МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «СГУ имени Н.Г. Чернышевского»

Факультет компьютерных наук и информационных технологий

Рабочая программа дисциплины Теория графов

Специальность 10.05.01 Компьютерная безопасность

Специализация Математические методы защиты информации

> Квалификация выпускника - Специалист по защите информации

> > Форма обучения Очная

Саратов, 2017

1. Цели освоения дисциплины

Целями освоения дисциплины «Теория графов» являются формирование у обучающихся компетенций, связанных с пониманием теоретических основ теории графов; овладение основными идеями и методами теории графов.

2. Место дисциплины в структуре ООП

Данная учебная дисциплина относится к вариативной части Блока 1 «Дисциплины (Модули)» ООП и направлена на формирование у обучающихся общепрофессиональных компетенций.

Для изучения дисциплины необходимы компетенции, сформированные в результате изучения дисциплин «Алгебра», «Дискретная математика», «Теория вероятностей и математическая статистика», «Теория информации», «Математическая логика и теория алгоритмов», «Прикладная универсальная алгебра».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

В результате освоения дисциплины студент должен обладать следующими общепрофессиональными компетенциями:

- способностью применять методы научных исследований в профессиональной деятельности, в том числе в работе над междисциплинарными и инновационными проектами (ОПК-4);
- способностью использовать языки и системы программирования, инструментальные средства для решения профессиональных, исследовательских и прикладных задач (ОПК-8).

В рамках указанных компетенций обучающийся должен

- Знать:
- основные понятия и результаты теории графов;
- основные алгоритмы на графах;
- Уметь:
- корректно применять модели, основанные на графах, к решению задач;
- разрабатывать быстрые вычислительные алгоритмы для решения задач на графах;
 - Владеть:
 - терминологией теории графов;
 - навыками анализа алгоритмов на графах.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 часов.

№ п/п	Раздел дисциплины	Семестр	Неделя семестра	ca pa(вкли мостоя боту ст грудое	Пабораторные вы мон занятия занятия	/ю в и	Формы текущего контроля успеваемости (по неделям семестра) Формы промежуточно й аттестации (по семестрам)
1	2	3	4	5	6	7	8	9
1	Введение		1	14	2	_	12	
2	Основные алгебраические конструкции над графами	7	2-3	26	4	10	12	Контрольная
3	Изоморфизм и части графа	/	4-7	26	8	6	12	работа на 15-й неделе
4	Пути в графе		8-11	28	8	8	12	
5	Деревья		12-15	26 24	8	6	12	
6	Планарные графы	анарные графы 16-18			6	6	12	
	Промежуточная аттестация 180 36 36 72					Экзамен		
	ИТОГО				36	36	72	36

Введение. Бинарные отношения. Двоичные булевы матрицы. Связь отношений и двоичных булевых матриц. Отношения на множестве. Классификация отношений.

Основные алгебраические конструкции над графами. Определения ориентированный, неориентированный, графов: основных видов направленный. Важнейшие классы графов: полные, вполне несвязные, двудольные, турниры. Алгебраические операции над графами: соединение, объединение, дополнение. Вершины и ребра графа. Степень вершины. Теорема Эйлера. Вектор степеней и степенное множество. Униграфы. Критерии Эрдеша-Галлаи Гавела-Хакими графичности вектора. И Построение реализации вектора степеней с помощью процедуры layoff. Построение реализации заданного степенного множества.

Изоморфизм и части графа. Понятие инварианта полного инварианта графа. Максимальные и минимальные матричные коды. Понятия изоморфизма графов. Реконструируемость вложения графов. Автоморфизмы графа. Подобные вершины и ребра. Способы проверки изоморфизма И вложения. Графовые модели отказоустойчивости. Минимальные вершинные и реберные расширения графов. Минимальные расширения некоторых типов графов: полный граф, вполне несвязный, цепь, цикл. Точные расширения графов.

Пути в графе. Пути в графе. Простые пути. Цепи. Циклы. Связные графы, компоненты связности. Теорема о достаточном условии связности.

Эксцентриситет вершины. Радиус и диаметр графа. Центр и окраина графа. Эйлеровость и полуэйлеровость. Критерии эйлеровости и полуэйлеровости графов. Гамильтоновость. Достаточные условия гамильтоновости графов. Необходимое условие гамильтоновости планарных графов: теорема Гринберга. Гамильтоновость кубических графов. Алгоритм Эпштейна.

Деревья. Понятие дерева. Способы визуализации деревьев. Характеристическая теорема о деревьях. Теорема о центре дерева. Кодирование деревьев: код Прюфера, уровневый код. Алгоритм Ахо-Хопкрофта-Ульмана проверки изоморфизма деревьев. Остовные деревья. Алгоритмы Прима и Крускала построения минимального остовного дерева.

Планарные графы. Укладки графов. Укладка графов в пространстве, на сфере и на плоскости. Планарные графы. Максимально плоские графы. Формула Эйлера для планарных графов. Критерий планарности. Прямолинейное изображение графа. Теорема Фари.

План лабораторных занятий

На лабораторных занятиях студенты должны выполнить 9 теоретикопрактических заданий.

№ занятия	Тема	Задания для лабораторного практикума			
1	2	3			
1-5	Основные алгебраические конструкции	№ 1, 2			
	над графами	J\2 1, Z			
6-8	Изоморфизм и части графа	№ 3, 4			
9-12	Пути в графе	№ 5			
13-15	Деревья	№ 6, 7, 8			
16-18	Планарные графы	№ 9			

5. Образовательные технологии, применяемые при освоении дисциплины

Предусматривается широкое использование в учебном процессе такие активные и интерактивные формы проведения занятий как групповое взаимодействие для решения задач, тематические дискуссии.

Лекционные занятия проводятся в традиционной форме. При проведении части лекционных занятий используется ПК и мультимедийный проектор. На лекционных занятиях проводятся экспресс-опросы по пройденному материалу и дискуссии на тему, предложенную для самостоятельной проработки. Часть лекций происходит в форме лекции-беседы, позволяющей привлечь внимание студентов к наиболее важным вопросам темы и определяющей темп изложения учебного материала с учетом особенностей студентов.

Методы обучения, применяемые при изучении дисциплины способствуют закреплению и совершенствованию знаний, овладению умениями и получению навыков в области современного материаловедения. Содержание учебного материала диктует выбор методов обучения:

- информационно-развивающие — лекция, объяснение, демонстрация, решение задач, самостоятельная работа с рекомендуемой литературой.

При обучении лиц с ограниченными возможностями здоровья и инвалидов используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, сопровождение тьюторами в образовательном пространстве; увеличивается время на самостоятельное освоение материала.

Основной формой организации учебного процесса является интегрированное обучение лиц с ограниченными возможностями здоровья и инвалидов, т.е. все студенты обучаются в смешенных группах, имеют возможность постоянно общаться со сверстниками, благодаря чему легче адаптируются в социуме.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

В рамках самостоятельной работы студенты изучают дополнительную литературу по предмету. При чтении лекций по соответствующим разделам дисциплины даются ссылки на источники, в которых более детально рассматривается материал.

Фонд оценочных средств дисциплины включает в себя задания для самостоятельной работы, задания для лабораторных занятий, задания для контрольной работы, контрольные вопросы, вопросы для проведения промежуточной аттестации (экзамен). Фонд оценочных средств дисциплины приведён в приложении 1.

7. Данные для учета успеваемости студентов в БАРС Таблица 1 — Таблица максимальных баллов по видам учебной деятельности

1	2	3	4	5	6	7	8	9
Семест	Лекции	Лабора торные занятия	Практи ческие занятия	Самост оятельн ая работа	Автома тизиров анное тестиро вание	Другие виды учебно й деятель ности	Проме жуточн ая аттеста ция	Итого
7	10	30	_	10	0	10	40	100

Программа оценивания учебной деятельности студента

7 семестр

Лекции

Оценивается посещаемость и активность – от 0 до 10 баллов.

Лабораторные занятия

Оценивается самостоятельность при выполнении работы, грамотность в оформлении и правильность выполнения — от 0 до 30 баллов.

Практические занятия

Не предусмотрены.

Самостоятельная работа

Выполнение заданий в рамках самостоятельной работы в течение семестра – от 0 до 10 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Контрольная работа – от 0 до 10 баллов.

Промежуточная аттестация

Промежуточная аттестация представляет собой экзамен, проводимый в устной форме с предварительной подготовкой студента к ответу.

При проведении промежуточной аттестации

ответ на «отлично» оценивается от 31 до 40 баллов;

ответ на «хорошо» оценивается от 21 до 30 баллов;

ответ на «удовлетворительно» оценивается от 11 до 20 баллов;

ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за седьмой семестр по дисциплине «Теория графов» составляет 100 баллов.

Таблица 2 — Таблица пересчета полученной студентом суммы баллов по дисциплине «Теория графов» в оценку (экзамен):

1 1 1	, ,
90 - 100 баллов	«отлично»
75 - 89 баллов	«хорошо»
50 - 74 баллов	«удовлетворительно»
0 - 49 баллов	«неудовлетворительно»

8. Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

1. Шевелев, Ю. П. Дискретная математика [Электронный ресурс] : учеб. пособие / Ю. П. Шевелев. - Москва : Лань", 2016. - 592 с. : ил. - ISBN 978-5-8114-0810-8 : Б. ц. URL: https://e.lanbook.com/book/71772 (дата обращения: 02.01.2017). Загл. с экрана. Яз. рус.

б) дополнительная литература:

- 1. Алгоритмы: построение и анализ [Текст] = Introduction to Algorithms / Т. Кормен [и др.]; пер. с англ. И. В. Красикова, Н. А. Ореховой, В. Н. Романова; под ред. И. В. Красикова. 2-е изд. Москва; Санкт-Петербург; Киев: Вильямс, 2005. 1290, [6] с.: рис. ISBN 5-8459-0857-4 (рус.) (в пер.). ISBN 0-07-013151-1 (англ.).
- 2. Богомолов, А. М. Алгебраические основы теории дискретных систем [Текст] / А. М. Богомолов, В. Н. Салий. Москва: Наука. Физ.-мат. лит., 1997. 367, [1] с.: ил. Библиогр. ISBN 5-02-015033-9 (в пер.).
- 3. Шапорев, С. Д. Дискретная математика [Текст]: курс лекций и практических занятий / С. Д. Шапорев. Санкт-Петербург: БХВ-Петербург, 2009. 396 с.: ил. (Учебное пособие). Предм. указ.: с. 393-396. ISBN 978-5-94157-703-3 (в пер.).

в) Интернет-ресурсы:

- 1. Абросимов М.Б., Долгов А.А. Практические задания по графам [Электронный ресурс]: учеб. пособие / М. Б. Абросимов, А. А. Долгов. Саратов, 2009. 75 с. URL: http://www.sgu.ru/sites/default/files/textdocsfiles/2013/06/26/abrosimov_m.b._dol gov_a.a._prakticheskie_zadaniya_po_grafam.pdf (дата обращения: 02.01.2017). Загл. с экрана. Яз. рус.
- 2. Grinvin Welcome [Электронный ресурс]. URL: http://www.grinvin.org/ (дата обращения: 26.09.2016). Загл. с экрана. Яз. англ.
- 3. The House of Graphs: Database of interesting graphs [Электронный ресурс]. URL: https://hog.grinvin.org/ (дата обращения: 02.01.2017). Загл. с экрана. Яз. англ.

9. Материально-техническое обеспечение дисциплины

Для проведения лекционных и лабораторных занятий необходима лекционная аудитория с возможностью демонстрации электронных презентаций при уровне освещения, достаточном для работы с конспектом.

Программа составлена в соответствии с требованиями ФГОС ВО по специальности 10.05.01 Компьютерная безопасность и специализации «Математические методы защиты информации» (квалификация «Специалист по защите информации»).

Автор

Профессор кафедры теоретических основ компьютерной безопасности и криптографии, д.ф.-м.н., доцент

М.Б.

М.Б. Абросимов

Программа разработана в 2012 г. (одобрена на заседании кафедры теоретических основ компьютерной безопасности и криптографии от «25» мая 2012 года, протокол № 18).

Программа актуализирована в 2017 г. (одобрена на заседании кафедры теоретических основ компьютерной безопасности и криптографии от «09» января 2017 года, протокол № 10).

Заведующий кафедрой теоретических основ компьютерной безопасности и криптографии, профессор, к.ф.-м.н.

Blance

В.Н. Салий

Декан факультета компьютерных наук и информационных технологий, к.ф.-м.н., доцент

Chois &

А.Г. Федорова