МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Механико-математический факультет

УТВЕРЖДАЮ

Декан механико-математического

факультетаматемат

А.М. Захаров

" / "

2023 г.

Программа учебной практики Практика по получению базовых навыков. Часть 2

Направление подготовки бакалавриата 02.03.01 Математика и компьютерные науки

Профиль подготовки бакалавриата Математические основы компьютерных наук

Квалификация (степень) выпускника Бакалавр

Форма обучения очная

Саратов, 2023

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Ромакина Л.Н.	Ann _	1.06,2023
Председатель НМК	Тышкевич С.В.	py	1.06,2023
Заведующий кафедрой	Галаев С.В.	Sh	1.06, 2023
Специалист Учебного управления	C.		

1. Цели учебной практики

Целями практики по получению базовых навыков. Часть 2 являются:

- систематизация и углубление знаний элементарной математики;
- освоение и систематизация основных методов решения математических задач;
- подготовка студентов к усвоению предстоящих курсов по алгебре и геометрии;
- развитие навыков абстрактного логического мышления;
- расширение научного кругозора студентов.

2. Тип (форма) учебной практики и способ ее проведения

Учебная практика проводится в целях получения первичных профессиональных умений и навыков.

Практика по получению базовых навыков. Часть 2 реализуется в первом семестре в объеме 2 з.е. На практику отводится 72 часа (54 часа практическая подготовка, 18 часов контроль).

В соответствии с графиком учебного процесса практика по получению базовых навыков. Часть 2 является рассредоточенной. Организация практики по получению базовых навыков осуществляется в СГУ на базе кафедры геометрии. Практика по получению базовых навыков. Часть 2 проводится в форме лабораторных занятий. По итогам практики по получению базовых навыков. Часть 2 выставляется зачет с оценкой.

3. Место учебной практики в структуре ООП

Практика по получению базовых навыков. Часть 2 (Б2.О.02(У)) относится к обязательной части Блока 2 «Практика» учебного плана ООП бакалавриата по направлению 02.03.01 Математика и компьютерные науки, профилю «Математические основы компьютерных наук».

Для прохождения практики необходимы знания школьного курса математики. Эта практика имеет тесные логические и содержательноматематические взаимосвязи с другими дисциплинами учебного плана: «Фундаментальная и компьютерная алгебра», «Дифференциальная геометрия и топология», «Гладкие многообразия и управляемые системы» и др..

4. Результаты обучения по практике

Код и	Код и наименование	Результаты обучения
наименование	индикатора (индикаторов)	
компетенции	достижения компетенции	
УК-1	1.1_Б.УК-1. Анализирует	Знать: основные методы решения задач
Способен	задачу, выделяя ее базовые	конкретного типа; теоретический
осуществлять	составляющие.	материал по теме поставленной задачи.
поиск,	Осуществляет	Уметь: решать задачи различными
критический	декомпозицию задачи.	методами; проводить сравнительный

анализ и синтез	2.1_Б.УК-1. Находит и	анализ решений задач.		
информации,	критически анализирует	Владеть: навыками выбора наиболее		
применять	информацию, необходимую	рационального метода для решения		
системный	для решения поставленной	задачи; навыками сравнительного		
подход для	задачи.	анализа.		
решения	3.1_ Б.УК-1. Рассматривает			
поставленных	различные варианты			
задач	решения задачи, оценивая их			
	достоинства и недостатки.			
	4.1 _ Б.УК-1. Грамотно,			
	логично, аргументировано			
	формирует собственные			
	суждения и оценки.			
	Отличает факты от мнений,			
	интерпретаций, оценок и т.д.			
	в рассуждениях других			
	участников деятельности.			
	5.1 _ Б.УК-1. Определяет и			
	оценивает практические			
	последствия возможных			
	решений задачи.			
ОПК-1.	1.1_Б.ОПК-1. Обладает	Знать: основные понятия, теоремы		
Способен	базовыми знаниями,	элементарной геометрии.		
консультировать	полученными в области	Уметь: доказывать основные теоремы		
и использовать	математических и (или)	элементарной геометрии на плоскости и		
фундаментальн	естественных наук.	в пространстве;		
ые знания в		Владеть: понятийным и формальным		
области		математическим аппаратом		
математического		элементарной геометрии.		
анализа,	2.1_Б.ОПК-1. Использует	Знать: основные понятия элементарной		
комплексного и	фундаментальные знания в	геометрии и их применение в		
функциональног	области математических	профессиональной деятельности.		
о анализа	наук в профессиональной	Уметь: применять элементарную		
алгебры,	деятельности.	геометрию в решении задач		
аналитической		профессиональной деятельности.		
геометрии,		Владеть: навыками применения		
дифференциаль		элементарной геометрии в		
ной геометрии и	21 FOHE1 D C	профессиональной деятельности.		
топологии,	3.1_Б.ОПК-1. Выбирает	Знать: методы решения задач		
дифференциаль	методы решения задач	профессиональной деятельности на		
ных уравнений,	профессиональной	основе элементарной геометрии.		
дискретной	деятельности на основе	Уметь: применять методы элементарной		
математики и	теоретических знаний.	геометрии в решении задач		
математической		профессиональной деятельности.		
логики, теории		Владеть: навыками применения		
вероятностей,		элементарной геометрии в решении		
математической	41 FOHE 1 05-	задач профессиональной деятельности.		
статистики и	4.1_Б.ОПК-1. Объясняет	Знать: профессиональную		
случайных	учебный и научный	терминологию, способы воздействия на		
процессов,	материал, использует	аудиторию в рамках профессиональной		
численных	профессиональную	коммуникации.		

методов,	терминологию.	Уметь: использовать современные
теоретической	-	методы сбора, анализа и обработки
механики в		научной информации, изложить
профессиональн		научные знания по элементарной
ой деятельности		геометрии.
		Владеть: навыками сбора, обработки,
		анализа и систематизации информации
		по теме исследования, способностью
		публично представлять научные
		результаты.
ПК-1. Способен	1.1_Б.ПК-1. Понимает	Знать: постановку и методы решения
демонстрироват	основные концепции,	основных задач элементарной
ь базовые	принципы, теории и факты,	геометрии.
знания	связанные с математикой,	Уметь: использовать аппарат векторной
математических	естественными науками и	алгебры для решения геометрических
и естественных	информационными	задач; применять основные формулы
наук, основ	технологиями.	элементарной геометрии при решении
программирован	2.1_Б.ПК-1. Формулирует и	практических задач.
ия и	решает стандартные задачи в	Владеть: навыками профессионального
информационны	собственной научно-	мышления, необходимыми для
х технологий.	исследовательской	использования методов элементарной
	деятельности.	геометрии в собственной научно-
	3.1_Б.ПК-1. Способен	исследовательской деятельности.
	проводить научно-	
	исследовательскую	
	деятельность в математике и	
	информатике.	

5. Структура и содержание учебной практики

Общая трудоемкость учебной практики составляет $\underline{2}$ зачетных единицы, $\underline{72}$ часа.

№	Разделы (этапы) практики	Виды учебной	Формы текущего
п/п		работы на	контроля
		практике, включая	
		самостоятельную	
		работу студентов	
		и трудоемкость	
		(в часах)	
1	Подготовительный этап	Ознакомительные занятия (2 часа)	Собеседование
2	Обработка и анализ полученной информации, ее применение к решению геометрических задач	Обработка и систематизация учебного материала (4 ч.), практикум по решению геометрических задач (26 ч.).	Доклад по выбранной теме и участие в обсуждении докладов других студентов группы, контрольные задания.
3	Подготовка к промежуточной аттестации и аттестация	Практикум по решению	Отчет по практике

		геометрических задач (22 ч.)	
4	Промежуточная аттестация		Зачет с оценкой (18 ч.)
5	Итого	72	

Содержание учебной практики

- 1. Геометрические задачи на доказательство. Основные методы решения задач на доказательство.
 - 2. Системы координат на плоскости и в пространстве.
 - 3. Векторный и координатный методы решения задач.
 - 4. Метрические задачи.
 - 5. Прямые на плоскости.
 - 6. Прямые и плоскости в пространстве.
 - 7. Применение векторной алгебры в аналитической геометрии.
 - 8. Фигуры второго порядка на плоскости.
- 9. Многогранники. Свойства параллелепипеда и тетраэдра. Призма, виды призм, свойства призм, площадь поверхности призмы. Пирамида, ее свойства, площадь поверхности пирамиды.
 - 10. Тела вращения. Цилиндр, конус, сфера.
- 11. Комбинации многогранников и тел вращения. Вписанная и описанная сфера около многогранника.

ТЕМЫ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Лабораторное занятие № 1.

Аксиоматический метод изложения геометрической теории.

Лабораторное занятие № 2.

Основные типы геометрических задач и методы их решения.

Лабораторное занятие № 3.

Геометрические задачи на доказательство. Основные методы решения задач на доказательство.

Лабораторное занятие № 4.

Системы координат на плоскости и в пространстве.

Лабораторное занятие № 5.

Векторный и координатный методы решения задач.

Лабораторное занятие № 6.

Метрические задачи.

Лабораторное занятие № 7.

Прямые на плоскости.

Лабораторное занятие № 8.

Прямые и плоскости в пространстве.

Лабораторное занятие № 9.

Применение векторной алгебры в аналитической геометрии.

Лабораторное занятие № 10.

Фигуры второго порядка на плоскости.

Лабораторное занятие № 11-12.

Многогранники. Свойства параллелепипеда и тетраэдра. Призма, виды призм, свойства призм, площадь поверхности призмы. Пирамида, ее свойства, площадь поверхности пирамиды.

Лабораторное занятие № 13-14.

Тела вращения. Цилиндр, конус, сфера.

Лабораторное занятие № 15-16.

Комбинации многогранников и тел вращения. Вписанная и описанная сфера около многогранника.

Лабораторное занятие № 17-18.

Контрольные задания по разделам 1-2. Отчет по практике.

Формы проведения учебной практики

Учебная практика проводится в форме лабораторных занятий.

Место и время проведения учебной/производственной практики

Учебная практика проводится в аудитории механико-математического факультета СГУ на 1 курсе в первом семестре. Продолжительность практики $-1\ 1/3$ недели.

Формы промежуточной аттестации (по итогам практики)

По итогам *Практики по получению базовых навыков. Часть 2* выставляется *зачет с оценкой* в первом семестре.

6. Образовательные технологии, используемые на учебной практике

В учебном процессе при реализации компетентностного подхода используются активные и интерактивные формы проведения занятий:

1) Практическая подготовка осуществляется путем проведения лабораторных занятий, предусматривающих участие обучающихся в выполнение отдельных элементов работ, связанных с будущей профессиональной деятельностью.

По *Практике по получению базовых навыков. Часть 2* обучающиеся формируют первичные профессиональные умения и навыки по обработке и анализу научной информации и результатов исследований.

При проведении практической подготовки студенты решают задачи, направленные на формирование исследовательских умений и навыков. Прохождение практики должно способствовать повышению уровня логической культуры обучающихся, научить аргументировано рассуждать и доказывать, что позволит им более осознанно и эффективно осваивать все последующие математические дисциплины, формировать профессиональные компетенции.

Обучающиеся продолжат формировать профессиональные умения и навыки при прохождении *Исследовательской практики*, *Технологической практики*, при написании бакалаврских работ.

Примеры профессиональных действий: работа с литературой, обучающийся должен уметь сравнивать изложение одних и тех же вопросов в различных источниках; решение задач аналитического характера; оформление результатов исследовательских работ.

Примеры задач. Решение исследовательских задач методом геометрических мест точек, методом геометрических преобразований, на вычисление расстояний, углов, вычисление объёмов и площадей методом компьютерного эксперимента. Решение задач аналитической геометрии методом компьютерного эксперимента.

При проведении лабораторных занятий используются: традиционные занятия, занятия исследования, проблемные ситуации, ситуации с ошибкой. лабораторных занятий Проведение некоторых основывается интерактивном обучения, методе при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом обучающихся процессе обучения. активность В преподавателя в интерактивных занятиях сводится К направлению деятельности обучающихся на достижение целей занятия.

2) при организации самостоятельной работы студентов используются: поиск и обработка информации, в том числе с использованием информационно-коммуникационных технологий; исследование проблемной ситуации; постановка и решение задач из предметной области; отработка навыков применения стандартных методов к решению задач предметной области.

Успешное освоение материала практики предполагает большую самостоятельную работу студентов и руководство этой работой со стороны преподавателей. Применяются следующие формы контроля: устный опрос, проверка решения практических задач, самостоятельная работа.

Удельный вес занятий, проводимых в интерактивных формах, определяется главной целью (миссией) программы, особенностью контингента обучающихся и содержанием конкретных дисциплин, и в целом в учебном процессе они должны составлять не менее 30% аудиторных занятий. Занятия лекционного типа для соответствующих групп студентов не могут составлять более 50% аудиторных занятий.

Особенности проведения занятий для граждан с ОВЗ и инвалидностью

При обучении лиц с ограниченными возможностями здоровья и инвалидностью используются подходы, способствующие созданию безбарьерной образовательной среды: технологии дифференциации и индивидуализации обучения, применение соответствующих методик по работе с инвалидами, использование средств дистанционного общения.

Для студентов с ограниченными возможностями здоровья и инвалидов предусмотрены следующие формы организации учебного процесса и контроля знаний:

-для слабовидящих:

обеспечивается индивидуальное равномерное освещение не менее 300 люкс; для выполнения контрольных заданий при необходимости предоставляется увеличивающее устройство;

задания для выполнения, а также инструкция о порядке выполнения контрольных заданий оформляются увеличенным шрифтом (размер 16-20);

- для глухих и слабослышащих:
- обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости студентам предоставляется звукоусиливающая аппаратура индивидуального пользования;
- для лиц с тяжелыми нарушениями речи, глухих, слабослышащих все контрольные задания по желанию студентов могут проводиться в письменной форме.

Основной формой организации учебного процесса является интегрированное обучение инвалидов, т.е. все студенты обучаются в смешанных группах, имеют возможность постоянно общаться со сверстниками, легче адаптируются в социуме.

7. Учебно-методическое обеспечение самостоятельной работы студентов на учебной практике

Самостоятельная внеаудиторная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе, подбора дополнительных источников для извлечения информации, связанной с проблемами, изучаемыми в рамках данной практики и решения задач с дальнейшим их разбором или обсуждением на аудиторных занятиях, подготовки к промежуточной аттестации.

Самостоятельная аудиторная работа студентов проводится в форме самостоятельного решения задач на лабораторных занятиях с дальнейшим их разбором и обсуждением; поиска решений проблемных ситуаций, предложенных на практических занятиях; поиска и устранения ошибок, заложенных в представлении материала преподавателем и допущенных другими студентами.

Студентам предлагается список тем для самостоятельного разбора, по одной из которых необходимо сделать доклад и представить на одном из занятий во второй половине семестра.

Темы докладов

- 1. Движения плоскости.
- 2. Симметрия в архитектуре, музыке, природе.
- 3. Геометрия в архитектуре.
- 4. Геометрия треугольника.

- 5. Геометрия Лобачевского.
- 6. «Начала» Евклида. Логика строения. Постулаты и аксиомы.
- 7. Применение геометрии к решению алгебраических задач.
- 8. Геометрические построения, выполняемые циркулем и линейкой, три классические задачи, неразрешимые циркулем и линейкой.
- 9. Геометрия на сфере.
- 10. Геометрия и теория групп.
- 11. Проективная геометрия.
- 12. Теорема Дезарга.
- 13. Аксиоматика, аксиоматический метод в математике.
- 14. Аффинная геометрия.
- 15. Геометрия подобия.
- 16. Геометрические задачи на построение.
- 17. Геометрия на цилиндрической поверхности.
- 18. Конические сечения, интересные оптические свойства коник.
- 19. Пучки прямых и плоскостей.
- 20. Аффинная классификация линий второго порядка.

Оценочные средства для текущего контроля успеваемости

Вариант 1.

- 1. Длина основания треугольника равна 36 см. Прямая, параллельная основанию, делит площадь треугольника пополам, Найти длину отрезка этой прямой, заключенного между сторонами треугольника.
- 2. Основание равнобедренного треугольника равно $4\sqrt{2}$ см, а медиана боковой стороны 5 см. Найти длины боковых сторон.
- 3. Точка на гипотенузе, равноудаленная от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40 см. Найдите катеты треугольника.
- 4. Найти радиус окружности, описанной около прямоугольного треугольника, если радиус окружности, вписанной в этот треугольник, равен 3 см, а один из катетов равен 10 см.
- 5. Через концы дуги окружности, содержащей 120°, проведены касательные, и в фигуру, ограниченную этими касательными и данной дугой, вписана окружность. Доказать, что ее длина равна длине исходной дуги.
- 6. Каждая из трех равных окружностей радиуса r касается двух других. Найти площадь треугольника, образованного общими внешними касательными к этим окружностям.
- 7. Сторона квадрата, вписанного в окружность, отсекает сегмент, площадь которого равна $(2^{\pi}$ 4) см². Найти площадь квадрата.
- 8. В ромб, который делится своей диагональю на два равносторонних треугольника, вписана окружность радиуса 2. Найти сторону ромба.

- 9. Найти множество всех точек, для каждой из которых отношение расстояний от двух данных точек A и B есть постоянная величина λ , не равная единице (окружность Аполлония).
- 10. Доказать, что центр S описанной окружности, ортоцентр H и центр тяжести T треугольника лежат на одной прямой (прямая Эйлера).

Вариант 2

- 1. В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.
- 2. Найти площадь равнобедренного треугольника, если основание его равно *a*, а длина высоты, проведенной к основанию, равна длине отрезка, соединяющего середины основания и боковой стороны.
- 3. Основание треугольника равно 30 см, а боковые стороны 26 и 28 см. Высота разделена в отношении 2 : 3 (считая от вершины), и через точку деления проведена прямая, параллельная основанию. Определить площадь полученной при этом трапеции.
- 4. Основание треугольника равно 30 см, а боковые стороны 26 и 28 см. Высота разделена в отношении 2 : 3 (считая от вершины), и через точку деления проведена прямая, параллельная основанию. Определить площадь полученной при этом трапеции.
- 5. Три окружности разных радиусов попарно касаются друг друга. Прямые, соединяющие их центры, образуют прямоугольный треугольник. Найти радиус меньшей окружности, если радиусы большей и средней окружностей равны 6 и 4 см.
- 6. В квадрат вписан другой квадрат, вершины которого лежат на сторонах первого, а стороны составляют со сторонами первого углы в 60°. Какую часть площади данного квадрата составляет площадь вписанного?
- 7. Высота ромба, проведенная из вершины тупого угла, делит его сторону на отрезки длиной m и n (m считать от вершины острого угла). Определить диагонали ромба.
- 8. Найти площадь равнобедренной трапеции, если высота равна h, а боковая сторона видна из центра описанной окружности под углом 60° .
- 9. Дана окружность радиуса r и на ней точка A. Найти множество точек, делящих всевозможные хорды, проведенные через точку A, в одном и том же отношении λ , где $\lambda > 0$.
- 10. Доказать, что три прямые, содержащие высоты треугольника, пересекаются в одной точке.

Контрольные вопросы по разделам практики

- 1. Аксиоматический метод в геометрии.
- 2. Геометрические задачи на доказательство. Основные методы решения задач на доказательство.

- 3. Геометрические задачи на построение. Постановка задачи. Инструменты. Схема решения задачи на построение. Основные методы решения задач на построение.
 - 4. Векторный и координатный методы решения задач по планиметрии.
- 5. Метод геометрических преобразований. Решение задач на доказательство и вычисление методом геометрических преобразований.
 - 6. Взаимное расположение прямых и плоскостей в пространстве.
- 7. Параллельность прямых в пространстве, параллельность прямой и плоскости, параллельность плоскостей.
 - 8. Признаки перпендикулярности двух прямых.
 - 9. Признаки перпендикулярности прямой и плоскости.
 - 10. Признаки перпендикулярности плоскостей в пространстве.
- 11. Многогранники. Свойства параллелепипеда и тетраэдра. Призма, виды призм, свойства призм, площадь поверхности призмы. Пирамида, ее свойства, площадь поверхности пирамиды.
 - 12. Построение сечений многогранников.
 - 13. Тела вращения. Цилиндр, конус, сфера.
- 14. Комбинация многогранников и тел вращения. Вписанная и описанная сфера. Условия существования сферы, вписанной и описанной около многогранника.
 - 15. Объемы многогранников и тел вращения.
 - 16. Векторный и координатный методы решения стереометрических задач.

Оценочные средства по практической подготовке

По итогам *практической подготовки* составляется отчет. Студенты представляют на кафедру отчеты о практической подготовке, оформленные в соответствии с правилами и требованиями, установленными Университетом. После проверки и предварительной оценки этих отчетов руководителями практической подготовки (с их подписью) студенты устно отчитываются по практике. Основными целями отчета являются:

- краткое изложение теоретических и практических основ изученных ранее результатов, использованных в ходе прохождения практической подготовки;
- формализация и детальное изложение разработок, осуществленных студентом в ходе прохождения практической подготовки;
- выводы, полученные в результате выполнения работ по практической подготовке.

8. Данные для учета успеваемости студентов в БАРС

Таблица 1.1 Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекци и	Лабор аторн ые заняти я	Практи ческие занятия	Самостоя тельная работа	Автоматиз ированное тестирован ие	Другие виды учебной деятельн ости	Промеж уточная аттеста ция	Итого
1	0	20	0	20	0	30	30	100

Программа оценивания учебной деятельности студента

 $\underline{1}$ семестр

Лекции

Не предусмотрены

Лабораторные занятия

Посещаемость, самостоятельность при выполнении работы, активность работы в аудитории, правильность выполнения заданий, уровень подготовки к занятиям и т.д. (от 0 до 20 баллов)

Критерии оценки:

- менее 25% 0 баллов;
- от 25% до 50% 5 баллов;
- от 51% до 75% 10 баллов;
- от 76% до 100% 20 баллов.

Практические занятия

Не предусмотрены

Самостоятельная работа

Отчет по практике. Устный отчет студента включает раскрытие целей и задач практической подготовки, описание выполненной работы с указанием примененных методов и средств, ее количественных и качественных характеристик, выводы.

Анализ результатов практической подготовки проводится по следующим параметрам:

- 1) объем и качество выполненной работы;
- 2) качество аналитического отчета, выводов и предложений;
- 3) соблюдение сроков выполнения работы;
- 4) самостоятельность, инициативность, творческий подход к работе;
- 5) своевременность представления и качество отчетной документации (от 0 до 20 баллов).

Критерии оценки:

- менее 25% 0 баллов;
- от 25% до 50% 5 баллов;
- от 51% до 75% 10 баллов;

от 76% до 100% – 20 баллов.

Автоматизированное тестирование *Не предусмотрено*.

Другие виды учебной деятельности — от 0 до 30 баллов Контрольные задания (от 0 до 15 баллов) Выступление с докладом (от 0 до 15 баллов)

Промежуточная аттестация – зачет с оценкой - от 0 до 30 баллов

Промежуточная аттестация проводится в форме ответа на два вопроса из списка контрольных вопросов и решения задач (по одной из каждого раздела). При необходимости задаются дополнительные вопросы из списка контрольных вопросов. На прохождение аттестации студенту отводится 20 минут.

При проведении промежуточной аттестации ответ на «отлично» / «зачтено» оценивается от 24 до 30 баллов; ответ на «хорошо» / «зачтено» оценивается от 16 до 23 баллов; ответ на «удовлетворительно» / «зачтено» оценивается от 7 до 15 баллов; ответ на «неудовлетворительно» / «не зачтено» оценивается от 0 до 6 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 1 семестр по практике «Практика по получению базовых навыков. Часть 2» составляет **100** баллов.

Таблица 2.2 Таблица пересчета полученной студентом суммы баллов по практике «Практика по получению базовых навыков. Часть 2» в оценку (зачет с оценкой):

85 – 100 баллов	«отлично» / «зачтено»
71 – 84 баллов	«хорошо» / «зачтено»
55 – 70 баллов	«удовлетворительно» / «зачтено»
менее 55 баллов	«неудовлетворительно» / «не зачтено»

9. Учебно-методическое и информационное обеспечение учебной практики

а) литература:

- 1. Дадаян А.А. Геометрические построения на плоскости и в пространстве [Электронный ресурс]: задачи и решения: учебное пособие / А. А. Дадаян. 2. Москва: Издательство "ФОРУМ", 2020. 464 с. ISBN 978-5-91134-807-6. ISBN 978-5-16-109156-2. ISBN 978-5-16-009146-4. Книга находится в ЭБС "Инфра-М"
- 2. Атанасян Л.С., Базылев В.Т. Геометрия (в 2-х частях). Ч. 2. [Электронный ресурс] / Атанасян Л.С., Базылев В.Т. Москва : КноРус, 2017. 424 с. ISBN 978-5-406-05977-7 : Б. ц. Перейти к внешнему ресурсу http://www.book.ru/book/927669 Книга находится в ЭБС "BOOK.ru"
- 3. Гусева Н.И. Сборник задач по геометрии в 2-х частях. Часть 1 [Электронный ресурс]: Учебное пособие / Гусева Н.И., Денисова Н.С., Тесля О.Ю. Москва : КноРус, 2021. 527 с. -URL: https://www.book.ru/book/938044. Internet access. ISBN 978-5-406-05196-2 : Б. ц. Режим доступа: book.ru Книга находится в ЭБС "BOOK.ru"
- 4. Гусева Н.И. Сборник задач по геометрии в 2-х частях. Часть 2 [Электронный ресурс]: Учебное пособие / Гусева Н.И., Денисова Н.С., Тесля О.Ю. Москва : КноРус, 2021. 528 с. URL: https://www.book.ru/book/938045. Internet access. ISBN 978-5-406-05200-6 : Б. ц. Режим доступа: book.ru Книга находится в ЭБС "ВООК.ru"

б) программное обеспечение и Интернет-ресурсы:

- 1. Задачи по планиметрии [Электронный ресурс] / В.В. Прасолов М. : МЦНМО, 2006. 640 с. ISBN 5-94057-214-6. Режим доступа: http://ilib.mccme.ru/pdf/planim5.htm
- 2. Задачи по стереометрии: Учебное пособие [Электронный ресурс] / В.В. Прасолов М.: МЦНМО, 2010. 352 с. ISBN 978-5-94057-605-1 Режим доступа: https://www.mccme.ru/prasolov/
- 3. Элементы геометрии треугольника [Электронный ресурс]: учебное пособие / Мякишев А. Г. Москва : МЦНМО, 2000. 32 с. Режим доступа: https://www.mccme.ru/free-books/mmmf-lectures/book.19.pdf
- 4. Геометрия Лобачевского [Электронный ресурс]: учебное пособие / Прасолов В. В. Москва : МЦНМО, 2004. Режим доступа: https://www.mccme.ru/prasolov/
- 5. Свободное программное обеспечение: LibreOffice, GeoGebra.
- 6. Лицензионное программное обеспечение: ОС Microsoft Windows 7, OC Microsoft Windows 8, Microsoft Office 2007.

10. Материально-техническое обеспечение учебной практики

Практическая подготовка проводится на кафедре геометрии.

Учебная практика проводится в форме лабораторных занятий, которые рекомендуется проводить в компьютерном классе с необходимым программным обеспечением.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 02.03.01 Математика и компьютерные науки и профилю подготовки «Математические основы компьютерных наук».

Автор доцент кафедры геометрии

Л.Н. Ромакина

Программа одобрена на заседании кафедры геометрии от 1 июня 2023 года, протокол №16.

Учебно-методическое и информационное обеспечение учебной практики

Рекомендуемая литература:

- 1. Александров А. Д. Геометрия [Текст] : учебник / А. Д. Александров, Н. Ю. Нецветаев. 2-е изд., испр. Санкт-Петербург : БХВ-Петербург, 2010. 612 с.
- 2. Высшая геометрия [Электронный ресурс]: учебник / Ефимов Н. В. Москва: Физматлит, 2004. 584 с. Режим доступа: http://znanium.com/spec/catalog/author/?id=4dd9b418-3594-11e4-b05e-00237dd2fde2
- 3. Готман Э.Г. Задачи по планиметрии и методы их решения [Текст] : пособие для учащихся / Э.Г. Готман. Москва : Просвещение: АО "Учеб. лит.", 1996. 240 с.
- 4. Дадаян А.А. Математика [Текст] : Учебник / А.А. Дадаян. 3, испр. и доп. Москва : ООО "Научно-издательский центр ИНФРА-М", 2017. 544 с. ISBN 978-5-16-012592-3 : Б. ц. Режим доступа: http://znanium.com/go.php?id=774755 Книга находится в ЭБС"ZNANIUM.com" (ИД "ИНФРА-М")
- 5. Задачи по планиметрии и методы их решения [Текст]: пособие для учащихся / Э. Г. Готман. Москва : Просвещение: АО "Учеб. лит.", 1996. 240 с.
- 6. Лисичкин В.Т. Математика в задачах с решениями [Электронный ресурс] : учебное пособие / В.Т. Лисичкин, И.Л. Соловейчик. 6-е изд., стер. Санкт-Петербург : Лань, 2019. 464 с. ISBN 978-5-8114-1179-5 : Б. ц. Режим доступа: https://e.lanbook.com/book/2785 Книга из коллекции Лань Математика.
- 7. Практикум по элементарной математике. Геометрия [Текст] : учеб. пособие для физ.-мат. специальностей ин-тов и учителей / В. А. Гусев, В. Н. Литвиненко, А. Г. Мордкович. 2-е изд., перераб. и доп. Москва : Просвещение, 1992. 352 с.
- 8. Чулков П.В. Практические занятия по элементарной математике [Электронный ресурс] : учебное пособие / Чулков П.В. Москва : Прометей, 2012. 102 с. ISBN 978-5-4263-0121-4 : Б. ц. Режим доступа: http://www.iprbookshop.ru/18603.html. Книга находится в базовой версии ЭБС IPRbooks.
- 9. Шень А. Геометрия в задачах [Электронный ресурс] : учебное пособие / Шень А. [Б. м.] : МЦНМО, 2013. https://www.mccme.ru/free-books/shen/shen-geometry.pdf