МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Факультет компьютерных наук и информационных технологий

УТВЕРЖДАЮ В РАЗОВИ Декан факультета Миронов С. В выотерный

«31» августа 2021 г.

Рабочая программа дисциплины Теория графов

Специальность 10.05.01 Компьютерная безопасность

Специализация Математические методы защиты информации

> Квалификация выпускника Специалист по защите информации

> > Форма обучения Очная

Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Абросимов М. Б.	de	31.08.2021 г.
Председатель НМК	Кондратова Ю. Н.	KOU	31.08.2021 г.
Заведующий кафедрой	Абросимов М. Б.	4	31.08.2021 г.
Специалист Учебного управления	Dunnoba U.B.	10. Sel	31.08.2021 г.

1. Цели освоения дисциплины

Целями освоения дисциплины «Теория графов» являются формирование у обучающихся компетенций, связанных с пониманием теоретических основ теории графов; овладение основными идеями и методами теории графов.

2. Место дисциплины в структуре ООП

Данная учебная дисциплина относится к части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (Модули)» учебного плана ООП и направлена на формирование у обучающихся профессиональных компетенций.

Для изучения дисциплины необходимы компетенции, сформированные в результате изучения дисциплин «Алгебра», «Дискретная математика», «Теория вероятностей и математическая статистика», «Теория информации», «Математическая логика и теория алгоритмов».

3. Результаты обучения по дисциплине

Код и наименование	Код и наименование	Результаты обучения		
компетенции	индикатора (индикаторов)			
	достижения компетенции			
ПК-1. Способен применять	ПК-1.1. Владеет методами	Знать		
методы научных	построения научной работы,	Основные понятия теории		
исследований в	современными методами	графов, основные теоремы		
профессиональной	сбора и анализа	теории графов, основные		
деятельности, в том числе в	полученного материала,	алгоритмы теории графов		
работе над	способами аргументации;	Уметь		
междисциплинарными и	навыками научных обзоров,	Доказывать основные		
инновационными	публикаций, рефератов и	теоремы теории графов,		
проектами.	библиографий по тематике	формулировать основные		
	проводимых исследований	алгоритмы теории графов		
	на русском и английском	Владеть		
	языках.	Навыками решения		
	ПК-1.2. Умеет решать	профессиональных задач с		
	научные задачи в связи с	применением теории графов		
	поставленной целью и в			
	соответствии с выбранной			
	методикой.			
	ПК-1.3. Имеет практический			
	опыт выступлений и			
	научной аргументации в			
	профессиональной			
	деятельности.			
ПК-2. Способен к	ПК-2.1. Знает современные	Знать		
самостоятельному	методы разработки,	Основные положения и		
построению алгоритмов,	реализации, анализа и	концепции теории графов		
проведению их анализа и	оптимизации алгоритмов.	Уметь		
реализации в современных	ПК-2.2. Умеет	Соотносить знания в		
программных комплексах.	разрабатывать и	области программирования		

реализовывать алгоритмы в	графовых алгоритмов с
современных программных	практическими задачами,
комплексах.	применять навыки
ПК-2.3. Владеет навыками	программирования и
разработки, анализа и	отладки программного кода
реализации алгоритмов.	для реализации алгоритмов
	на графах
	Владеть
	Навыками разработки
	программного обеспечения
	на основе алгоритмов
	теории графов

4. Структура и содержание дисциплины Общая трудоемкость дисциплины составляет 4 зачетных единицы 144 часа.

	aca.		Неде		Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				Формы текущего контроля успеваемост	
№ п/ п	Раздел дисциплин ы	Се-мес тр	ля се- мест ра	Лекц ии	Лабораторн Общая трудоёмко сть	Из них – практичес кая подготовк а	ИК Р	C P	и (по неделям семестра) Формы промежуточ ной аттестации (по семестрам)	
1	2	3	4	5	6	7	8	9	10	
1	Введение		1	2	2	_	_	2		
2	Основные алгебраичес кие конструкци и над графами	7	2-3	4	4	4	_	4	Контрольна	
3	Изоморфиз м и части графа		4-7	8	8	4	1	8	я работа на 15-й неделе	
4	Пути в графе		8-11	8	8	4	1	8		
5	Деревья		12-15	8	8	2	1	8		
6	Планарные графы		16-17	4	4	4	1	6		
	Промежуточная аттестация – 36ч.							Экзамен		
	ИТОГО – 144ч.			34	34	18	4	36		

Содержание дисциплины

Введение. Бинарные отношения. Двоичные булевы матрицы. Связь отношений и двоичных булевых матриц. Отношения на множестве. Классификация отношений.

Основные алгебраические конструкции над графами. Определения графов: ориентированный, неориентированный, видов направленный. Важнейшие классы графов: полные, вполне несвязные, двудольные, турниры. Алгебраические операции над графами: соединение, объединение, дополнение. Вершины и ребра графа. Степень вершины. Теорема Эйлера. Вектор степеней и степенное множество. Униграфы. вектора. Критерии Эрдеша-Галлаи Гавела-Хакими графичности И Построение реализации вектора степеней с помощью процедуры layoff. Построение реализации заданного степенного множества.

Изоморфизм и части графа. Понятие инварианта полного инварианта графа. Максимальные и минимальные матричные коды. Понятия изоморфизма вложения графов. Реконструируемость графов. Автоморфизмы графа. Подобные вершины и ребра. Способы проверки изоморфизма и вложения. Метод канонических представителей. Графовые отказоустойчивости. Минимальные вершинные И реберные расширения графов. Минимальные расширения некоторых типов графов: полный граф, вполне несвязный, цепь, цикл. Точные расширения графов.

Пути в графе. Пути в графе. Простые пути. Цепи. Циклы. Связные графы, компоненты связности. Теорема о достаточном условии связности. Вершинная и рёберная связности. Условие Уитни. Эксцентриситет вершины. Радиус и диаметр графа. Центр и окраина графа. Эйлеровость и полуэйлеровость. Критерии эйлеровости полуэйлеровости И графов. Гамильтоновость. Достаточные графов. условия гамильтоновости условие гамильтоновости Необходимое планарных графов: теорема Гринберга. Гамильтоновость кубических графов. Алгоритм Эпштейна.

Деревья. Понятие дерева. Способы визуализации деревьев. Характеристическая теорема о деревьях. Теорема о центре дерева. Кодирование деревьев: код Прюфера, уровневый код. Алгоритм Ахо-Хопкрофта-Ульмана проверки изоморфизма деревьев. Остовные деревья. Алгоритмы Прима и Крускала построения минимального остовного дерева.

Планарные графы. Укладки графов. Укладка графов в пространстве, на сфере и на плоскости. Планарные графы. Максимально плоские графы. Формула Эйлера для планарных графов. Критерий планарности. Прямолинейное изображение графа. Теорема Фари. Род графа.

План лабораторных занятий

На лабораторных занятиях студенты должны выполнить 9 теоретико-практических заданий.

<u>№</u> занятия	Тема	Задания для лабораторного практикума
1	2	3
1-5	Основные алгебраические конструкции над графами	№ 1, 2
6-8	Изоморфизм и части графа	№ 3, 4
9-12	Пути в графе	№ 5
13-15	Деревья	№ 6, 7, 8
16-17	Планарные графы	№ 9

5. Образовательные технологии, применяемые при освоении дисциплины

Предусматривается широкое использование в учебном процессе таких активных и интерактивных форм проведения занятий как групповое взаимодействие для решения задач, тематические дискуссии.

Лекционные занятия проводятся в традиционной форме. проведении части лекционных занятий используется ПК и мультимедийный проектор. На лекционных занятиях проводятся экспресс-опросы пройденному дискуссии на тему, предложенную материалу и самостоятельной проработки. Часть лекций происходит в форме лекциибеседы, позволяющей привлечь внимание студентов к наиболее важным вопросам темы и определяющей темп изложения учебного материала с учетом особенностей студентов.

Методы обучения, применяемые при изучении дисциплины способствуют закреплению и совершенствованию знаний, овладению умениями и получению навыков в области современного материаловедения. Содержание учебного материала диктует выбор методов обучения:

- информационно-развивающие — лекция, объяснение, демонстрация, решение задач, самостоятельная работа с рекомендуемой литературой.

В рамках практической подготовки по данной дисциплине используются проектные задания, выполнение которых направлено на формирование таких профессиональных действий как способность применять методы научных исследований в профессиональной деятельности. Примеры заданий приведены в фондах оценочных средства.

Иная контактная работа представляет собой индивидуальные консультации, оказываемые очно и дистанционно с использованием информационных и телекоммуникационных технологий с учётом образовательных возможностей обучающихся.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве. При этом основной формой организации учебного процесса является интегрированное обучение лиц с ограниченными возможностями здоровья, т.е. все студенты обучаются в смешенных группах, имеют возможность

постоянно общаться со сверстниками, благодаря чему легче адаптируются в социуме.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

В рамках самостоятельной работы студенты изучают дополнительную литературу по предмету. При чтении лекций по соответствующим разделам дисциплины даются ссылки на источники, в которых более детально рассматривается материал.

Фонд оценочных средств дисциплины включает в себя задания для самостоятельной работы, задания для лабораторных занятий, задания для контрольной работы, контрольные вопросы, вопросы для проведения промежуточной аттестации (экзамен). Фонд оценочных средств оформлен в качестве приложения к учебной рабочей программе дисциплины «Теория графов».

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности

1	2	3	4	5	6	7	8	9
Семест	Лекции	Лабора торные занятия	Практи ческие занятия	Самост оятельн ая работа	Автома тизиров анное тестиро вание	Другие виды учебно й деятель ности	Проме жуточн ая аттеста ция	Итого
7	10	30	_	10	0	10	40	100

Программа оценивания учебной деятельности студента

7 семестр

Лекции

Оценивается посещаемость и активность – от 0 до 10 баллов.

Лабораторные занятия

Оценивается самостоятельность при выполнении работы, грамотность в оформлении и правильность выполнения — от 0 до 30 баллов.

Практические занятия

Не предусмотрены.

Самостоятельная работа

Выполнение заданий в рамках самостоятельной работы в течение семестра – от 0 до 10 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Контрольная работа – от 0 до 10 баллов.

Промежуточная аттестация

Промежуточная аттестация представляет собой экзамен, проводимый в устной форме с предварительной подготовкой студента к ответу.

При проведении промежуточной аттестации ответ на «отлично» оценивается от 31 до 40 баллов; ответ на «хорошо» оценивается от 21 до 30 баллов; ответ на «удовлетворительно» оценивается от 11 до 20 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за седьмой семестр по дисциплине «Теория графов» составляет **100** баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине «Теория графов» в оценку (экзамен):

1 1 1	, , ,
90 - 100 баллов	«отлично»
80 - 89 баллов	«хорошо»
70 - 79 баллов	«удовлетворительно»
0 - 69 баллов	«неудовлетворительно»

8. Учебно-методическое и информационное обеспечение дисциплины

а) литература:

1. Абросимов, М.Б. Графовые модели отказоустойчивости [Электронный ресурс] / М.Б. Абросимов. — Саратов : Изд-во Сарат. ун-та, 2012. — 192 с. URL: http://elibrary.sgu.ru/uch_lit/1740.pdf.

2. Абросимов, М.Б. Практические задания по графам [Электронный ресурс] : учеб. пособие / М. Б. Абросимов, А. А. Долгов. — Саратов, 2016. —

82 c. URL: http://elibrary.sgu.ru/uch_lit/1732.pdf.

3. Костюкова, Н.И. Графы и их применение [Электронный ресурс] учебное пособие / Н.И.Костюкова. — 3-е изд. — Москва, Саратов : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. — 147 с. URL: http://www.iprbookshop.ru/89435.html.

4. Алексеев, В.Е. Графы и алгоритмы [Электронный ресурс] учебное пособие / В.Е. Алексеев, В.А. Таланов. — 3-е изд. — Москва, Саратов : √ Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар

Медиа, 2020. – 153 с. URL: http://www.iprbookshop.ru/89434.html.

5. Асанов, М.О. Дискретная математика: графы, матроиды, алгоритмы [Электронный ресурс] учебное пособие / М.О. Асанов, В.А. Баранский, В.В. Расин. — 3-е изд., стер. — Санкт-Петербург: Лань, 2020. — 364 с. URL: https://e.lanbook.com/book/130477.

6. Шевелев, Ю. П. Дискретная математика [Электронный ресурс] : учеб. пособие / Ю. П. Шевелев. - Москва : Лань, 2019. - 592 с. : ил. - ISBN 978-5-8114-0810-8 : Б. ц. URL: https://e.lanbook.com/book/71772. Загл. с

экрана. Яз. рус.

7. Богомолов, А. М. Алгебраические основы теории дискретных систем //[Текст] / А. М. Богомолов, В. Н. Салий. - Москва : Наука. Физ.-мат. лит., 1997. - 367, [1] с. : ил. - Библиогр. - ISBN 5-02-015033-9 (в пер.).

б) программное обеспечение и Интернет-ресурсы:

1. Лицензионное программное обеспечение: Microsoft Office, Microsoft Windows.

2. Мир графов [Электронный ресурс]. URL: http://www.graphworld.ru/.

Загл. с экрана. Яз. рус.

3. The House of Graphs: Database of interesting graphs [Электронный ресурс]. URL: https://hog.grinvin.org/. Загл. с экрана. Яз. англ.

9. Материально-техническое обеспечение дисциплины

Для проведения лекционных и лабораторных занятий необходима лекционная аудитория с возможностью демонстрации электронных презентаций при уровне освещения, достаточном для работы с конспектом.

Реализация *практической подготовки* в рамках учебных занятий запланирована на базе кафедры теоретических основ компьютерной безопасности и криптографии и учебной лаборатории компьютерной безопасности.

Программа составлена в соответствии с требованиями ФГОС ВО по специальности 10.05.01 Компьютерная безопасность и специализации «Математические методы защиты информации» (квалификация «Специалист по защите информации»).

Автор

Заведующий кафедрой теоретических основ компьютерной безопасности и криптографии д.ф.-м.н., доцент

М. Б. Абросимов

Программа одобрена на заседании кафедры теоретических основ компьютерной безопасности и криптографии от «31» августа 2021 года, протокол № 1.