МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»

Факультет фундаментальной медицины и медицинских технологий

СОГЛАСОВАНО

Заведующий кафедрой медицинской кибернетики

Раньнов А.С. Фалькович

"15" ______ ОЭ _____ 2021 г.

УТВЕРЖДАЮ
Декан факультета
фундаментальной медицины
и медицинских технологий

11/511 2021 и иничина 2021 г.

Фонд оценочных средств

текущего контроля и промежуточной аттестации по дисциплине

ВЫСШАЯ МАТЕМАТИКА

Специальность 30.05.01 Медицинская биохимия

Квалификация (степень) выпускника *Врач-биохимик*

> Форма обучения *Очная*

> > Саратов, 2021

1. Карта компетенций

Контролируемые компетенции (шифр компетенции)	Планируемые результаты обучения (знает, умеет, владеет, имеет навык)
УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	Знать: понятия матрицы, матричного уравнения, определителя, векторной алгебры; основные преобразования системы координат, основные понятия дифференциального исчисления, интегрального исчисления для функций одной переменной, методы суммирования числовых рядов, функциональных рядов и рядов Фурье, понятия обыкновенных дифференциальных уравнений 1-го порядка и 2-го порядка и дифференциальных уравнений в частных производных. Уметь: выполнять действия с матрицами, находить общие и частные решения системы линейных однородных уравнений; вычислять скалярное, векторное и смешанное произведение векторов; приводить уравнения кривых и поверхностей к каноническому виду; дифференцировать и интегрировать различные функции; исследовать сходимость рядов и раскладывать функции в различные ряды; находить общие и частные решения обыкновенных дифференциальных уравнений 1-го и 2-го порядков и дифференциальных уравнений в частных производных. Применять методы линейной алгебры и математического анализа для решения профессиональных задач. Владеть: навыками решения задач линейной алгебры, аналитической геометрии, векторной алгебры, математического анализа.

2. Показатели оценивания планируемых результатов обучения

	2	3	4	
			4	5
основные пр координат, дифференци интегрально функций од методы сум рядов, функрядов обыкновении уравнений порядка и уравнений в не умеет в матрицами, частные линейных од вычислять с смешанное векторов; и кривых и каноническо дифференци интегрирова функции; ис рядов и рас различные ре	мирования числовых сциональных рядов и Фурье, понятия ых дифференциальных 1-го порядка и 2-го дифференциальных частных производных. ыполнять действия с находить общие и решения системы цнородных уравнений; калярное, векторное и произведение приводить уравнения поверхностей к му виду; ровать и	плохо знает понятия матрицы, матричного уравнения, определителя, векторной алгебры; основные преобразования системы координат, основные понятия дифференциального исчисления для функций одной переменной, методы суммирования числовых рядов, функциональных рядов и рядов Фурье, понятия обыкновенных дифференциальных уравнений 1-го порядка и 2-го порядка и дифференциальных уравнений в частных производных. плохо умеет выполнять действия с матрицами, находить общие и частные решения системы линейных однородных уравнений; вычислять скалярное, векторное и смешанное произведение векторов; приводить уравнения кривых и поверхностей к каноническому виду; дифференцировать и интегрировать различные функции; исследовать сходимость рядов и раскладывать функции в различные ряды; находить общие и частные решения обыкновенных дифференциальных уравнений 1-го и 2-го порядков и дифференциальных уравнений в	хорошо знает понятия матрицы, матричного уравнения, определителя, векторной алгебры; основные преобразования системы координат, основные понятия дифференциального исчисления для функций одной переменной, методы суммирования числовых рядов, функциональных рядов и рядов Фурье, понятия обыкновенных дифференциальных уравнений 1-го порядка и 2-го порядка и дифференциальных уравнений в частных производных. хорошо умеет выполнять действия с матрицами, находить общие и частные решения системы линейных однородных уравнений; вычислять скалярное, векторное и смешанное произведение векторов; приводить уравнения кривых и поверхностей к каноническому виду; дифференцировать и интегрировать различные функции; исследовать сходимость рядов и раскладывать функции в различные ряды; находить общие и частные решения обыкновенных дифференциальных уравнений 1-го и 2-го порядков и дифференциальных уравнений в	отлично знает понятия матрицы, матричного уравнения, определителя, векторной алгебры; основные преобразования системы координат, основные понятия дифференциального исчисления, интегрального исчисления для функций одной переменной, методы суммирования числовых рядов, функциональных рядов и рядов Фурье, понятия обыкновенных дифференциальных уравнений 1-го порядка и 2-го порядка и дифференциальных уравнений в частных производных. отлично умеет выполнять действия с матрицами, находить общие и частные решения системы линейных однородных уравнений; вычислять скалярное, векторное и смешанное произведение векторов; приводить уравнения кривых и поверхностей к каноническому виду; дифференцировать и интегрировать различные функции; исследовать сходимость рядов и раскладывать функции в различные ряды; находить общие и частные решения обыкновенных дифференциальных уравнений 1-го и 2-го порядков и

ГО	И	2-	-ГО	пор	ядков		И	
диф	ферен	щиа	льны	х ур	авнен	ий	В	
час	тных	прои	ізводі	ных.	Прим	енят	Ъ	
мет	оды	ЛИН	ейно	й а	лгебрі	ы	И	
мат	емати	ческ	ОГО	ана	лиза	ДЛ	R	
реп	ения:	проф	ресси	оналі	ьных з	адач	ł.	
не	влад				и реп	1 ени	R	
зад	ач	ЛИ	нейно	ой	алг	ебрь	ы,	
аналитической					геометрии,			
век	торної	й			алг	ебрь	ы,	
мат	емати	ческ	ого а	нали:	за.			

частных производных. Применять методы линейной алгебры и математического анализа для решения профессиональных задач.
плохо владеет навыками решения задач линейной алгебры, аналитической геометрии, векторной алгебры, математического анализа.

частных производных. Применять методы линейной алгебры и математического анализа для решения профессиональных задач. хорошо владеет навыками решения задач линейной алгебры, аналитической геометрии, векторной алгебры, математического анализа.

дифференциальных уравнений в частных производных. Применять методы линейной алгебры и математического анализа для решения профессиональных задач.

отлично владеет навыками решения задач линейной алгебры, аналитической геометрии, векторной алгебры, математического анализа.

3. Оценочные средства

3.1 Задания для текущего контроля

1) Задания для практических занятий

В ходе семинарских занятий и самостоятельной работы студентами решаются задания, служащие для освоения и детального изучения материала темы. Для решения каждого из заданий используется материал одной или нескольких тем, рассмотренных ранее в ходе лекционных и практических занятий.

Методические указания для выполнения заданий практических занятий

Задания используются как в качестве наглядной демонстрации решения задач того или иного типа в ходе практических занятий, так и для самостоятельной работы студентов. Решение задания на практическом занятии занимает 10-30 минут. В качестве самостоятельной работы студентам целесообразно выполнять 2-3 задания, в зависимости от степени усвоения материала.

Критерии оценивания

Каждое задание оценивается 0-1 балл, в зависимости от качества его выполнения:

- о задание, выполненное полностью без существенной помощи преподавателя, или выполненное не полностью, с небольшими ошибками либо с существенной помощью преподавателя, оценивается в 1 балл;
- о задание, не выполненное, выполненное с существенными ошибками или выполненное менее чем наполовину, оценивается в 0 баллов.

Примеры заданий для практических занятий

Матричное исчисление и решение систем линейных алгебраических уравнений

1. Даны матрицы A и B. Найти: а) AB; б) BA; в) A^{-1} ; г) $A^{-1}A$; д) AA^{-1} .

$$A = \begin{bmatrix} 2 & -1 & -3 \\ 8 & -7 & -6 \\ -3 & 4 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & -2 \\ 3 & -5 & 4 \\ 1 & 2 & 1 \end{bmatrix}.$$

2. Проверить совместность системы уравнений и в случае совместности решить ее: а) по формулам Крамера; б) матричным методом; в) методом Гаусса.

$$\begin{cases} 2x_1 + x_2 + 3x_3 = 7, \\ 2x_1 + 3x_2 + x_3 = 1, \\ 3x_1 + 2x_2 + x_3 = 6. \end{cases}$$

Векторный анализ

- 1. Даны векторы $\vec{a}=(3;1;2)$ и $\vec{b}=(1;2;-1)$. Найти координаты вектора $2\vec{a}+\vec{b})\times\vec{b}$.
- 2. Нормировать вектор $\vec{a} = 2\vec{i} 3\vec{j} + 4\vec{k}$.
- 3. Компланарны ли следующие векторы: $\vec{a}=(2;3;1), \ \vec{b}=(1;-1;3), \ \vec{c}=(-1;9;-11)$?
- 4. Дан параллелепипед ABCDA₁B₁C₁D₁, построенный на векторах $\overrightarrow{AB} = (4; 3; 0), \overrightarrow{AD} = (2; 1; 2), \overrightarrow{AA_1} = (-3; -2; 5).$

Найти:

- а) объем параллелепипеда;
- б) площадь грани ABCD;
- в) длину высоты, опущенной из вершины A₁;
- г) угол между ребром АВ и диагональю ВО1.

Аналитическая геометрия

- 1. Даны вершины треугольника. Найти: а) уравнение стороны AB; б) уравнение высоты CH; в) уравнение медианы AM; г) точку N пересечения медианы AM и высоты CH; д) уравнение прямой, проходящей через вершину C параллельно стороне AB; е) расстояние от точки C до прямой AB, если A(-2,4), B(3,1), C(10,7).
- 2. Записать уравнение и определить вид поверхности, полученной при вращении данной линии вокруг указанной оси координат, сделать рисунок. а) $y^2=2z$, Oz; б) $9y^2+4z^2=36$, Oy.

Исследование функций и пределы

1. Найти область определения и определить четность и нечетность функции

$$y = \sqrt{x^2 - 6x + 5} + \cos 2x.$$

2. Найти пределы

a)
$$\lim_{x\to 6} \frac{2x^2 - 11x - 6}{3x^2 - 20x + 12}$$
;

$$(a) \lim_{x \to \infty} \left(\frac{x-1}{x+4} \right)^{3x+2};$$

$$\hat{a}$$
) $\lim_{x\to 0} \frac{1-\cos 8x}{2x^2}$.

3. Определить период функции

$$y = tg3x + \cos 8x.$$

Дифференциальное исчисление

1. Найти производную функции

$$y = (1 + x + x^2)e^{-2x}$$
.

2. Найти дифференциал функции

$$y = x(\sin(\ln x) + \cos(\ln x)).$$

3. Вычислить производную функции, заданной неявно

$$e^x + \sqrt{x+y} = y+1.$$

4. Исследовать на экстремум функцию

$$y = (x-6)e^{-\frac{1}{x}}.$$

Интегральное исчисление

Найти следующие интегралы:

a)
$$\int (3-x^2)^3 dx$$
;

6)
$$\int (\sin^2 x + \cos 6x) dx;$$

$$\int \frac{2x+3}{(x-2)(x+5)} dx$$
;

$$\Gamma$$
) $\int arctg \, x \, dx$;

$$_{\rm Д}$$
) $\int \sin 5x \cos x \, dx$.

Теория числовых и функциональных рядов

1. Исследовать на сходимость следующие ряды:

$$a) \sum_{n=1}^{\infty} \frac{2n-1}{n}$$

a)
$$\sum_{n=1}^{\infty} \frac{2n-1}{n}$$
; 6) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(2n+1)^n}$.

2. Найти область сходимости функционального ряда

$$\sum_{k=1}^{\infty} \frac{k}{x^k}.$$

Дифференциальные уравнения

1.
$$xdx + ydy = 0$$
;

$$2. \left(x^2 + 2xy\right)dx + xydy = 0;$$

$$(2x+y+1)dx+(x+2y-1)dy=0;$$

$$y'' - 7y' + 6y = 0;$$

5. y'' + 5y' + 6y = 0, удовлетворяющее начальным условиям y=1, y'=-6 при x=0.

3.2. Промежуточная аттестация

Промежуточная аттестация по дисциплине проводится в виде устного зачета с оценкой. Учебным планом по специальности «Медицинская биохимия» предусмотрена одна промежуточная аттестация. Подготовка студента к прохождению промежуточной аттестации осуществляется в период лекционных и семинарских занятий, а также во внеаудиторные часы в рамках самостоятельной работы. Во время самостоятельной подготовки студент пользуется конспектами лекций и литературой по дисциплине (см. перечень литературы в рабочей программе дисциплины).

Критерии оценивания

Во время зачета студент должен дать развернутый ответ на вопросы, изложенные в билете. Преподаватель вправе задавать дополнительные вопросы по всему изучаемому курсу.

Во время ответа студент должен продемонстрировать знания по основным разделам дисциплины. Полнота ответа определяется показателями оценивания планируемых результатов обучения (раздел 2).

Критерии оценки

Отлично

Ответ на «отлично» оценивается от 31 до 40 баллов.

- материал усвоен в полном объёме, о чём свидетельствует полное и аккуратное его изложение;
 - при ответе студент использует корректные формулировки.

Хорошо

Ответ на «хорошо» оценивается от 21 до 30 баллов.

- основной материал хорошо усвоен;
- при ответе студент использует корректные формулировки;
- при ответе допускаются неточности;
- допускается нарушение последовательности в изложении материала.

Удовлетворительно

Ответ на «удовлетворительно» оценивается от 10 до 20 баллов.

- усвоен минимально требуемый объём материала;
- при ответе студент может допускать некорректные формулировки;
- материал воспроизводится студентом бессистемно.

Неудовлетворительно

Ответ на «неудовлетворительно» оценивается от 0 до 9 баллов:

- незнание минимального требуемого объёма материала;
- при ответе студентом допускаются грубые ошибки.

Список вопросов (тем) к зачету с оценкой

- 1. Матрицы, алгебра матриц. Ранг матрицы. Теоремы о ранге.
- 2. Решение матричных уравнений. Обратная матрица.
- 3. Определители свойства определителей, метод Крамера, метод Гаусса для систем линейных уравнений. Правило решения систем линейных однородных уравнений.
- 4. Метод координат, вектор, проекция вектора, действия с векторами, скалярное, век торное, смешанное произведение векторов.
- 5. Координатная форма записи, приложения.
- 6. Преобразования системы координат: параллельный перенос, поворот, общее.
- 7. Уравнение прямой: общее, с угловым коэффициентом, векторное, через две за данные точки, «в отрезках», нормальное.
- 8. Общее уравнение кривой второго порядка. Окружность. Эллипс, каноническое уравнение, фокальное свойство, эксцентриситет, директриса.
- 9. Гипербола, парабола каноническое уравнение, фокальное свойство, эксцентриситет, директриса.
- 10. Уравнения прямой, плоскости, поверхности.
- 11. Расстояние от точки до плоскости, от прямой до плоскости, между двумя плоскостями.
- 12. Угол между двумя прямыми, между двумя плоскостями, между прямой и плоскостью.
- 13. Цилиндры, конусы второго порядка.
- 14. Параболоиды, гиперболоиды, эллипсоид, сфера.
- 15. Канонические уравнения, исследование формы поверхности. Поверхности вращения.
- 16. Числовые последовательности, их роль в вычислительных процессах. Примеры последовательностей.
- 17. Предел последовательности. Свойства сходящихся последовательностей (терема об ограниченности сходящейся последовательности, теорема о связи бесконечно-большой и бесконечно-малой последовательностей).
- 18. Признаки существования предела последовательности (теорема ограниченной Вейерштрасса o существовании предела монотонной последовательности o двух милиционерах). Теорема теорема единственности предела. Определение числа е.
- 19. Предел последовательности и арифметические операции. Переход к пре делу в неравенствах.

- 20. Определение предела функции в точке. Односторонние пределы. Предел функций в бесконечности. Признаки существования предела функции (теорема о пределе монотонной функции, теорема о двух милиционерах).
- 21. Предел функции и арифметические операции. Переход к пределу в неравенствах. Первый и второй замечательные пределы. Приращение аргумента и приращение функции.
- 22. Непрерывность функции в точке. Непрерывность основных элементарных функций. Бесконечно малые в точке функции, их свойства. Сравнение бесконечно малых. Символы о и О.
- 23. Свойства функций, непрерывных на отрезке: ограниченность, существование наибольшего и наименьшего значений, существование промежуточных значений. Точки разрыва и их классификация.
- 24. Понятие функции, дифференцируемой в точке, дифференциал функции и его геометрический смысл. Производная функции, ее смысл в различных задачах. Правила нахождения производной и дифференциала. Производная сложной и обратной функции.
- 25. Инвариантность формы дифференциала. Дифференцирование функций, заданных параметрически.
- 26. Точки экстремума функции. Теоремы Ролля, Лагранжа, Коши, их применение.
- 27. Производные и дифференциалы высших порядков. Правило Лопиталя. Раскрытие неопределенностей по правилу Лопиталя.
- 28. Формула Тейлора с остаточным членом в форме Пеано и в форме Лагранжа.
- 29. Условия монотонности функции.
- 30. Экстремумы функции, необходимое условие. Достаточные условия. Отыскание наибольшего и наименьшего значений функции, дифференцируемой на отрезке.
- 31. Исследование выпуклости функции. Точки перегиба. Асимптоты функций. Понятие об асимптотическом разложении. Общая схема исследования функции и построения ее графика.
- 32. Уравнение касательной к кривой.
- 33. Понятие первообразной и ее свойства. Замена переменной в неопределенном интеграле. Формула интегрирования по частям.
- 34. Интегрирование рациональных тригонометрических, иррациональных функций.
- 35. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, его свойства. Формула Ньютона-Лейбница, ее применение для вычисления определенных интегралов.

- 36. Методы приближенного вычисления определенного интеграла.
- 37. Несобственные интегралы с бесконечными пределами и от неограниченных функций, их основные свойства.
- 38. Числовые ряды. Определение сходимости и суммы ряда. Необходимое условие сходимости. Действия с рядами.
- 39. Признаки сходимости числовых рядов (сравнения, Даламбера, Коши) Лейбница, Абеля, Дирихле). Абсолютная и условная сходимость. Теоремы о перестановке слагаемых в рядах.
- 40. Функциональные ряды. Равномерная сходимость. Признаки равномерной сходимости (Абеля, Дирихле).
- 41. Дифференциальные уравнения первого порядка. Решение уравнения. Задача Коши.
- 42. Общее и частное решения дифференциального уравнения.
- 43. Уравнения с разделяющимися переменными.
- 44. Линейные дифференциальные уравнения первого порядка.
- 45. Уравнения в полных дифференциалах.
- 46. Дифференциальные уравнения второго порядка. Уравнения, допускающие понижение порядка.
- 47. Линейные однородные дифференциальные уравнения второго порядка.
- 48. Линейные неоднородные дифференциальные уравнения второго порядка.
- 49. Классификация уравнений с частными производными второго порядка.
- 50. Простейшие задачи, приводящие к уравнениям гиперболического типа.

ФОС для проведения промежуточной аттестации одобрен на заседании кафедры медицинской кибернетики (протокол № 1 от 15.09.2021 года).

Авторы: А.М. Донник, старший преподаватель кафедры медицинской кибернетики факультета фундаментальной медицины и медицинских технологий СГУ.