Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт химии

УТВЕРЖДАЮ Директор института химии д.х.н., проф. Горячева И.Ю.

"H" okmathe

2021 E

Рабочая программа дисциплины Химия токсикантов

Направление подготовки бакалавриата 04.03.01 **Химия**

Профиль подготовки бакалавриата **Химия низко- и высокомолекулярных органических веществ**

Квалификация (степень) выпускника

Бакалавр

Форма обучения очная

Саратов,

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Сорокин Виталий Викторович	R.	19.10.2021
Председатель НМК	Крылатова Яна Георгиевна	the part	11.10.2021
Заведующий кафедрой	Егорова Алевтина Юрьевна	8/-	11.10.2021
Специалист Учебного управления			

1. Цели освоения дисциплины

Целями освоения дисциплины «Химия токсикантов» являются:

- формирование у студентов знаний химических и биологических свойств органических токсикантов в соответствии с их принадлежностью к классам, путей попадания этих соединений в окружающую среду, путей их превращений и способов ограждения человека от их вредного воздействия;
- углубление знаний об основных методах защиты производственного персонала и населения от возможных последствий аварий, катастроф и стихийных бедствий:
- знакомство с примерами экологических технологий, системой «разумной продукции» и критериями экологически безопасной продукции, что способствует экологическому воспитанию

2.Место дисциплины в структуре ООП

Дисциплина «Химия токсикантов» (Б1.В.01) является дисциплиной части, формируемой участниками образовательных отношений, Блока 1 "Дисциплины (модули)" рабочего учебного плана ООП бакалавриата по направлению 04.03.01 Химия, профилю подготовки «Химия низко- и высокомолекулярных органических веществ» и обеспечивает содержательную часть естественнонаучных дисциплин с общепрофессиональными и специальными дисциплинами органического и биоорганического профиля подготовки и изучается в 7 семестре.

Материал дисциплины основывается на «входных» знаниях курсов: неорганическая химия, органическая химия, теоретические основы органической химии.

Изучение данного курса как предшествующего способствует усвоению дисциплин: химия гетероциклических соединений, пестициды и регуляторы роста растений, а также необходимо для выполнения квалификационной работы бакалавра, обеспечивая профессиональные навыки в области органической и биоорганической химии.

3. Результаты обучения по дисциплине

Код и	Код и наименование	Результаты обучения
наименование	индикатора	
компетенции	(индикаторов)	
	достижения	
	компетенции	
УК-1. Способен	1.1_Б.УК-1. Анализирует	знать:
осуществлять поиск,	задачу, выделяя ее	- основные источники химической
критический анализ	базовые составляющие.	информации и базы данных
и синтез	Осуществляет	- основные анатомо-
информации,	декомпозицию задачи.	физиологические последствия
применять	2.1_Б.УК-1. Находит и	воздействия на человека вредных
системный подход	критически анализирует	веществ и поражающих факторов и
для решения	информацию,	приемы первой помощи; методы
поставленных задач	необходимую для	защиты населения при ЧС,
	решения поставленной	связанных с воздействием

	задачи.	ТОКСИКАНТОВ
	3.1_ Б.УК-1.	уметь:
	Рассматривает различные	- анализировать закономерности
	варианты решения задачи,	химического процесса,
	оценивая их достоинства и	интерпретировать смысл
	недостатки.	полученных результатов.
	4.1_ Б.УК-1. Грамотно,	владеть:
	логично,	- методами подбора методик
	аргументированно	химического анализа и
	формирует собственные	экспериментальных методов
	суждения и оценки.	определения физико-химических
	Отличает факты от	свойств органических низко- и
	мнений, интерпретаций,	высокомолекулярных соединений
	оценок и т.д. в	
	рассуждениях других	
	участников деятельности.	
	5.1 Б.УК-1. Определяет и	
	оценивает практические	
	последствия возможных	
	решений задачи.	
ПК-3. Способен	ПК-3.1. Проводит	Знать:
оказывать	первичный поиск	- требования к безопасности
информационную	информации по заданной	работы в химических
поддержку	тематике, в том числе, с	лабораториях, средства и методы
специалистам,	использованием баз	повышения безопасности
осуществляющим	данных	профессиональной деятельности
научно-	ПК-3.2. Систематизирует	при работе с токсическими
исследовательские	научно-техническую	веществами.
работы	информацию на русском и	Уметь:
раооты	информацию на русском и иностранном языках по	
	заданной тематике	- принимать решения по целесообразным действиям в ЧС,
	ПК-3.3. Анализирует	выбирать методы защиты от
	научно-техническую	вредных токсикантов, обеспечивать
	информацию для решения	безопасность жизнедеятельности
	конкретной задачи	при осуществлении
	конкретной задачи	профессиональной деятельности и
		1
		1
		оказывать первую помощь
		пострадавшим от отравлений
		токсикантами;
		-выбирать методы защиты от
		токсических соединений и способы
		обеспечения комфортных условий
		профессиональной деятельности.
		Владеть:
		-понятийно-терминологическим
		аппаратом в области безопасности
		жизнедеятельности, приемами и
		способами использования
		индивидуальных средств защиты,
		основными методами защиты и
		приемами оказания первой помощи

токсикантов

задачи.

	пост	градавшим	ОТ	действия
	токо	сикантов;		
	-	приемами		нализации
	про	фессиональной	деяте.	льности с
	целі	ью обеспечения	безопа	асности

4. Структура и содержание дисциплины.

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 часов.

№ п/п	Раздел дисциплины	Се-ме-стр	Не- дел я се- ме- стр а	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)					Формы текущег о контрол я успевае мости (по неделям семестр а) Формы промежу точной аттестац ии (по семестр ам)	
1	Актуальность проблемы загрязнения окружающей среды			лекции	лабор ные. Общ ая труд оемк ость	Из них – прак тиче ская подг отов ка	сам. р.	Конт роль	всег	
1.1.	Экологически опасные вещества и факторы воздействия.	7	1	3	3	1	3		9	Разбор конкретн ых ситуаций .
2.	Источники органических токсикантов. Воздействие на живой организм и окружающую среду.	7	2	2	2	1	2		6	Разбор конкретн ых ситуаций .
2.1.	Пути поступления нефтепродуктов в	7	3	2	2	1	2		6	Разбор конкретн

	окружающую среду. Неблагоприятное воздействие нефтепродуктов на организм человека, животный и растительный мир.								ых ситуаций
2.2.	Алканы, арены и их влияние на здоровье человека.	7	4	2	2	1	2	6	Разбор конкретн ых ситуаций . тест
2.3.	Полициклические ароматические углеводороды. Высококанцерогенные ПАУ и их источники.	7	5	2	2	1	2	6	Разбор конкретн ых ситуаций . тест
2.4.	Наркотические и токсические свойства алифатических галоген-замещенных углеводородов. Хлорфторуглероды и проблема озона.	7	6,7	3	4	2	5	11	Разбор конкретн ых ситуаций . тест
2.5.	Галогенпроизводные ароматических углеводородов. Проблема загрязнения окружающей среды диоксинами.	7	8,9	4	5	2	5	14	Разбор конкретн ых ситуаций . тест
2.6.	Спирты и фенолы и их галогенпроизводные как наркотические и токсичные вещества.	7	10,	4	5	2	5	14	Разбор конкретн ых ситуаций . тест
2.7.	Альдегиды и кетоны. Токсические и канцеро-генные свойства. Формальдегид как консервант древесины и компонент бытовой химии.	7	12,	4	5	2	5	14	Разбор конкретн ых ситуаций . Тест отчет
2.8.	Карбоновые кислоты. Простые и сложные эфиры. Их раздражающее, аллергенное и канцерогенное Действие. Поверхностно-	7	14	2	2	1	2	6	Разбор конкретн ых ситуаций . отчет

	активные вещества и проблема загрязнения									
	ПАВ окружающей среды.									
2.9.	Цианиды, амины и серусодержащие органические токсиканты.	7	15	2	2	1	2		6	Разбор конкретн ых ситуаций . тест
2.10.	Пестициды, гербициды, регуляторы роста растений, репелленты. Их виды, токсичность, опасность для окружающей среды.	7	16	3	3	1	3		9	Разбор конкретн ых ситуаций .
3.	Токсиканты вокруг нас и приемы, позволяющие снизить их вредное воздействие.									дискусси я
3.1.	Промышленная продукция как источник органических токсикантов. Борьба с вредным воздействием токсикантов.	7	17, 18	3	4	2	4		11	Разбор конкретн ых ситуаций
	Промежуточная аттестация.	7						36	36	Экзамен
	Итого: часов			36	36	18	36	36	144	

Содержание дисциплины

Введение

Актуальность проблемы загрязнения окружающей среды.

Статистические данные, свидетельствующие о токсикации планеты как о медленной катастрофе. Основные понятия и определения. Система экологического нормирования. Классы опасности химических соединений. Понятия об "экотоксинах" и "суперэкотоксинах".

1. Источники органических токсикантов. Воздействие на живой организм и окружающую среду

Пути поступления нефтепродуктов в окружающую среду. Факторы, влияющие на изменение концентрации нефтепродуктов в водоемах. Устойчивость различных типов углеводородов.

Неблагоприятное воздействие нефтепродуктов на организм человека, животный и растительный мир, физическое, химическое и биологическое состояние водоема. Наиболее опасные компоненты нефтепродуктов.

Алканы. Нахождение в природе и в препаратах бытовой химии. Действие алканов на слизистые оболочки дыхательных путей.

Арены. Источники загрязнения аренами окружающей среды. Пути их поступления в организм, влияние на здоровье человека. Бензол, его метаболизм в организме. Толуол.

Задержка толуола в организме и его влияние на здоровье. Ксилол. Влияние на кроветворение, наркотические свойства. Стирол, полистирол, их опасность.

Полициклические ароматические углеводороды (ПАУ).

ПАУ, вызывающие бронхиты и дерматиты. Малотоксичные ПАУ. Высококанцерогенные ПАУ. Источники ПАУ (сигаретный дым, газовая плита, выхлопные газы, промышленные выбросы) и приемы, позволяющие уменьшить их опасность.

Галогенпроизводные углеводородов. Наркотические и токсические свойства алифатических галогензамещенных углеводородов в зависимости от строения (метиленхлорид, 1,2-дихлорэтан, трихлорэтилен, винилхлорид и поливинилхлорид). Хлорфторуглероды, их раздражающее и удушающее действие. Проблема озона и озонового слоя в атмосфере. Переход на безфреонные изделия. Препараты и объекты, содержащие галогенпроизводные углеводородов.

Галогенпроизводные ароматических углеводородов. Их воздействие на нервную систему и токсические свойства. 1,2,4-Трихлорбензол, пентахлорбензол, гексахлорбензол.

Диоксины. Типы диоксинов. Токсичность в зависимости от строения. Пути образования, распространение в природе, токсические, канцерогенные, мутагенные свойства. Сложность борьбы с загрязнением окружающей среды диоксинами.

Спирты. Наркотические и токсические свойства спиртов в зависимости от их строения. Метаболизм спиртов в организме. Метанол, 2-пропанол, бутанол, этиленгликоль. Проблема алкоголизма.

Фенолы и ароматические гидроксикислоты. Фенол, пирогаллол, резорцин, гидрохинон. Галогенпроизводные фенолов — смертельные яды. 2,4,5-Трихлорфенол, пентахлорфенол, пентахлорфенолят натрия. Салициловая и галловая кислоты. Препараты, содержащие ароматические спирты и гидроксикислоты. Их вредное воздействие на кожу.

Альдегиды. Формальдегид. Токсические и канцерогенные свойства. Формальдегид как консервант древесины и компонент бытовой химии. Проблема создания безвредной мебели. Уменьшение опасного воздействия формальдегида. Фурфурол, источники его попадания в окружающую среду, токсические свойства.

Кетоны. Раздражающие, токсические, наркотические свойства ацетона и циклогексанона.

Кислоты. Летучие кислоты (муравьиная, уксусная). Влияние на состояние водоемов загрязнений пропионовой, масляной, молочной, бензойной кислотами. Гумусовые кислоты (гуминовые и фульвокислоты) как загрязнители окружающей среды. Акриловая кислота в производстве промышленных товаров и мебели.

Простые эфиры. Эфиры гидрохинона – компоненты кремов для кожи. Конъюнктивиты и дерматиты, вызываемые простыми эфирами.

Сложные эфиры. Метилметакрилат. Канцерогенные и токсические свойства. Этилацетат, винилацетат. Источники попадания в организм и их действие на организм человека.

Поверхностно-активные вещества (ПАВ). Виды ПАВ. Токсические и аллергенные свойства ПАВ. Проблема загрязнения ПАВ окружающей среды.

Цианиды. Механизм токсического действия цианидов. Их превращения в организме в тиоцианаты, угнетающие иммунную систему. Акрилонитрил.

Амины, их содержание в препаратах бытовой химии и токсические свойства.

Нитрозамины, их образование в организме и опасность. Концентрация нитратов и нитритов в продуктах питания, способы ее определения. Приемы, позволяющие снизить содержание нитратов в пищевых продуктах.

Серусодержащие органические токсиканты. Сероуглерод, метилмеркаптан, диметилсульфид, диметилдисульфид, ксантогенаты.

Пестициды, гербициды, регуляторы роста растений, репелленты. Виды, токсичность, опасность для окружающей среды. Альтернативные экологически безопасные средства.

2. Промышленная продукция как источник органических токсикантов. Борьба с вредным воздействием токсикантов

Косметика и парфюмерия. Моющие, чистящие, отбеливающие и дезинфицирующие средства. Клеи, лакокрасочная продукция, «автохимия». Пестициды. Текстильные изделия. Упаковочные материалы.

Критерии экологически безопасной продукции. Экологически чистые технологии. Примеры экологически безопасной продукции.

5. Образовательные технологии, применяемые при освоении дисциплины

При изучении дисциплины «Химия токсикантов» реализуются различные виды учебной работы: лекции, лабораторные работы, разбор конкретных ситуаций, дискуссии, тесты, самостоятельная работа студентов (освоение теоретического материала, подготовка к лабораторным занятиям, подготовка к текущему и итоговому контролю). Реализация компетентностного подхода предусматривает использование в учебном процессе материала, направленного на формирование у обучающихся общекультурных и профессиональных компетенций, умения и навыков, соответствующих дисциплине «Химия токсикантов». В ходе практических занятий организуются деловые игры и тренинги по решению конкретных задач, связанных с анализом степени потенциального вредного воздействия на человека и окружающую среду конкретных органических соединений, а также продукции сложного состава.

В рамках практической подготовки студентов профессиональные навыки формируются при формировании понятийного аппарата, понимание принципов, законов и методологии токсикологической химии происходит в рамках разборов конкретных ситуаций.

Образовательные технологии для инвалидов и лиц с ограниченными возможностями

При изучении дисциплины инвалидами и лицами с ограниченными возможностями здоровья используются следующие адаптивные технологии: использование социально-активных рефлексивных методов обучения для создания комфортного психологического климата в студенческой группе, использование дистанционных технологий при реализации программы, работа по индивидуальному плану. Увеличивать время подготовки к сдаче отчёта, а также выполнение и оформление лабораторной работы. При невозможности эффективного выполнения лабораторной работы — проводить в форме демонстрационного эксперимента.

6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Самостоятельная работа студентов включает освоение теоретического материала, подготовку к лабораторным работам, выполнение домашних заданий, подготовку к текущему и итоговому контролю. Оценочные средства текущего контроля включают:

- разбор конкретных ситуаций
- оценку личностных качеств студента (аккуратность, работа у доски, исполнительность, инициативность)
- тесты
- отчеты по отдельным разделам дисциплины

Промежуточная аттестация студентов производится в форме экзамена.

В ходе лабораторных занятий организуется разбор конкретных ситуаций по следующим темам:

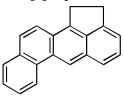
- 1. Какие "суперэкотоксины" вероятно содержатся в окружающей среде в окрестности вашего дома? Обоснуйте свой ответ, высказав предположение об источниках из поступления в окружающую среду.
- 2. Предложите приёмы, позволяющие снизить вредное воздействие органических токсикантов, которые содержатся в вашем жилище (городском районе, регионе).
- 3. Перечислить Вредные вещества в табачном дыме и оценить скорость поступления этих веществ из естественного фона окружающей среды в организм не курящего человека.
- 4. Разобрать состав принесённых с собой продуктов питания (шоколад, чипсы, паштет, газированный напиток). Оценить пользу и потенциальный вред продукции.
- 5. Разобрать состав принесённых с собой шампуней. Оценить пользу и потенциальный вред продукции.
- 6. Разобрать состав принесённых с собой товаров бытовой химии (стиральный порошок, чистящие средства). Оценить пользу и потенциальный вред продукции.

Примеры вопросов для дискуссии:

- 1. Какое действие оказывают фреоны на организм человека.
- 2. Опишите основные проблемы озоновых дыр и аргументируйте переход на безфреонные технологии.
- 3. Какие продукты сгорания содержатся в городском воздухе, в помещениях, в пище.
- 4. Объясните зависимость токсичности от строения и химической природы. Есть ли реальные пути экологической оздоровления ситуации?
- 5. Нужны ли мусоросжигательные заводы? В чём их опасность? Какие альтернативные пути переработки мусора вы бы предложили?
 - 6. Поливинилхлорид. Вреден или нет? Мифы и реальность.
 - 7. Пути выхода их «диоксиновой» проблемы.
 - 8. Пестициды и гербициды. Использовать иди отказаться?
- 9. Выгодны ли альтернативные экологически безопасные средства и приемы веления сельского хозяйства?

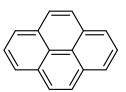
Тесты для самоконтроля:

Бензол


Бесцветная жидкость. Ткип 80,1 °C. Устойчив к воздействию высокой температуры и окислителей. Используется в производстве анилина, фенола, стирола, взрывчатых веществ и др. Является хорошим растворителем жиров. Раздражает кожу. Токсичен при вдыхании высоких концентраций, а также при хроническом воздействии в низких концентрациях.

- 1. Не является источником бензола:
- а) табачный дым
- б) пары бензина
- в) медицинские учреждения
- г) коксохимические заводы
- 2. При хроническом воздействии бензола на организм он накапливается:
- а) в жировой ткани
- б) в костной ткани
- в) в мышечной ткани

- г) в крови
- 3. В организме из бензола образуются гематотоксичные метаболиты:
- а) бензойная кислота
- б) анилины
- в) фенолы
- г) бензол не подвергается превращениям в организме, однако сам обладает гематотоксическим действим

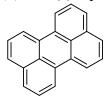

Полиядерные ароматические углеводороды (ПАУ)

бенз[а]пирен

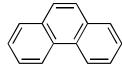


Холантрен

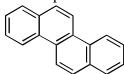
Антрацен

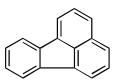


Пирен



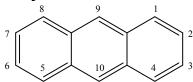
1,12-бензперилен


Дибенз(а)пирен


Перилен

Фенантрен

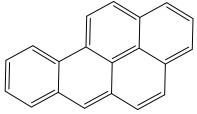
Хризен



Флуорантен

- 1. К высококанцерогенным ПАУ не относится:
- а) бенз[а]пирен
- б) холантрен
- в) дибенз(а)пирен
- г) пирен
- д) перилен
- 2. Не является источником ПАУ:
- а) лесные пожары
- б) производство хлора
- в) табачный дым
- г) сжигание мусора
- 3. ПАУ устойчивы в окружающей среде вследствие:
- а) полиароматического характера
- б) высокой молекулярной массы

- в) наличия кратных связей
- г) ПАУ являются неустойчивыми соединениями


Антрацен

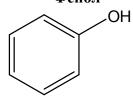
Бесцветные кристаллы с фиолетовой флуоресценцией. Тпл 216 °C. Содержится в каменноугольной смоле. Используется как сырье для органического синтеза и сцинтиллятор.

- 1. Для антрацена правильно утверждение:
- а) он обладает высокой токсичностью
- б) он не обладает высокой токсичностью, но токсичны продукты его превращений в окружающей среде
- в) он не обладает высокой токсичностью, а продукты его превращений в окружающей среде не токсичны
 - 2. Какое утверждение характеризует химические особенности антрацена?
- а) реакции присоединения, окисления и электрофильного замещения очень легко протекают по положениями 9,10
- б) реакции присоединения, окисления и электрофильного замещения очень легко протекают по положениями 1,2
- в) реакции присоединения, окисления и электрофильного замещения очень равновероятно протекают по всем положениям антрацена
 - г) антрацен очень устойчив в реакциях присоединения и окисления
 - 3. В окружающей среде антрацен:
 - а) окислятся до антрахинона
 - б) превращается в нитроантрацен
 - в) не подвергается превращениям
 - г) разрушается до бензола

Бензпирен (3,4-бензпирен, бенз[а]пирен)

Кристаллическое соединение желтого цвета с Тпл 179 °С. В небольших количествах содержится в каменноугольной смоле. Суперэкотоксикант. Сильный канцероген. Главная причина загрязнения бенз[а]пиреном окружающей среды - неполное сгорания органических соединений.

- 1. Укажите причину, по которой бенз[а]пирен способен переноситься на большие расстояния от места его выброса.
 - а) он является легко летучим соединением
 - б) он способен адсорбироваться на поверхности пыли
 - в) он хорошо растворяется в воде, что способствует его переносу речными водами
 - г) выпадает на землю в составе кислотных дождей


11

- 2. Бенз[а]пирен очень медленно разрушается в окружающей среде. Какие наиболее вероятные пути трансформации этого соединения в атмосфере вы бы болги прогнозировать?
 - а) взаимодействие с кислородом воздуха с образованием полиядерных хинонов
 - б) взаимодействие с озоном с образованием полиядерных хинонов
 - в) взаимодействие с диоксидом азота с образованием нитробенз[а]пиренов
 - г) деструкция на низкомолекулярные продукты под действием солнечного света
 - 3. Сколько продуктов монохлорирования может образоваться из бенз[а]пирена?
 - a) 1 б) 12 в) 18 г) 20

Спирты

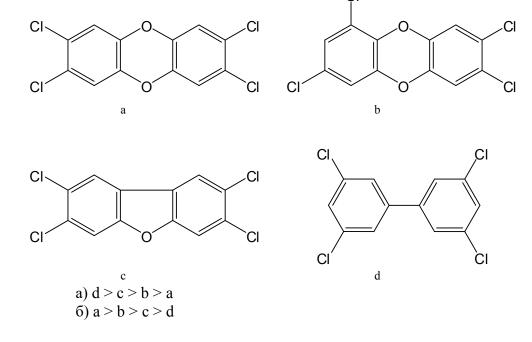
- 1. Спирты, которые обладают опьяняющим действием, но являются высокотоксичными:
- а) этанол
- б) этиленгликоль
- в) глицерин
- г) изопропанол
- 2. Употребление метанола приводит к слепоте и смерти вследствие того, что он:
- а) сам является крайне токсичным
- б) превращается в организме в формальдегид
- в) накапливается в мозгу
- г) способен к образованию водородных связей
- 3. Этиленгликоль вызывает:
- а) гемолиз эритроцитов
- б) накопление щавелевой кислоты в почках
- в) образование токсичных альдегидов
- г) обезвоживание организма

Фенол

В виде 3%-ного раствора (карболовая кислота) используется для дезинфекции хирургических инструментов и помещений.

- 1. Какие свойства характеризуют фенол как ароматическое соединение?
- а) Наличие шестичленного цикла
- б) Наличие трех π-связей
- в) Наличие замкнутой, плоской, циклической системы, содержащей 6 делокализованных π -электронов
 - 2. Какое влияние оказывает ОН-группа на активность фенола в реакциях S_E типа:
 - а) активирующее
 - б) дезактивирующее
 - 3. С какими из реагентов реакции протекают по ароматическому кольцу?
 - a) NaOH
 - б) Бромная вода
 - в) CH₃Cl, AlCl₃ (реакция Фриделя-Крафтса)
 - г) HBr

ДДТ (1,1,1-трихлор-2,2-бис-(4-хлорфенил)-этан)


Бесцветное кристаллическое вещество. Тпл 108-109 °C. Малорастворим в воде, хорошо растворим в органических растворителях. Сильнодействующий универсальный инсектицид.

1. Структуре ДДТ соответствует формула:

- a) a
- б) b
- в) c
- г) d
- 2. Причины, по которым в настоящее время ДДТ запрещен повсеместно:
- а) приводит к разрушению озонового слоя
- б) накапливается в организме животных и человека
- в) проявляет канцерогенные и мутагенные свойства
- г) неблагоприятно влияет на растения
- 3. Структурные фрагменты, обусловливающие устойчивость ДДТ в окружающей среде и организме:
- а) метиленовое звено
- б) хлорарильные заместители
- в) двойные связи

Диоксины

1. Токсичность приведенных ниже диоксинов убывает в ряду

- B) c > a > b > d
- Γ) d > a > b > c
- 2. В наибольших количествах в окружающей среде содержатся:
- а) полихлордибензодиоксины
- б) полихлордибензофураны
- г) полихлорбифенилы
- 3. Диоксины являются чрезвычайно устойчивыми к разложению вследствие:
- а) наличие диоксинового фрагмента
- б) наличие ароматических колец, связанных с электроноакцепторными атомами
- в) наличие четырех атомов галогена
- г) наличие неподеленных электронных пар на атомах кислорода и галогена

2,3,7,8-тетрахлордибензодиоксин

Сильнейший суперэкотоксикант. Образуется как побочный продукт в некоторых промышленных процессах. В природе возникает на месте загрязнения фенолами или хлором. Выделяется при горении поливинилхлорида.

- 1. Из какого полупродукта органического синтеза наиболее легко образуется 2,3,7,8-тетрахлордибензодиоксин?
 - а) 2,4,5-трихлорфенол
- б) 2,4,6-трихлорфенол
- в) 3,4-дихлорфенол
- г) 3,5-дихлорфенол
- 2. Избавиться от следовых количеств диоксина в окружающей среде практически невозможно. Предложите реагент для обезвреживания больших количеств диоксина.
 - а) соляная кислота
- б) карбонат натрия
- в) нафтолят натрия
- г) водный раствор аммиака

Формальдегид (метаналь)

CH₂O

Бесцветный газ с резким запахом. Ткип 19,2 °C. Используют в производстве фенолоформальдегидных и карбамидных смол, изопрена и др. В виде формалина (37-40%-й водный раствор с добавлением метанола в качестве стабилизатора) применяется как дезинфицирующее средство, для анатомирования, при дублении кож.

- 1. Основной источник формальдегида внутри зданий:
- а) моющие средства
- б) деревостружечные плиты
- в) обои
- г) пластиковые окна
- 2. В условиях, соответствующих среде живого организма формальдегид необратимо взаимодействует с:
 - а) аминогрупами
 - б) метиленовыми звеньями

- в) гидроксильными группами
- г) карбоксильными группами
- 3. В состав некоторых шампуней входит формальдегид. При производстве безопасных для здоровья шампуней необходимо:
 - а) снижать содержание в них формальдегида
 - б) использовать безопасные консерванты
 - в) заменять формальдегид на параформ

Органические кислоты

- 1. Источники карбоновых кислот в водоемах:
- а) разложением мертвых организмов
- б) процессы жизнедеятельности водных организмов
- в) стоки промышленных предприятий
- г) кислотные дожди
- 2. Повышение концентрации карбоновых кислот в водоемах неблагоприятно вследствие:
 - а) ухудшения санитарного режима
 - б) высокой токсичности карбоновых кислот
 - в) нарушение процессов биологического окисления
 - г) превращения карбоновых кислот в более токсичные соединения
 - 3. Концентрации фульвокислот в природных водоемах:
- а) выше, чем концентрация гуминовых кислот, т.к. фульвокислоты более растворимы
- б) ниже, чем концентрация гуминовых кислот, т.к. фульвокислоты менее растворимы
 - в) приблизительно одинакова с концентрацией гуминовых кислот

Нитрозамины

- 1. Функциональная группа нитрозамина:
- a) $>N \rightarrow O$
- б) >N-NO
- в) -NO
- Γ) –NO₂
- 2. В организме нитрозамины образуются из:
- а) солей азотистой кислоты
- б) соединений с первичной аминогруппой
- в) соединений с вторичной аминогруппой
- г) соединений с третичной аминогруппой
- д) ароматических аминов
- 3. Опасность нитрозаминов обусловлена:
- а) их гепатотоксичностью
- б) их канцерогенностью
- в) их способностью распадаться на амины
- г) их наркотическим действием

Акрилонитрил (нитрил акриловой кислоты) CH₂=CH−C≡N Бесцветная жидкость, Ткип 77,3 °C. Используется как сырье для производства полиакрилонитрила, а также бутадиен-нитрильных каучуков и других сополимеров.

- 1. При химическом производстве акрилонитрила повышенную опасность представляют:
 - а) утечки синильной кислоты
 - б) утечки самого акрилонитрила
 - в) утечки азота
 - 2. Акрилонитрил по сравнению с синильной кислотой:
 - а) более устойчив к разложению в окружающей среде
 - б) менее устойчив
 - в) обладает такой же устойчивостью к разложению, как и синильная кислота
 - 3. Концентрации акрилонитрила в воздухе порядка 1 мкг/м³:
 - а) неопасны для здоровья
 - б) вызывают раковые заболевания
 - в) вызывают нарушения функций ЦНС
 - г) вызывают заболевания органов кроветворения

7. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекци и	Лаборато рные занятия	Практиче ские занятия	льная	Автоматизир ованное тестирование	виды учебной	Промежут очная аттестаци я	Итого
7	11	24	0	25	0	0	40	100

Программа оценивания учебной деятельности студента 7 семестр

Лекции от 0 до 11 баллов

Диапазон баллов	Критерий оценки
0 баллов	Посещение менее 40% лекционных занятий
1-2 балла	Посещение 40-59% лекционных занятий
3-5 баллов	Посещение 60-79%лекционных занятий
6-8 баллов	Посещение 80-100% лекционных занятий
9-11 баллов	Посещение 80-100% лекционных занятий и
	участие в лекционных дискуссиях

Лабораторные занятия от 0 до 24 баллов

Контроль выполнения лабораторных заданий в течение одного семестра - от 0 до 24 баллов. (По 1 баллу за каждый разбор конкретной ситуации из 13 работ, дополнительно 11 баллов за активность и общий уровень подготовки).

Практические занятия Не предусмотрены.

Самостоятельная работа от 0 до 25 баллов выполняется в виде подготовки к участию в разборе конкретных ситуаций — от 0 до 25 баллов за все темы.

Автоматизированное тестирование Не предусмотрено.

Другие виды учебной деятельности оценивание не предусмотрено

Промежуточная аттестация (экзамен) от 0 до 40 баллов

ответ на «отлично» оценивается от 31 до 40 баллов; ответ на «хорошо» оценивается от 21 до 30 баллов; ответ на «удовлетворительно» оценивается от 11 до 20 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 7 семестр по дисциплине «Химия токсикантов» составляет 100 баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по дисциплине «Химия токсикантов» в оценку (экзамен):

85-100 баллов	«отлично»
75-84 баллов	«хорошо»
60-74 баллов	«удовлетворительно»
0-59 баллов	«не удовлетворительно»

Учебно-методическое и информационное обеспечение дисциплины

- а) литература:
- 1. Коробкин В.И., Передельский Л.В. Экология: учеб. для вузов. Ростов н/Д: Феникс, 2007. 602 с.

Химия окружающей среды : учеб. пособие / под ред. Т. И. Хаханиной. - Москва : Юрайт ; [Б. м.] : Высш. образование, 2010. – 130 с.

3. Белов С.В. Безопасность жизнедеятельности и защита окружающей среды (техносферная безопасность): учебник. - М.: Юрайт: ИД Юрайт, 2011. – 680с.

- б) программное обеспечение и Интернет-ресурсы
 - 1. Microsoft Windows XP Professional SP3 AL (Номер лицензии: № 60478556 от 17.01.13.)
 - 2. Microsoft Office 2007 Suites (№ ИОП 47/08 от 07.07.2008)
 - 3. ISIS/Draw 2.4 (Freeware)
 - 4. ChemBio3D Ultra 11.0 with MOPAC (№ CER5030661, № ИОП 47/08 от 07.07.2008
 - 5. <u>HyperChem Release 8.0 Proffesional 2 шт. (Гос. контракт № ИОП 47/08 от7 июля 2008г)</u>
 - 6. И.Д.Гадаскина, Н.А.Толоконцев. Яды вчера и сегодня (Очерки по истории ядов)
 - 7. СанПиН 2.3.2.1293-03 (с изменениями от 26.05.2008 и 27.04.2009)
 - 8. Сорокин В.В. Учебно-методическая разработка «Органические токсиканты».

9. Материально-техническое обеспечение дисциплины

- Аудитории для чтения лекций
- Учебные лаборатории
- Компьютерный класс
- Оверхэд-проекторы.

Место осуществления практической подготовки: учебные лаборатории Института химии

Программа составлена в соответствии с требованиями $\Phi \Gamma OC$ ВО по направлению 04.03.01 — Химия и профилю подготовки — «Химия низко- и высокомолекулярных органических веществ».

Автор: профессор кафедры органической и биоорганической химии, д.х.н., проф. Сорокин В.В.

Программа одобрена на заседании кафедры органической и биоорганической химии от «11» октября 2021 года, протокол № 2.