МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт химии

УТВЕРЖДАЮ Директор института химии

д.х.н., проф. Горячева И.Ю.

Рабочая программа дисциплины Органическая химия

Направление подготовки **18.03.01 Химическая технология**

Профиль подготовки **Химическая технология природных энергоносителей и углеродных материалов**

> Квалификация (степень) выпускника *Бакалавр*

> > Форма обучения *очная*

Саратов,

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Егорова Алевтина Юрьевна	All	
Председатель НМК	Крылатова Яна Георгиевна	March	11.10.2021
Заведующий кафедрой	Егорова Алевтина Юрьевна	Mul	11-10-2021
Специалист Учебного управления			11.10.2021

1. Цели освоения дисциплины

Целями освоения дисциплины «Органическая химия» является: формирование у обучающихся компетенций, связанных с пониманием теоретических основ фундаментальных разделов органической химии; приобретением навыков химического эксперимента c привлечением информационных применения баз данных ДЛЯ последующего профессиональной сфере деятельности производственной, научноисследовательской, образовательной.

2.Место дисциплины в структуре ООП

Дисциплина «Органическая химия» (Б1.О.10) относится к обязательной части Блока 1 «Дисциплины (модули)» рабочего учебного плана ООП по направлению 18.03.01 Химическая технология и осваивается в 3 семестре.

К «входным» знаниям, умениям и готовностям обучающегося, необходимым при усвоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин, относятся знания фундаментальных разделов неорганической химии, математики, физики и умение использовать полученные знания для объяснения результатов химических экспериментов; умение использовать программное обеспечение для анализа экспериментальных данных.

Освоение данной дисциплины как предшествующей необходимо для изучения дисциплин «Химии неуглеводородных соединений нефти», «Общей химической технологии», «Химии нефти и газа», «Основы биотехнологии», прохождения практик, выполнения выпускной квалификационной работы бакалавра.

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование	Результаты обучения
компетенции	индикатора (индикаторов)	
	достижения компетенции	
ОПК-1. Способен	ОПК-1.1. Проводит	знать:
изучать, анализировать,	химические эксперименты,	- экспериментальные критерии
использовать	основываясь на знаниях о	основных механизмов реакций
механизмы химических	строении вещества,	- теоретические основы
реакций,	природе химической связи	органической химии, включая
происходящих в	и свойствах различных	природу связи, электронное
технологических	классов химических	и пространственное строение, типы и механизмы
процессах и	элементов, соединений	органических реакций;
окружающем мире,	ОПК-1.2. Понимает	- качественные реакции на
основываясь на	механизмы химических	основные классы органических
знаниях о строении	реакций, протекающих в	соединений
вещества, природе	технологических процессах	уметь:
химической связи и	и окружающем мире	- анализировать и обобщать
свойствах различных	ОПК-1.3. Определяет	результаты эксперимента,
классов химических	свойства различных	формулировать выводы;
элементов, соединений,	классов химических	- объяснять использование
— веществ и	элементов, соединений, —	навыков анализа, синтеза,
материалов	веществ и материалов	сравнения, обобщения и

	1
	доказательства для обоснования
	механизма исследуемого
	процесса и прогнозирования
	возможных перегруппировок в
	результате органического
	синтеза
	владеть:
	- общими навыками анализа,
	синтеза, сравнения, обобщения
	и доказательства и их
	применения для систематизации
	знаний теоретических основ
	органической химии и
	прогнозирования возможных
	перегруппировок в результате
	органического синтеза;
	- навыками использования
	основных теоретических
	представлений о механизмах
	для интерпретации результатов
	синтеза и исследования свойств
	низко- и высокомолекулярных
	органических соединений
	различных классов.
A C	

4. Структура и содержание дисциплины Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 часов.

№ п/п	Раздел дисциплины	Семе стр	Неде ля семе стра	р	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				Формы текущего контроля успеваемости (по неделям семестра) Формы промежуточной аттестации (по семестрам)		
				Лек- ции	Лабор Общая трудоем кость	лат. раб. Из них — практичес кая подготовк а	СР	Иная конта ктная работа	Кон тро ль	Всег 0	
1	2	3	4	5	6	7	8	9	10	11	12
1.1	Введение. Предмет органической химии и основные этапы ее развития. Классификация органических соединений. Основы номенклатуры органических соединений.	3	1	1	2	-	1			4	
1.2	Основные положения теории строения органических соединений А.М. Бутлерова. Типы гибридизации атома углерода. σ- и π-Связи. Электронные эффекты заместителей.	3	1	1	2	-	1			4	Индивидуальный отчёт дискуссия
	Классификация реагентов и реакций. Промежуточные частицы. Кислоты и основания. Физические методы исследования в органической химии.	3	1	1	2	-	1			4	Разбор конкретных ситуаций
2	Ациклические углеводороды										
2.1	Алканы. Гомологический ряд, изомерия, номенклатура. Природные источники алканов. Методы синтеза. Природа С-С и С-Н-связей.	3	2	4	6	-	2			12	Разбор конкретных ситуаций дискуссия

	Конформации. Химические свойства: реакции галогенирования. Нитрование, сульфохлорирование, окисление. Термический и каталитичекий крекинг.									
2.2	Алкены. Гомологический ряд, изомерия и номенклатура. Геометрическая изомерия. Природа двойной связи. Методы синтеза. Химические свойства алкенов. Электрофильное присоединение. Окисление алкенов.	3	3	4	6	-	2		12	Разбор конкретных ситуаций
2.3	1		4	4	6	-	2		12	Индивидуальный отчет
2.4	Алкадиены. Типы диенов. Изомерия и номенклатура. Методы синтеза. Химические свойства 1,3-диенов. Галогенирование и гидрогалогенирование. 1,2- и 1,4-Присоединение. Полимеризация. Натуральный и синтетический каучуки.	3	5	4	8	-	2		14	Разбор конкретных ситуаций. Контрольная работа № 1
2.5	Типы и стереохимия циклоалканов. Каркасные соединения. Синтезы циклоалканов. Виды изомерии. Пространственное строение циклоалканов. Виды напряжения. Теория Байера и её современное понимание. Химические свойства циклоалканов. Особенности реакций циклоалканов в зависимости от размера кольца. Реакции циклопропана, циклопентана и циклогексана. Перегруппировки	3	6	6	6	-	2		14	Дискуссия
2.6	Арены. Источники сырья для производства аренов. Технологические процессы их получения. Общие сведения о строении аренов. Классификация. Критерии ароматичности. Основные типы химических реакций аренов. Целенаправленный синтез. Региоселективность и	3	7	7	8	-	4		19	Разбор конкретных ситуаций

3.	региоспецифичность. Типы ориентантов. Электроннные и пространственные эффекты замещающих групп. Орто-эффект.									
3.	Гомофункциональные соединения.									
3.1	Галогенпроизводные углеводородов. Изомерия, номенклатура. Способы получения. Реакции нуклеофильного замещения. Механизмы реакций нуклеофильного замещения S_N1 и S_N2 . Реакции элиминирования. Стереохимия. Конкуренция процессов $E2$ и S_N2 , $E1$ и S_N1 . ЗВинилгалогениды. Аллилгалогениды.	3	7,8	4	6	-	3		13	Коллоквиум по теме: «Нуклеофильное замещение в алифатическом ряду»
3.2	Одноатомные спирты. Гомологический ряд, классификация, изомерия и номенклатура. Методы получения. Свойства спиртов. Замещение гидроксильной группы в спиртах на галоген. Механизмы S_N1 , S_N2 и стереохимия замещения. Дегидратация спиртов. Окисление. Двухатомные спирты. Свойства. Непредельные спирты. Виниловый спирт и его производные. Аллиловый спирт. Простые эфиры.	3	8	2	6	-	3		11	Рассматриваются в конкретных ситуациях других классов Контрольная работа.
3.3	Фенолы. Промышленные и лабораторные способы получения и направления практического применения. Реакции с участием гидроксильной группы, кислотные свойства. Реакции электрофильного замещения. Конденсация фенолов с ацетоном и формальдегидом. Антиоксиданты и их использование.	3	9	2	4	-	2	:	8	Разбор конкретных ситуаций дискуссия
3.4	Альдегиды и кетоны. Изомерия и номенклатура. Методы получения альдегидов и кетонов. Промышленное получение. Строение карбонильной группы, ее полярность и поляризуемость. Химические свойства. Общие представления о механизме нуклеофильного присоединения. Кислотность и основность.	3	9	2	6	-	2		10	Коллоквиум по теме: «Реакции конденсации алифатических соединений»

	Взаимодействие с С-нуклеофилами. Реакции с гетероатомными нуклеофилами. Кето-енольная таутомерия. Окисление. Восстановление. Альдольно-кротоновая конденсация в кислой и								
3.5	щелочной среде, механизм реакций. Карбоновые кислоты и их производные. Классификация, номенклатура, изомерия. Методы синтеза. Строение карбоксильной группы и карбоксилат-иона. Кислотность. Получение функциональных производных кислот и их свойства. Сложные эфиры. Реакции: гидролиз (механизм кислотного и основного катализа), аммонолиз, переэтерификация, восстановление. Амиды Двухосновные кислоты. одраниения по двойной С=С связи. Жиры. Гидрогенизация и омыление жиров. Мыла.	3	10-11	4	6	-	2	12	Разбор конкретных ситуаций. Контрольная работа (домашняя).
3.6	Нитросоединения. Нитроалканы (амбидентный характер нитрит-иона). Строение нитрогруппы.	3	12	2	2	-	2	6	Разбор конкретных ситуаций
3.7	Амины. Строение аминов. Физические свойства, Сравнение основных свойств. Взаимодействие первичных, вторичных, третичных аминов с азотистой кислотой. Диазосоединения. Строение. Применение.	3	13	4	6	-	2	12	Разбор конкретных ситуаций.
4	Гетерофункциональные соединения								
4.1	Гидроксикислоты. Классификация, изомерия, номенклатура. Методы синтеза α-, β-, γ-гидроксикислот. Химические свойства. Реакции. Стереохимия молочной, винной, яблочной кислот. Асимметричекий атом углерода. Хиральность. Оптическая изомерия.	3	14	2	6	-	2	10	Разбор конкретных ситуаций.
4.2	Углеводы. Классификация и стереохимия моносахаридов. L- и D-ряды. α- и β-Аномеры. Таутомерия циклических и открытых форм в растворах моносахаридов, мутаротация глюкозы.	3	15	4	6	-	4	14	Разбор конкретных ситуаций.

	Реакции моносахаридов. Дисахариды.									
4.3	Полисахариды. Аминокислоты. Белки. Кислотно-основные свойства, амфотерность. Синтезы α-аминокислот. Основные принципы синтеза полипептидов.	3	16	2	4	-	3		9	Разбор конкретных ситуаций. Дискуссия
4.4										Разбор контрольной работы № 3
	Гетероциклические соединения									
	Пятичленные гетероциклы. Промышленные синтез фурфурола из пентазансодержащего сырья, тиофена из нефтяных крекинг газов. Ароматичность и диеновый характер. Пиррол. Реакции с участием подвижного атома водорода. Конденсация пиррола. Пиррольный цикл как структурный фрагмент хлорофилла и гемоглобина. Конденсированные пятичленные гетероциклы. Индол. Значение производных. Синтез. Электрофильное замещение, реакции с участием NH-группы.		17	4	2	-	2		8	Разбор конкретных ситуаций. Дискуссия
	Шестичленные ароматические гетероциклы с одним гетероатомом Пиридин. Данные о строении. Основность и нуклеофильность. Реакции с участием гетероатома. Реакции S _E , их особенности, механизм. Реакции нуклеофильного замещения.		18	4	2	-	2		8	Разбор конкретных ситуаций. Дискуссия
	Промежуточная аттестация.	3						36	36	Зачет. Экзамен.
	Итого: часов за 3 семестр	3		68	102		46	36	252	

Содержание дисциплины **3** семестр

1. Общие вопросы теоретической органической химии.

1.1. Теория химического строения А.М. Бутлерова, электронные представления, элементы квантовой химии.

Предмет органической химии. Естественнонаучное, методологическое и практическое значение органической химии. Теория химического строения А.М. Бутлерова и ее современное состояние. Типы химической связи в органических соединениях. Типы гибридизации атома углерода (sp^3 , sp^2 , sp). π - и σ -Связи атомов углерода. Индуктивный ($\pm \mathrm{J}$) и мезомерный ($\pm \mathrm{M}$) эффекты.

1.2. Классификация органических реакций и соединений. Виды номенклатуры.

Гемолитический и гетеролитический разрыв связи. Классификация реагентов. Промежуточные частицы: радикалы, карбкатионы, карбанионы. Классификация реакций. Гемолитические, гетеролитические, перициклические реакции. Понятие об электронном механизме органических реакций. Типы механизмов органических реакций. Гемолитический, гетеролитический, межфазный катализ. Энергетический профиль реакций; энергетический барьер реакций, энергия активации, энергия переходного состояния, тепловой эффект реакции. Химическое равновесие, обратимость реакций. Виды номенклатуры. Классификация органических соединений.

2. Углеводороды.

2.1 Алканы

Гомологический ряд. Изомерия. Номенклатура. sp³-Гибридизация. Способы получения. Природные источники алканов: нефть, природный газ. Промышленные и лабораторные способы получения. Строение алканов. Понятие о конформациях в ряду алканов на примере молекулы этана. Физические свойства. Химические свойства. Галогенирование. Свободнорадикальный цепной механизм реакций галогенирования. Относительная устойчивость свободных радикалов. Нитрование. Сульфохлорирование. Крекинг нефти, пиролиз. Окисление. Применение. Понятие об октановом и петановом числах топлива.

2.2. Алкены.

Гомологический ряд. Номенклатура. Виды изомерии: структурная и геометрическая. Способы получения. Промышленный метод синтеза этанола и пропанола-2. Строение. Физические свойства. Химические свойства. Реакции электрофильного присоединения: галогенирование, гидрогалогенирование, гидратация. Механизм реакции. Правило Марковникова. Присоединение бромоводорода по Харашу. Окисление алкенов с образованием гликолей (реакция Е.Е. Вагнера), оксиранов (реакция Н.А. Прилежаева), озонолиз. Полимеризация. Радикальный и ионный механизмы полимеризации. Применение.

2.3. Алкины. Алкадиены.

Гомологический ряд алкинов. Изомерия. Промышленные и лабораторные способы получения. Строение. sp-Гибридизация. Химические свойства. Реакции присоединени. Реакции, обусловленные С-Н кислотностью. Полимеризация.

Типы алкадиенов: с изолированными, кумулированными и сопряженными двойными связями. Изомерия. Номенклатура. Промышленные способы синтеза дивинила и изопрена. Химические свойства. Особенности реакций электрофильного присоединения сопряженных алкадиенов: 1,2- и 1,4-присоединение. Окисление. Полимеризация. Понятие о натуральном и синтетическом каучуке. Резина. Эбонит. Понятие о полиеновых углеводородах.

2.4. Алициклические углеводороды.

Классификация. Изомерия: структурная, пространственная. Понятие о конформациях циклогексана. Конформационный анализ. Нефть как источник шиклоалканов. получения: дегидроциклизация Способы алканов. гидрирование аренов, синтез на основе дигалогеналканов. Строение. Устойчивость циклов. Химические свойства. Влияние размера кольца на реакционную способность. Теория Байера и ее современное толкование. Свойства малых циклов. Реакции с галогенами, галогеноводородами, гидрирование, окисление. Характеристика нафтеновых углеводородов, входящих в состав нефти.

2.5. Ароматические углеводороды.

Гомологический ряд. Номенклатура. Источники ароматических углеводородов: каменноугольная смола, нефть и ее ароматизация. Строение бензола. Ароматичность. Правило Хюккеля. Химические свойства. Реакции электрофильного замещения (S_E): галогенирование, нитрование, сульфирование, алкилирование, ацилирование. Механизм реакций, π- и σкомплексы. Правила ориентации в S_E -реакциях. Особенности реакции галоидирования и нитрования боковых цепей. Окисление гомологов присоединения Характеристика бензола. Реакции ароматических углеводородов, входящих в состав нефти. Применение бензола и его гомологов (толуола, этилбензола, изопропилбензола, ксилолов). Понятие о полиядерных ароматических углеводородах конденсированными \mathbf{c} (нафталин, антрацен, фенантрен) изолированными И (бифенил. полифенилметаны) бензольными ядрами.

3. Производные углеводородов.

3.1 Галогенпроизводные углеводородов.

Классификация. Изомерия. Номенклатура. Способы получения галогенпроизводных алканов, циклоалканов, аренов. Строение. Химические свойства. Реакции нуклеофильного замещения, понятие о механизмах $S_{\rm N}1$ и $S_{\rm N}2$. Элиминирование, правило Зайцева. Реакции с

металлами (образование реактивов Гриньяра, реакция Вюрца). Причина малой подвижности галогена в винил- и арилгалогенидах, повышенной подвижности галогена в аллилгалогенидах. Понятие о полигалогенопроизводных. Практическое значение галогенопроизводных.

3.2. Гидроксипроизводные углеводородов.

Классификация спиртов. спиртов, первичные, вторичные, третичные спирты. Изомерия. Номенклатура. Промышленные и лабораторные способы получения спиртов. Строение. Водородная связь. Химические свойства. Кислотность. Реакции нуклеофильного замещения. Реакции отшепления. Дегидратация, межмолекулярная Окисление. Применение. Функциональные внутримолекулярная. производные спиртов: алкоголяты, простые эфиры, сложные эфиры. спирты. Двухатомные спирты. Этиленгликоль. Многоатомные Трехатомные спирты. Глицерин. Особенности физических и химических свойств. Связь между строением и реакционной способностью. Кислотные свойства. Понятие о липидах. Классификация. Простые липиды. Жиры и масла. Сложные липиды. Биологическая роль, распространение в природе. Химическая переработка жиров.

Фенолы. Одноатомные фенолы. Промышленные и лабораторные способы получения. Химические свойства. Кислотность, ее причина. Особенности реакций электрофильного замещения фенолов. Практическое применение одно- и многоатомных спиртов, фенолов и эфиров на их основе.

3.3. Альдегиды и кетоны.

Насыщенные альдегиды и кетоны. Изомерия и номенклатура. Методы получения альдегидов и кетонов из спиртов, производных карбоновых кислот, алкенов (озонолиз), алкинов (гидратация по Кучерову), на основе металлорганических соединений. Промышленное получение формальдегида, ацетальдегида и высших альдегидов (гидроформилирование). Строение карбонильной группы, ее полярность и поляризуемость. Химические свойства. Общие представления о механизме нуклеофильного присоединения по карбонильной альдегидов кетонов: присоединение группе И взаимодействие со спиртами (полуацетали, ацетали), гидросульфитом натрия, реактивом Гриньяра, синильной кислотой. Взаимодействие азотсодержащими нуклеофилами: образование оксимов, семикарбазонов. Окисление альдегидов и кетонов. Окисление кетонов с разрывом углерод - углеродных связей. Восстановление альдегидов и кетонов до спиртов. Альдольно-кротоновая конденсация альдегидов и кетонов в кислой и щелочной среде, механизм реакций.

3.4. Карбоновые кислоты и их производные.

Классификация по характеру радикала, по основности. Одноосновные карбоновые кислоты. Номенклатура. Способы получения: окисление углеводородов, спиртов, карбонильных соединений, оксосинтез, металлоорганический синтез, из производных карбоновых кислот. Получение муравьиной и уксусной кислот. Физические и химические свойства. Строение карбоксильной группы и карбоксилат-иона. Ассоциация, диссоциация.

Кислотные свойства. Влияние на кислотность характера радикала. Образование функциональных производных: солей, сложных эфиров, галогенангидридов, амидов, нитрилов. Реакции декарбоксилирования, восстановления.

Бензойная кислота. Особые свойства двухосновных карбоновых кислот. α,β-Ненасыщенные кислоты. Акриловая, метакриловая кислоты. Сопряжение С=О и С=С связей. Кислотность. Реакции электрофильного и нуклеофильного присоединения. Полимеризация.

Важнейшие жирные кислоты. Промышленные процессы гидрогенизации и омылении жиров. Значение.

3.5. Амины.

Амины. Классификация. Изомерия. Номенклатура. Способы получения: алкилирование аммиака, восстановление нитросоединений, оксимов, нитрилов. Строение аминов. Физические свойства. Водородные связи. Основность. Химические свойства: алкилирование, ацилирование, реакции с азотистой кислотой. Диазосоединения ароматического ряда: получение, свойства. Азокрасители. Азотсодержащие соединения нефтей.

4. Полифункциональные органические соединения.

4.1. Аминокислоты.

Классификация, номенклатура. Природные аминокислоты. Кислотноосновные свойства, амфотерность аминокислот. Изоэлектрическая точка. Синтезы α-аминокислот и их свойства. Белки. Протеины и протеиды. Основные принципы синтеза полипептидов. Первичная, вторичная и третичная структура белков. Биологические функции, значение.

5. Гетероциклические соединения.

Общие понятия о гетероциклах. Пятичленные гетероциклы с одним гетероатомом: фуран, пиррол, тиофен. Источники и способы получения. Строение. Ароматичность. Кислотно-основные свойства. Реакции электрофильного замещения.

Шестичленные гетероциклы с одним гетероатомом. Пиридин, строение. Ароматический характер. Основность. Пиперидин. Хинолин.

6. Нефть. Природные горючие газы.

Нефть. Общие сведения об элементном, химическом и фракционном составе. Химическая классификация нефтей. Физические свойства. Жидкие парафиновые углеводороды различных нефтей, их использование в качестве моторных топлив. Твердые парафиновые углеводороды.

Природные горючие газы. Нефть и природные газы - важнейшее сырье для химической промышленности. Основные направления переработки нефти и нефтепродуктов. Крекинг, пиролиз, гидрирование, дегидрирование, ароматизация, окисление парафинов в синтетические жирные кислоты, полимеризация углеводородных смесей газов, изомеризация, синтез-газ.

И

5. Образовательные технологии, применяемые при освоении дисциплины

При изучении дисциплины «Органическая химия» реализуются различные виды учебной работы: лекции, консультации, коллоквиумы, лабораторные занятия, контрольные работы, самостоятельные работы.

Реализация компетентностного подхода предусматривает использование в учебном процессе деловых игр, разбор конкретных ситуаций. Лабораторные занятия и подбор выполняемых экспериментальных работ направлены на формирование у обучающихся умения и навыков в области органической химии.

В рамках практической подготовки студентов профессиональные формируются индивидуальных при выполнении синтеза навыки органических веществ, методами ИХ очистки различными ректификационная перегонка, возгонка, перекристаллизация), установлении их физических характеристик (Тпл., Ткип., показатель преломления, R_f), формирование понимания принципов, законов и методологии органической химии происходит в рамках индивидуальных отчетов, разборов конкретных ситуаций.

работа Иная контактная представляет собой индивидуальные консультации, оказываемые очно и дистанционно c использованием информационных телекоммуникационных технологий И **учетом** образовательных возможностей обучающихся.

При изучении дисциплины «Органическая химия» инвалидами и лицами с ограниченными возможностями здоровья следует применять следующие адаптивные технологии: использование социально-активных рефлексивных обучения методов создания комфортного ДЛЯ использование психологического климата студенческой группе, реализации технологий при программы, работа дистанционных индивидуальному плану (время подготовки к сдаче отчета, а также выполнение и оформление лабораторной работы увеличивать на 0.5 часа. При невозможности эффективного выполнения лабораторной работы – проводить в форме лабораторного эксперимента).

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Самостоятельная работа студентов включает освоение теоретического материала, подготовку к лабораторным работам, оформление лабораторных работ, выполнение домашних заданий, подготовку к контрольным работам,

текущему и итоговому контролю, прохождению тестов. Оценочные средства текущего контроля включают:

- выполнение и оформление лабораторных работ
- разбор конкретных ситуаций
- оценку личностных качеств студента (аккуратность, работа у доски, исполнительность, инициативность)
- выполнение аудиторных и домашних контрольных работ

Промежуточная аттестация студентов производится в формах: зачеты, экзамены.

Приведены примеры тем коллоквиумов, контрольных работ, вопросы по дисциплине.

Виды самостоятельных работ обучающегося

- 1. Ознакомление с методами выделения, очистки и идентификации органических соединений с использованием методических рекомендаций кафедры и литературных источников.
- 2. Анализ состояний и перспектив промышленного производства важнейших органических соединений.

Виды текущего контроля

Контрольные работы согласно календарному плану по темам:

- а. Химические свойства углеводородов ациклических рядов.
- b. Химические свойства ароматических углеводородов.
- с. Функциональные производные углеводородов.

Контрольная работа №1 (варианты контрольных заданий).

- 1. Природные источники углеводородов.
- 2. Алканы, получение и свойства.
- 3. Получение и свойства алкенов.
- 4. Алкадиены. Реакции полимеризации.
- 5. Алициклические углеводороды. Химические свойства в зависимости от размера цикла.

Контрольная работа №2 (варианты заданий)

- 1. Ароматические углеводороды. Особенности строения и свойств.
- 2. Ароматические углеводороды как сырье для химической промышленности.

Контрольная работа №2 (варианты контрольных заданий).

- 1. Галогенопроизводные и их значение.
- 2. Спирты и фенолы. Сравнение химических свойств.
- 3. Карбонильные соединения. Реакции нуклеофильного присоединения, замещения.
- 4. Методы получения аминов. Основность и нуклеофильность.
- 5. Карбоновые кислоты и их производные. Химические свойства.

Вопросы по дисциплине

- 1.Индуктивный эффект, способ его изображения. Примеры групп с +I, -I-эффектом.
- 1. Реакции радикального замещения в ряду алканов: галогенирование, сульфохлорирование, нитрование.
 - 2. Химические свойства одноатомных спиртов.
 - 3. D-глюкоза, строение и свойства, что является эпимером D-глюкозы?
 - 4. Реакция аминов разных типов с азотистой кислотой.
- 5. Реакция Дильса-Альдера с алкенами, стереохимия реакции. Участие низших свободных (HCMO) и высших заполненных (B3MO) орбиталей реагентов в образовании переходного состояния реакции.
- 6. Геометрическая изомерия (*цис*-, *транс* и Z-, Е-номенклатура). Методы определения конфигурации. Примеры соединений, обладающих геометрической изомерией.
 - 7. Гликоли. Получение, свойства.
 - 8. Сахароза: строение, свойства.
 - 9. Теория химического строения А.М. Бутлерова. Ее основные положения.
 - 10. Получение и свойства α-аминокислот, их роль.
- 11. Химические свойства аминов: основные и нуклеофильные свойства, реакция аминов разных типов с азотистой кислотой и др.
 - 12. Полисахариды, нахождение в природе, классификация.
- 13. Реакции нуклеофильного замещения галогенопроизводных типа $S_{\rm N}2$, влияние на них различных факторов.
- 14. Мезомерный эффект, способ его изображения. Примеры групп с +М и М-эффектом.
- 15. Реакции окисления алкенов до оксиранов, до диолов. Стереохимия гидроксилирования алкенов. Озанолиз алкенов.
- 16. Двухосновные предельные кислоты, методы синтеза. Особые свойства щавелевой и малоновой кислот.
- 17. Реакции β-элиминирования. Механизм Е2 стереохимия элиминирования: *син-* и *анти-*элиминирование.
- 18. Свойства сопряженных диенов, π,π -сопряжение, 1,4- и 1,2- присоединение, энергетический профиль реакции, термодинамический и кинетический контроль.
- 19. Стереохимия соединений с двумя хиральными центрами. Диастереомеры. Мезоформы. Трео-, эритро-формы.
 - 20. Способы получения алканов.
- 21. Нитроалканы. Методы синтеза. Строение нитрогруппы. Свойства нитросоединений: кислотность и таутомерия.

- 22. Способы изображения пространственного строения молекул с sp³-гибридизованным углеродом. Конформации этана, н-бутана. Заслоненная, заторможенная, скошенная конформации.
- 23. Реакции карбоновых кислот: получение солей, галогенангидридов, ангидридов сложных эфиров (механизм реакции этерификации). Свойства галогенангидридов: взаимодействие с нуклеофилами.
- 24. Природные аминокислоты, хиральность аминокислот. Кислотно-основные свойства. Изоэлектрическая точка.
 - 25. Моносахариды, их стереохимия. Альдозы и кетозы.
- 26. Промышленные методы получения 1,3-диенов: дегидрирование алканов и алкенов, синтез Фаворского-Реппе, реакция С.В. Лебедева и др.
- 27. Строение карбонильной группы. Взаимодействие альдегидов и кетонов с нуклеофилами: PCl₅, N-нуклеофилами.
 - 28. Методы синтеза алкенов.
- 29. Клетчатка (целлюлоза). Эфиры клетчатки как взрывчатые вещества и искусственные волокна.
- 30. Правило В.В. Марковникова. Гидрогалогенирование: понятие о би- и тримолекулярных механизмах. Гидратация.
- 31. Сложные эфиры. Методы получения: этерификация карбоновых кислот (механизм), ацилирование спиртов ацилгалогенидами и ангидридами и др.
 - 32. Радикальная и координационная полимеризация алкенов.
 - 33. Особенности химических свойств α-, β-, γ-гидроксикислот.
- 34. Алкилгалогениды. Общие закономерности реакций нуклеофильного замещения. Реакции типа $S_{\rm N}1$.
- 35. Ацетилен, промышленное получение, С-Н-кислотность ацетилена. Ацетилениды натрия и меди. Магнийорганические производные алкинов: их получение и использование в органическом синтезе.
- 36. Получение аминов с помощью реакций нуклеофильного замещения, восстановлением азотсодержащих соединений
- 37. Свойства сопряженных диенов: присоединение брома, хлороводорода, димеризация, диеновый синтез, особенности реакций.
- 38. Реакции альдольной и кротоновой конденсации альдегидов и кетонов; кислотный катализ.
- 39. Синтез α-аминокислот. Бетаинообразное строение аминокислот. Свойства аминокислот: по аминогруппе, карбоксилу.
- 40. Общее представление о механизме реакций электрофильного присоединения (Ad_E) к алкенам, π и σ -комплексы, ониевые ионы. Стерео- и региоселективность.
 - 41. Типы связей в органических соединениях.
- 42. Реакции альдольной и кротоновой конденсации альдегидов и кетонов; основной катализ.
 - 43. Окисление и крекинг алканов. Механизм реакций.
 - 44. Реакции исчерпывающего окисления и восстановления алкенов.
- 45. Свойства α,β-непредельных одноосновных кислот. Полимерные материалы на основе производных акриловой и метакриловой кислот.

- 46. Классификация реагентов и реакций. Привести примеры различных типов реагентов.
- 47. Промышленные способы получения 1,3-бутадиена. Свободнорадикальный механизм полимеризации 1,3-бутадиена.
- 48. Стереохимия соединений с одним асимметрическим атомом углерода на примере молочной кислоты. R- и S-номенклатура.
 - 49. Галогенирование алкенов: механизм, стереохимия.
- 50. Химические свойства алкинов: реакции электрофильногоь присоединения.
 - 51. Восстановление альдегидов и кетонов до спиртов.
- 52. Методы синтеза карбоновых кислот. Строение карбоксильной группы и карбоксилат-иона. Кислотность, ее зависимость от индуктивных эффектов заместителей в алкильной цепи.
- 53. Конкуренция реакций нуклеофильного замещения и элиминирования у галогенопроизводных. Механизм E_1 .
 - 54. Способы получения альдегидов и кетонов предельного ряда.
- 55. Классификация реакций по характеру химических превращений, по типу механизма.
- 56. Взаимодействие альдегидов и кетонов с С-нуклеофилами, механизм реакций.
 - 57. Фруктоза, строение, химические свойства.
- 58. Получение и свойства пиррокалия и пирролмагнийгалогенидов; сопоставление их свойств со свойствами фенолятов.
- 59. Реакции алкилирования и ацилирования бензола и его гомологов. Условия и механизмы реакций.
- 60. Фенол. Промышленные и лабораторные способы получения. Реакции электрофильного замещения, реакции фенолов с усложнением углеродного скелета.
- 61. Пятичленные гетероциклы с одним гетероатомом. Важнейшие методы синтеза, взаимные переходы (реакция Юрьева).
- 62. Строение бензола. Критерии ароматичности. Правило Хюккеля. Небензоидные ароматические системы. Изомерия в ряду бензола.
- 63. Фуран. Характеристика химических свойств. Отношение к кислотам. Реакции диенового типа.
- 64. Особенности строения циклопропанового и циклобутанового колец. Реакции, сходные с алкенами и отличные от них.
- 65. Виды изомерии в ряду алициклических углеводородов и их производных. Конформации алициклов.
- 66. Диазосоединения. Строение. Различные формы диазосоединений и их взаимные переходы. Реакции с выделением азота, их применение.
- 67. Гипотеза напряжения Байера и ее современное понимание. Напишите резонансные структуры N-окиси пиридина. Получите на его основе α -хлорпиридин, используя $POCl_3$; 4-нитропиридин. Приведите механизмы реакций.

- 68. Введение атома галогена в ядро и в боковую цепь алкилбензолов. Механизмы реакций. Подвижность галогена в галогенбензолах и галогенбензилах.
- 69. Пиррол. Конденсация пиррола с формальдегидом и муравьиной кислотой. Понятие о строении и биохимической роли хлорофилла и гемоглобина.
- 70. Реакции электрофильного замещения в ароматическом ядре. Механизм реакций. Промежуточные стадии π и σ-комплексы. Примеры реакций.
- 71. Теория ориентации в ароматическом ряду. Активирующие и дезактивирующие ориентанты I и II-го рода. Электронное и стерическое влияние заместителей. Согласованная и несогласованная ориентация.
- 72. Общий обзор реакционной способности пятичленных гетероциклов с одним гетероатомом. Зависимость свойств от природы гетероатома.
- 73. Пиридин. Синтез простейших производных, их нахождение в природе. Распределение электронной плотности в ядре пиридина, свойства атома азота.
- 74. Сравните по кислотным, основным свойствам пиррол, пиридин, пиперидин. Напишите резонансные структуры пиррола, пиридина и дайте характеристику их химических свойств (на основе резонансных структур).
 - 75. Факторы, обуславливающие устойчивость алициклических соединений.
- 76. Методы синтеза альдегидов и кетонов ароматического и жирноароматического рядов.
 - 77. Анилин. Реакции с участием аминогруппы и бензольного кольца.

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1. Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекци	рные занятия	ские занятия	льная работа	Автоматизир ованное тестирование	виды учебной деятельно сти	Промежут очная аттестаци я	Итого
3	0	15	0	20	0	35	30 (зачет)	100
3	12	0	0	30	0	18	40 (экзам ен)	100

Программа оценивания учебной деятельности студента

для зачёта

Лекции

оценивание не предусмотрено

Лабораторные занятия от 0 до 15 баллов

Контроль выполнения лабораторных заданий в течение одного семестра - от 0 до 15 баллов. (По 1 баллу за каждую из 11 работ, дополнительно 4 балла за высокое качество оформления).

Практические занятия

не предусмотрены

Самостоятельная работа от 0 до 20 баллов

(групповые дискуссии 4 дискуссии по 5 баллов каждая) Групповые дискуссии (4)

За подготовку и участие в дискуссиях по всем темам от 0 до 20 баллов

0	1-2	3-4	5
Не работал	Принимал	Участвовал в	Активно
	участие в	дискуссии	участвовал в
	дискуссии,		дискуссии,
	приводив		самостоятельно
	уточняющие		подготовив
	дополнения		вопросы для
			обсуждения

Автоматизированное тестирование

не предусмотрено

Другие виды учебной деятельности от 0 до 35 баллов

За участие в разборе конкретных ситуаций по всем темам от 0 до 35 баллов суммарно (7 занятий с разбором конкретных ситуаций по 5 баллов каждое)

	0	1-2	3-4	5
Разбор конкретных ситуаций (7)	Не работал	Принимал участие в дискуссии, приводив уточняющие дополнения (менее 50% аудиторного времени)	Участвовал в дискуссии, работая 50 - 79% аудиторного времени	Участвовал в дискуссии, работая более 80% аудиторного времени

Промежуточная аттестация (зачет) от 0 до 30 баллов

ответ на «отлично» / «зачтено» оценивается от 21до 30 баллов; ответ на «хорошо» / «зачтено» оценивается от 11 до 20 баллов; ответ на «удовлетворительно» / «зачтено» оценивается от 6до 10 баллов;

ответ на «неудовлетворительно» / «не зачтено» оценивается от 0 до 5 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 3 семестр по дисциплине «Органическая химия» за зачет составляет 100 баллов

Таблица 2.1. Таблица пересчета полученной студентом суммы баллов по дисциплине «Органическая химия» в оценку (зачет):

60-100 баллов	«зачтено»
0-59 баллов	«не зачтено»

для экзамена

Лекции – от 0 до 12 баллов

• Оценивание посещаемости и активное участие в процессе чтения лекции – 0-12 баллов

Диапазон баллов	Критерий оценки
0 баллов	Посещение менее 40% лекционных занятий
1-3 балла	Посещение 40-64% лекционных занятий
4-6 баллов	Посещение 65-84% лекционных занятий
7-9 баллов	Посещение 85-100% лекционных занятий
10-12 баллов	Посещение 85-100% лекционных занятий и участие в лекционных дискуссиях

Лабораторные занятия

оценивание не предусмотрено

Практические занятия

Не предусмотрены.

Самостоятельная работа от 0 до 30 баллов (5 индивидуальных отчетов по 6 баллов каждый)

0	1-2	3-4	5-6

Индивидуаль	Работа	Материал	Материал	Материал
ный отчет по	не	в работе	соответствует	соответствует теме
каждой из 5	выполне	подобран	теме работы,	работы, полностью
тем	на	не	но усвоен не	усвоен, содержит
		корректно	полностью,	творческие
		, тема до	отсутствует	элементы
		конца не	творческая	самостоятельно
		раскрыта	часть работы	проведенного
				исследования и
				доложен.

Темы отчётов:

- 1. Техника безопасности. Методы выделения, очистки и идентификации органических соединений;
- 2. Нуклеофильное замещение в алифатическом ряду;
- 3. Реакции конденсации алифатических соединений.

Автоматизированное тестирование

не предусмотрено

Другие виды учебной деятельности от 0 до 18 баллов

За выполнение контрольных работ по 3-м темам от 0 до 18 баллов суммарно:

	0	1-3	4-5	6
Контрольная работа 1	Работа не выполнена	Выполнено менее 50%	Выполнено от 50 до 79%	Выполнено от 80 до 100%
		работы	работы	работы
Контрольная	Работа не	Выполнено	Выполнено от	Выполнено от
работа 2	выполнена	менее 50%	50 до 79%	80 до 100%
		работы	работы	работы
Контрольная	Работа не	Выполнено	Выполнено от	Выполнено от
работа 3	выполнена	менее 50%	50 до 79%	80 до 100%
		работы	работы	работы

Промежуточная аттестация (экзамен) от 0 до 40 баллов

ответ на «отлично» оценивается от 31 до 40 баллов; ответ на «хорошо» оценивается от 21 до 30 баллов; ответ на «удовлетворительно» оценивается от 11 до 20 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 3 семестр по дисциплине «Органическая химия» за экзамен составляет 100 баллов

Таблица 2.2. Таблица пересчета полученной студентом суммы баллов по дисциплине «Органическая химия» в оценку (экзамен):

85-100 баллов	«отлично»
75-84 баллов	«хорошо»
60-74 баллов	«удовлетворительно»
0-59 баллов	«не удовлетворительно»

Учебно-методическое и информационное обеспечение дисциплины

а) литература:

Органическая химия (в 3-х ч.) / О. А. Реутов. - Москва : БИНОМ. Лаборатория знаний, 2014. - 726 с. (ЭБС «АЙБУКС)

2. Органическая химия. Основной курс. А. Э. Щербина, Л. Г. Матусевич. - Москва: ООО "Научно-издательский центр ИНФРА-М"; Минск: ООО "Новое знание", 2014. - 808 с. (ЭБС «ИНФРА-М»)

Кривенько А.П., Астахова Л.Н. Реакции электрофильного замещения в аренах. Учеб.-метод. пособие. Изд-во «Научная книга», 2008. 54 с.

Сорокин В.В. Нуклеофильное замещение и элиминирование в алифатическом ряду: учебно-методическое пособие по общему курсу органической химии для химических специальностей / В. В. Сорокин; Сарат. нац. исслед. гос. ун-т им. Н. Г. Чернышевского. - Саратов: Издательство Саратовского университета, 2016. - 76, [4] с. (39 экз.)

б) программное обеспечение и Интернет-ресурсы:

- 1. Microsoft Windows XP Professional SP3 AL (Номер лицензии: № 60478556 от 17.01.13.)
- 2. Microsoft Office 2007 Suites (№ИОП 47/08 от 07.07.2008)

3. ISIS/Draw 2.4 (Freeware)

- 4. ChemBio3D Ultra 11.0 with MOPAC (№CER5030661, №ИОП 07.07.2008)
- 5. HyperChem Release 8.0 Proffesional 2 шт. (Гос. контракт № ИОП 07.07. 2008) сайт химического факультета МГУ http://www.chem.msu.ru/rus/weldept.html

Материально-техническое обеспечение дисциплины

- Аудитории для чтения лекций
- Учебные лаборатории
- Лаборатория микроанализа
- Лаборатория физико-химических методов исследования Компьютерный класс
- Лабораторная посуда и оборудование
- Химические реактивы
- Набор моделей молекул
- Оверхэд-проекторы

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 18.03.01 Химическая технология профиль подготовки «Химическая технология природных энергоносителей и углеродных материалов»

Автор (ы):

профессор кафедры органической и биоорганической химии Института химии СГУ, д.х.н. Егорова А.Ю.

Программа одобрена на заседании кафедры органической и биоорганической химии от «11» октября 2021 года, протокол № 2.