научной и учебнометодической литературы.

Неотъемлемой частью самостоятельной работы студента является подготовка предварительного теоретического отчета или проведение расчётов по проделанной экспериментальной части самостоятельной или лабораторнойработы и, наконец, оформление итогового отчёта.

Моделирования физических ситуаций в ходе учебного процесса и представление его в форме презентации, доклада, отчета или реферата, с обсуждением в группе.

6.1. Контрольные вопросы для самостоятельной оценки освоения дисциплины «Физика»

Вопросы к зачёту по разделу «Механика и молекулярная физика», 1 курс, 2 семестр.

1. Кинематика материальной точки и твёрдого тела.

Системы отсчета. Параметры движения. Классификация движения по ускорению. Кинематика прямолинейного и вращательного движений точки. Кинематика колебательного и волнового движений. Движение твёрдого тела. Степени свободы. Поступательное и вращательное движение твёрдого тела. Теорема Эйлера о произвольном движение твёрдого тела.

2. Законы динамики.

Основная задача динамики. Первый закон Ньютона и его особенности. Сила. Масса и импульс тела. Второй закон Ньютона - дифференциальное уравнение движения материальной точки. Третий закон Ньютона и границы его применимости. Твёрдое тело. Момент импульса, момент силы, момент инерции. Уравнение моментов - дифференциальное уравнение движения твёрдого тела. Уравнение динамики колебательного и волнового движений (волновое уравнение).

3. Законы сохранения.

Закон сохранения импульса и его особенности. Закон сохранения момента импульса. Примеры: распад нейтрона, движение планет солнечной системы, гироскоп. Работа сил. Потенциальная и кинетическая энергия. Работа и энергия вращения Закон сохранения механической энергии.

4. Гравитационное поле.

Закон всемирного тяготения. Гравитационное поле. Гравитационная энергия. Гравитационный радиус. «Чёрные дыры» Движение в поле тяготения Земли. Космические скорости.

5. Движение в неинерциальных системах отсчёта.

Силы инерции в общем случае. Поступательные и центробежные силы инерции. Сила Кориолиса. Проявления сил инерции в движениях на Земле.

- 6. Элементы теории относительности.
- 7. Теория идеального газа.

Давление и средняя энергия молекул газа. Основное уравнение молекулярно- кинетической теории идеального газа. Изопроцессы. Явления переноса в газах: диффузия, внутреннее трение, теплопроводность.

8. Статистические распределения для идеального газа.

Координата и скорость молекулы как случайные величины. Фазовое пространство координат

и импульсов, обобщенные координаты.) Функция Гамильтона. Каноническое распределение Гиббса.

9. Распределение молекул идеального газа по скоростям.

Закон распределения энергии по степеням свободы Статистический смысл равновесного состояния. Идеальный газ в гравитационном поле, распределение Максвелла-Больцмана.

10. Элементы статистической термодинамики

Начала термодинамики. Термодинамические процессы. Превращение тепла в работу. Энергия и энтропия. «Энтропийная» формулировка второго началатермодинамики.

Вопросы к экзамену по разделам «Электричество и магнетизм, Основы построения ЭВМ», 2 курс, 3 семестр.

1. Электрические заряды и электрическое поле.

Заряд и его фундаментальные свойства - сохранения и квантование заряда. Закон Кулона. Принцип суперпозиции электростатических полей. Электрическое поле и его свойства Напряженность. Поток вектора напряженности. Теорема Остроградского - Гаусса и примеры ее применения. Работа сил электрического поля. Разность потенциалов и потенциал. Связь разности потенциалов с напряженностью.

2. Электрическое поле в веществе.

Классификация веществ по энергетическому спектру электронов. Зонная теория проводимости. Проводники в электростатическом поле. Электроемкость. Конденсаторы. Диэлектрики в электростатическом поле. Поляризация молекул. Коэффициент поляризуемости и диэлектрическая проницаемость вещества. Полупроводники. Собственная и примесная проводимость.

- 3. Постоянный электрический ток. Основные параметры тока. Законы Ома, Джоуля Ленца. Сверхпроводимость. Электрический ток в электролитах и газах. Закон электролиза Фарадея. Контактные явления в металлах и полупроводниках, *p—n* переход. Диод.
- 4. Магнитное поле.

Свойства магнитного поля. Вектор магнитной индукции. Закон Ампера. Сила Лоренца. Закон Био - Савара - Лапласа. Магнитное поле в веществе. Магнитный момент атома. Современное объяснение диа-, пара- и ферромагнетизма.

5. Электромагнитная индукция.

Закон электромагнитной индукции Фарадея и его значение. Само— и взаимоиндукция. Энергия магнитного поля.

6. Переменный ток.

Особенности переменного тока. Закон Ома для переменного тока в общем случае.

7 Электромагнитные колебания и волны.

Колебательный контур. Вихревое электрическое поле. Ток смещения. Основные положения теории Максвелла.

- 8. Электромагнитные волны и их свойства.
- 9. Элементы квантовой теории твердотельной электроники.

Строение и общие свойства кристаллов. Физические типы кристаллов. Квантовое представление твердого тела. Модель Резерфорда-Бора. Гипотеза де Бройля. Уравнение Шредингера. Простейшие решения волнового уравнения. Многоэлектронные атомы. Уровень Ферми. Работа выхода электрона. Электронная эмиссия. Контактные явления в металлах и полупроводниках.

10. Физические основы работы базовых элементов ЭВМ.

p—n переход как элемент ИМС. Диоды, ($\partial uo\partial \Gamma anha$, $\Pi\Pi\Pi$). Транзисторы: биполярные и униполярные (с управляемым p-n переходом, МДП-транзисторы). Элементы оптоэлектроники. Спонтанное и вынужденное излучение (гетеропереходы и сверхрешетки. Фотодиоды и фотоприёмники). Лазеры и их применение. Элементы нанотехнологий: полупроводниковые сверхрешетки, квантовые нити, квантовые точки, углеродные и полупроводниковые нанотрубки). Перспективы и направления развития элементной базы ЭВМ

6.2. Темы для рефератов, докладов, самостоятельного изучения.

Часть 1, 2. Механика и молекулярная физика.

- 1. Уравнение колебаний в канонической форме, общее решение, определение постоянных по начальным условиям и др.
- 2. Проявление сил инерции в движениях на Земле.
- 3. Инварианты СТО; парадокс близнецов.
- 4. Законы сохранения в релятивистских и неинерциальных системах.
- 5. Основные проблемы теории гравитации и космологии (обзор).
- 6. Темная материя. Гипотеза отрицательной массы
- 7. Энтропия и вероятность, статистический смысл энтропии. Информационный смысл энтропии

Часть 3. «Электричество и магнетизм»

- 1. Методы получения полупроводниковых структур Космические технологии. Влияние квантово-размерных эффектов на свойства п/пматериалов.
- 2. Задачи и доклады. Движение заряженных частиц в магнитном поле. Массспектрометры. Магнитные ловушки. МГД- генераторы. Явления магнитосопротивления в гетероструктурах. Туннельное магнитосопротивление
- 3. Пространственная и энергетическая модель кристалла. Решенияволнового уравнения, туннельный эффект.
- 4. Контактные явления в металлах и полупроводниках.
- 5. Интерференция и дифракция света. Голография. Голографическая записьинформации
- 6. Обзор научной базы наноэлектроники

Доклады и рефераты.

- 1. Элементы молекулярной электроники. Молекулы-проводники и молекулы-изоляторы.
- 2. Молекулярные диоды, транзисторы и элементы памяти.
- 3. Молекулярные интегральные микросхемы. Явления и устройства искусственного (машинного) интеллекта.
- 4. Нано роботы, Искусственные нейронные сети.
- 5. Понятия о квантовых элементах компьютерных систем.
- 6. ДНК- компьютеры

Контрольная работа. Механика

Вариант 1.

- 1.1.Математический маятник длиной L проходит положение равновесия со скоростью v. Найти положение и скорость маятника в момент τ . Вычислить для: L=61.25 см, v=1 м/c; τ = 0.177 с.
- 1.2. Два горизонтальных диска свободно вращаются вокруг вертикальной оси, проходящей через их центры. Момента инерции дисков относительно этой осиравны I_1 и I_2 , а угловые скорости ω_1 и ω_2 . После падения верхнего диска на нижний оба, диска стили вращаться как единое целое. Найти угловую скорость вращения дисков и работу силы трения.

Вариант 2.

2.1. Подвешенное к пружине тело увеличило его длину на Δl м. Найти период колебаний

маятника.

2.2. Два горизонтальных диска свободно вращаются вокруг вертикальной оси, проходящей через их центры. Момента инерции дисков относительно этой осиравны I_1 и I_2 , а угловые скорости ω_1 и ω_2 . После падения верхнего диска на нижний, оба диска стили вращаться как единое целое. Найти изменение момента импульса и энергии системы.

Контрольная работа. Статистическая и молекулярная физика.

А. Функция плотности распределения случайной величины, заданной на промежутке $(0, \infty)$, имеет вил:

Bap.1. $F(V) = AV^2 \exp(-aV^2)$,

Bap.2. $F(U) = AU^{1/2} \exp(-aU)$

Bap.3. $F(X) = A X \exp(-aX^2)$

Bap.4. $F(Y) = A Y \exp(-aY)$

где а - известная постоянная. Найти:

- 1) наиболее вероятное и среднее значение случайной величины;
- 2) при каких значениях параметра a, вероятность попадания случайной величины в интервал (X, X+dX) максимальна.
- Б. Найти изменение энтропии в процессе.

Вар.1. $P = P_0 + \alpha T$, давление изменилось от P_1 до P_2 .

Вар.2. $V = V_0 = \beta T$, объём изменился от V_1 до V_2 .

Вар.3. $T = T_0 + \alpha P$, температура изменилась от T_1 до T_2 .

Вар.4. $T = T_0 + \beta V$ температура изменилась от T_1 до T_2 .

Контрольная работа. Электричество и магнетизм

- **В1.** Два протона влетают с однородное магнитное поле перпендикулярно линияммагнитной индукции со скоростями v_1 и v_2 . Как связаны между собой периоды обращения и радиусы окружностей R_1 , R_2 , соответствующих протонов, если $v_1 = 2 v_2$?
- **В2.** Протон и альфа-частица, влетают с одинаковой скоростью в однородное магнитное поле перпендикулярно линиям магнитной индукции. Как связаны между собой радиусы окружностей R_1 и R_2 , периоды T_1 , T_2 вращения соответственно протона и альфа- частицы?

Фонд оценочных средств оформлен в качестве приложения к учебной рабочей программе дисциплины «Физика».

7. Данные для учета успеваемости студентов в БАРС Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

Семес	Лекци и	Лабораторн ые занятия	Практиче ские занятия	Самостояте льная работа	Автоматизиро ванное тестирование	Другие виды учебной деятельно сти	Промежу точная аттестаци я	Итого
2	10	20+5	0	15	0	15	35	100
3	10	20+5	0	15	0	15	35	100

Программа оценивания учебной деятельности студента

2, 3 семестр

Лекции

Посещаемость, активность; количество баллов – от 0 до 10.

Критерии оценивания:

Посещение не менее 91% занятий – 10 баллов. Пропуск одной лекции (2 часа) уменьшает максимальный балл на 0,60 единицы.

Лабораторные занятия

Этот вид учебной деятельности относится к обязательным. За выполнение установленного числа работ за семестр выставляется 20 балла. Стимулирующие +5 балла (за большее число

работ, за более короткое время выполнения, работа по индивидуальному заданию преподавателя и т.п.)

Практические занятия – не предусмотрены

Самостоятельная работа

Выполнение контрольных заданий – 0-15 баллов.

Критерии оценки:

- при полностью правильном и своевременном выполнении студентом контрольных заданий 15 баллов;
- при частично правильном выполнении (правильно выполненных заданий не менее 70%) от 5 до 10 баллов;
- в остальных случаях 0 баллов.

Автоматизированное тестирование – не предусмотрено

Другие виды учебной деятельности

- 1. Экспресс-тестирование по отдельным темам.
- 2. Написание эссе по темам, указанным в п. 6.2, с последующим устным выступлением по его материалам, проводимым в конце семестра;
- 3. Составление обзоров публикаций по заданной теме;
- 4. Проведение дополнительных расчётных и экспериментальных исследований в учебных лабораториях;
- 5. Выступление с докладами и сообщениями на студенческих конференциях и в учебной группе.
- 6. Выполнение контрольных работ.

Диапазон баллов – от 0 до 15 баллов.

Критерии оценки:

- при полностью правильном и своевременном выполнении студентом задания—15 баллов;
- при частично правильном выполнении (правильно выполненных заданий не менее 70%) от 5 до 10 баллов;
- в остальных случаях 0 баллов.

Промежуточная аттестация

Экзамен и зачем проводится в устной форме в виде ответов на вопросы билета и два дополнительных вопроса из перечня вопросов к промежуточной аттестации. Билет содержит два вопроса из перечня вопросов к промежуточной аттестации. Итоговая оценка не может быть выставлена студенту в случае невыполнения обязательных работ, установленных учебным рейтинг - планом.

Зачет во 2-м семестре

Студент, набравший 51 балл и более, автоматически может получить оценку «зачтено» без участия в промежуточной аттестации.

Критерий оценивания при проведении промежуточной аттестации:

15-35 баллов – ответ на «зачтено»;

0-14 баллов – «не зачтено».

Экзамен в 3-м семестре

Студент, набравший 51 балл и более, автоматически может получить оценку «удовлетворительно» без участия в промежуточной аттестации.

Критерий оценивания при проведении промежуточной аттестации:

29-35 баллов – ответ на «отлично»;

20-28 баллов – ответ на «хорошо»;

15-19 баллов – ответ на «удовлетворительно»;

0-14 баллов – «не удовлетворительно».

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 2 семестр по дисциплине «Физика» составляет 100 баллов.

Таблица 2. Пересчет полученной студентом суммы баллов по дисциплине «Физика» в зачет:

51-100 баллов	«зачтено»	
меньше 50 баллов	«не зачтено»	

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 3 семестр по дисциплине «Физика» составляет 100 баллов.

Таблица 3. Пересчет полученной студентом суммы баллов по дисциплине «Физика» в экзамен:

90-100 баллов	«отлично»	
70-89 баллов	«хорошо»	
51-69 баллов	«удовлетворительно»	
меньше 51 баллов	«неудовлетворительно»	

8. Учебно-методическое и информационное обеспечение дисциплины.

а) литература:

- 1. Савельев, И. В. Курс общей физики: учебник для вузов: в 3 томах / И. В. Савельев. 17-е изд., стер. С.-Пб.: Лань, 2021 Том 1 : Механика. Молекулярная физика 2021. 436 с. ISBN 978-5-8114-8003-6. (в ЭБС Лань) URL: https://e.lanbook.com/book/171889
- 2. Савельев, И. В. Курс общей физики: учебное пособие для вузов: в 5 томах / И. В. Савельев. 6-е изд., стер. Санкт-Петербург: Лань, 2022 Том 3: Молекулярная физика и термодинамика 2022. 212 с. ISBN 978-5-8114-9197-1. (в ЭБС Лань) URL: https://e.lanbook.com/book/187739.
- 3. Савельев, И. В. Курс физики. В 3 т. Том 2. Электричество. Колебания и волны. Волновая оптика: учебное пособие для вузов / И. В. Савельев. 7-е изд., стер. С.-Пб.: Лань, 2022. 468 с. ISBN 978-5-8114-9096-7 (в ЭБС Лань) URL: https://e.lanbook.com/book/184164 ✓
- 4. Сивухин, Д. В. Общий курс физики : учебное пособие : в 5 томах / Д. В. Сивухин. 6-е изд., стереот. М.: ФИЗМАТЛИТ, 2020 Том 1: Механика 2020. 560 с. ISBN 978-5- № 9221-1512-4. (в ЭБС Лань) URL: https://e.lanbook.com/book/185713
- 5. Сивухин, Д. В. Общий курс физики: учебное пособие: в 5 томах / Д. В. Сивухин. 6-е изд., стереот. М.: ФИЗМАТЛИТ, 2021 Том 2: Термодинамика и молекулярная физика 2021. 544 с. ISBN 978-5-9221-1514-8. (в ЭБС Лань) URL: /https://e.lanbook.com/book/185719
- 6. Сивухин, Д. В. Общий курс физики: учебное пособие: в 5 томах / Д. В. Сивухин. 6-е изд., стереот. М.: ФИЗМАТЛИТ, 2020 Том 3: Электричество 2020. 565 с. ISBN 978-5-9221-1643-5. (в ЭБС Лань) URL: https://e.lanbook.com/book/185725
- 7. Сушков, А. Д. Вакуумная электроника. Физико-технические основы : учебное пособие / А. Д. Сушков. С.-Пб.: Лань, 2021. 464 с. ISBN 5-8114-0530-8. (в ЭБС Лань) URL: ✓ https://e.lanbook.com/book/167723
- 8. Пасынков, В. В. Полупроводниковые приборы : учебное пособие / В. В. Пасынков, Л. К. Чиркин. 9-е изд. С.-Пб.: Лань, 2021. 480 с. ISBN 978-5-8114-0368-4. (в ЭБС Лань) URL: https://e.lanbook.com/book/167773

б) программное обеспечение и Интернет-ресурсы:

Саратовский государственный университет обеспечен комплектом лицензионного программного обеспечения.

Программное обеспечение: пакет программ Microsoft Office – MS Word, Excel, PowerPoint; пакет бесплатного ПО для работы с графическими, аудио- и видеоматериалами.

- 1. Большая научная библиотека http://sci-lib.com/
- 2. Научная электронная библиотека http://www.elibrary.ru/
- 3. Библиотека СГУ http://library.sgu.ru/
- 4. Интернет-ресурс: «Мир математических уравнений» http://eqworld.ipmnet.ru/indexr.htm

9. Материально-техническое обеспечение дисциплины

В качестве материально-технического обеспечения дисциплины используются

физические практикумы и лаборатории, фонды методической литературы, мультимедиапроекторы.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 27.03.03 Системный анализ и управление, профилю подготовки «Системный анализ и исследование операций» (квалификация «Бакалавр»).

Автор:

Доцент базовой кафедры компьютерной физики и метаматериалов на базе СФ ИРЭ им. В.А. Котельникова РАН к.ф.-м.н., доцент Черкасова О.А.

Программа одобрена на заседании кафедры компьютерной физики и метаматериалов на базе СФ ИРЭ им. В.А. Котельникова РАН от 1 сентября 2021 года, протокол №1.