МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Институт физики

УТВЕР ДАТО Директор института физики

y " minusope 202/ r.

C, 6, Bener

Программа учебной практики

Учебная вычислительная практика

Направление подготовки бакалавриата 22.03.01 «Материаловедение и технологии материалов»

Профиль подготовки бакалавриата «Нанотехнологии, диагностика и синтез современных материалов»

Квалификация (степень) выпускника Бакалавр

> Форма обучения очная

> > Саратов, 2021

Статус	ФИО	Подпись	Дата
Преподаватель- разработчик	Клецов А.А.	Kreuol	20,09,21,
Председатель НМК	Скрипаль Ан.В.	Alm	2d. 09.212.
Заведующий кафедрой	Вениг С.Б.		20,09,212
Специалист Учебного управления			

1. Цели учебной вычислительной практики

Целью учебной вычислительной практики является закрепление и расширение у студентов комплекса общепрофессиональных и профессиональных знаний и умений в области решения задач профессиональной деятельности с применением информационно-коммуникационных технологий и методов моделирования, а также формирование практических навыков выбора и применения этих методов для моделирования физических, химических и технологических процессов.

2. Тип (форма) проведения учебной вычислительной практики и способ её проведения

Учебная вычислительная практика относится по типу к практикам по получению первичных профессиональных умений и навыков, в том числе умений и навыков научно-исследовательской деятельности.

Практика проводится в форме лабораторных работ в компьютерном классе СГУ, выполнения практических заданий и самостоятельной работы. Учебная вычислительная практика предполагает проведения обзорной лекции по основным методам моделирования физических, химических и технологических процессов.

Способ проведения – стационарная.

3. Место учебной вычислительной практики в структуре ООП

«Вычислительная практика» относится к части, формируемой участниками образовательных отношений, блока Б2 «Практики» и изучается студентами очной формы обучения дневного отделения института физики Саратовского государственного университета имени Н.Г. Чернышевского, обучающимися по направлению подготовки 22.03.01 «Материаловедение и технологии материалов», по окончании 4 учебного семестра.

Материал практики опирается на ранее приобретенные студентами знания по дисциплинам «Векторный и тензорный анализ», «Математический анализ $T\Phi K\Pi »,$ «Дифференциальные уравнения», «Аналитическая линейная алгебра», «Принципы построения геометрия И вычислительных систем», «Численные методы в материаловедении» и подготавливает студентов к освоению в том же или в последующих семестрах дисциплин «Основы физического материаловедения», таких как «Моделирование и оптимизация производственных систем и технологических процессов», «Физические процессы в материалах под действием оптического и СВЧ излучений».

4. Результаты обучения по учебной вычислительной практике

Код и наименование компетенции	Код и наименование индикаторов достижения	Результаты обучения
	компетенции	
УК-6 Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	ук-6.1. Применяет знание о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.) для успешного выполнения порученной работы. Ук-6.4. Критически оценивает эффективность использования времени и других ресурсов при решении поставленных задач, а также относительно полученного результата.	знать: о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.); уметь: применять знание о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.) для успешного выполнения порученной работы; владеть: навыками применения знаний о своих ресурсах и их пределах (личностных, ситуативных, временных и т.д.) для успешного выполнения порученной работы;
ОПК-5 Способен решать научно- исследовательские задачи при осуществлении профессиональной деятельности с применением современных информационных	ОПК-5.1. Демонстрирует умение решать поставленные научно- исследовательские задачи при осуществлении профессиональной деятельности.	знать: современные информационные технологии для решения поставленных научно-исследовательских задач; уметь: применять современные информационные технологии для решения поставленных научно-
технологий и прикладных аппаратно-программных средств	ОПК-5.3. Демонстрирует умение выбора и применения современных информационных технологий в соответствии с поставленной задачей при решении научноисследовательские задач.	исследовательских задач; <u>владеть:</u> умением выбирать современные информационные технологии для решения поставленных научноисследовательских задач;
ОПК-8 Способен понимать принципы работы современных информационных	ОПК-8.2. Выбирает и использует современные информационно-коммуникационные и интеллектуальные	знать: современные информационно-коммуникационные и интеллектуальные технологии, инструментальные среды, программно-технические

технологий и использовать их для решения задач профессиональной леятельности

технологии, инструментальные программносреды, технические платформы программные средства, TOM числе отечественного производства, ДЛЯ решения задач профессиональной деятельности.

ОПК-8.3. Анализирует профессиональные задачи, выбирает и использует подходящие ИТ-решения.

профессиональной деятельности, в том числе для численных расчетов типичных физических задач; уметь: применять современные информационнокоммуникационные И интеллектуальные технологии, инструментальные среды, программно-технические платформы программные решения средства ДЛЯ задач профессиональной деятельности, в том числе для численных расчетов типичных физических задач; современными владеть: информационнокоммуникационными И интеллектуальными технологиями, инструментальными средами, программно-технические платформами и программными

программные

задач

решения

платформы

ДЛЯ

средства

ПК-1. Способен использовать современные информационные технологии, глобальные информационные ресурсы в научно-исследовательской и расчетно-аналитической деятельности в области материаловедения и технологии материалов

ПК-1.2 Демонстрирует навыки использования современного программного обеспечения И его использования при решении задач В научноисследовательской И расчетноаналитической деятельности в области материаловедения технологии

знать: навыки использования современного программного обеспечения и его использования при решении задач в научно-исследовательской и расчетно-аналитической деятельности в области материаловедения и технологии;

средствами для решения задач профессиональной деятельности, в том числе для численных расчетов

типичных физических задач;

<u>уметь:</u> применять навыки использования современного программного обеспечения и его использования при решении задач в научно-исследовательской и расчетно-аналитической деятельности в области материаловедения и технологии;

владеть: навыками использования современного программного обеспечения и его использования при решении задач в научно-исследовательской и расчетно-аналитической деятельности в

	области	материаловедения	И
	технологи	и.	

5. Структура и содержание учебной вычислительной практики

Общая трудоемкость дисциплины составляет 4 зачетных единицы, 144 часов.

1acor	,							
№	Разделы (этапы)	Виды учебной работы на			оты на	Формы текущего контроля		
п/п	практики	практике, включая самостоятельную работу студентов и трудоемкость (в часах)			работу			
		Лек	Лаб	Пр	CPC			
1	Подготовительный этап, включающий инструктаж по технике безопасности	6	0	0	4	Проверка знаний по инструкциям и пр. документам; дискуссия		
2	Выполнение индивидуальных заданий	0	80	0	16	Письменные промежуточные отчеты		
3	Оформление результатов; подготовка отчета по практике			10	28	Проект отчета, презентация		
	ИТОГО 144 часа	6	80	10	48	Дифференцированный зачет		

Содержание практики

1. Подготовительный этап включает инструктаж по технике безопасности и охране труда, ознакомление с инструкциями работы в компьютерном классе СГУ. Подготовительный этап также включает вводный курс ознакомительных лекций по основным методам моделирования физических, химических и технологических процессов.

Содержание ознакомительных лекций:

- Среда Visual Basic 6.0. Типы данных. Основные элементы программирования (объявление переменных, констант, массивов; работы с процедурами и функциями и т.д.), управляющие конструкции и циклы. Отладка программ и устранение ошибок.
- *Подбор эмпирических формул*. Определение параметров эмпирической зависимости. Метод наименьших квадратов.
- Численное интегрирование. Метод прямоугольников и трапеций. Метод Симпсона.

- *Методы оптимизации*. Задачи на экстремумы. Метод Ньютона. Минимум функции нескольких переменных.
- Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Методы Эйлера. Методы Рунге-Кутта.
- Построение квантово-механической модели атома водорода Эрвина Шредингера.
- 2. Выполнение индивидуальных заданий. Выполнение заданий происходит как самостоятельно, так и в группах.

Примерные темы заданий:

- 1) Программирование линейных и разветвляющихся вычислительных процессов.
- 2) Программирование циклических вычислительных процессов.
- 3) Программирование определения параметров эмпирической зависимости методом наименьших квадратов.
- 4) Программирование численного интегрирования методами прямоугольников и трапеций.
- 5) Программирование задачи на экстремумы.
- 6) Программирование методов Эйлера.
- 7) Программирование методов Рунге-Кутта.
- 8) Работа с квантовой моделью атома водорода.
- 3. Подготовка отчета по практике. На данном этапе планируется обсуждение вопросов, связанных с анализом и обработкой полученных данных, оформлением и подготовкой отчетов в соответствии с общепринятыми требованиями, публичная защита.

Формы проведения учебной вычислительной практики

Учебная вычислительная практика проводится в форме лабораторных исследований, выполнения практических заданий и самостоятельной работы.

Место и время проведения учебной вычислительной практики

Местом проведения учебной вычислительной практики является компьютерный класс лаборатории информационного обеспечения НИУ СГУ им. Н.Г. Чернышевского.

Студенты проходят учебную вычислительную практику по окончании летней сессии в 4 семестре, в течение 4 недель, с 29 июня по 26 июля.

Формы промежуточной аттестации (по итогам практики)

Аттестация (дифференцированный зачет) по итогам учебной вычислительной практики проводится на основании оформленного в соответствии с установленными требованиями письменного отчета, отзыва руководителя практики. Итоги учебной вычислительной практики подводятся на собеседовании или в процессе публичной защиты и включаются в сессию

5-го семестра. По итогам дифференцированного зачета выставляются оценки (отлично, хорошо, удовлетворительно, неудовлетворительно).

6. Образовательные технологии, применяемые на учебной вычислительной практике

При прохождении практики с целью создания условий для самоактуализации и самореализации обучающихся, предоставления возможностей для конструирования собственного знания, используются следующие современные образовательные технологии:

- информационно-коммуникационные технологии;
- проблемное обучение;
- творческие задания;
- дискуссии на заданную тему.

В процессе занятий обучающиеся по заданию и под руководством преподавателя выполняют одну или несколько практических работ. При проведении занятий используется персональный компьютер. Применяемые методы обучения, способствуют закреплению и совершенствованию знаний, овладению умениями и получению новых навыков.

Условия обучения инвалидов и лиц с ограниченными возможностями здоровья:

- предоставление инвалидам по зрению или слабовидящим возможностей использовать крупноформатные наглядные материалы;
- организация коллективных занятий в студенческих группах с целью оказания помощи в получении информации инвалидам и лицам с ограниченными возможностями по здоровью;
- проведение индивидуальных коррекционных консультаций для инвалидов и лиц с ограниченными возможностями здоровья;
- использование индивидуальных графиков обучения:
- использование дистанционных образовательных технологий.

7. Учебно-методическое обеспечение самостоятельной работы студентов на учебной вычислительной практике.

Самостоятельная работа студентов при прохождении учебной вычислительной практики проводится в течение всего периода практики и заключается в чтении и изучении литературы, изучении программного обеспечения, оформлении отчета по практике, работе в компьютерном классе или библиотеке, подготовке презентации.

Основными критериями качества организации самостоятельной работы является наличие контроля результатов самостоятельной работы и технических условий выполнения заданий.

Рекомендуется:

• при подготовке к выполнению практических заданий тщательно изучать лекционный материал на заданную тему, задавать уточняющие вопросы

преподавателю, иметь отдельную тетрадь, для выполнения заданий и оформления отчетов;

8. Данные для учета успеваемости студентов в БАРС

Таблица 1.2 – Таблица максимальных баллов по видам учебной деятельности.

1	2	3	4	5	6	7	8	9
Семестр	Лекции	Лабораторн ые занятия	Практическ ие занятия	Самостоят ельная работа	Автоматизирова нное тестирование	Другие виды учебной деятельност и	Промежуточ- ная аттестация	Итого
4	5	30	0	15	0	0	0	50
5	0	0	0	20	0	0	30	50
Итого	5	30	0	35	0	0	30	100

Программа оценивания учебной деятельности студента

4 семестр

Лекции

Посещаемость, активность на лекции, результативность устных опросов – от 0 до 5 баллов

Лабораторные занятия

Самостоятельность при выполнении, правильность выполнения работ, грамотность выполнения, объем выполненных работ – от 0 до 30 баллов

Практические занятия

Не предусмотрено.

Самостоятельная работа

Самостоятельное изучение тем по заданию руководителя практики - от 0 до 15 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Не предусмотрено.

Промежуточная аттестация

Не предусмотрено.

5 семестр

Лекции

Не предусмотрено.

Лабораторные занятия

Не предусмотрено.

Практические занятия

Не предусмотрено.

Самостоятельная работа

Оформление отчета и подготовка презентации - от 0 до 20 баллов.

Автоматизированное тестирование

Не предусмотрено.

Другие виды учебной деятельности

Не предусмотрено.

Промежуточная аттестация

Промежуточная аттестация по данному виду учебной практики проводится в форме дифференцированного зачета.

При проведении промежуточной аттестации: ответ на «отлично» оценивается от 27 до 30 баллов; ответ на «хорошо» оценивается от 20 до 26 баллов; ответ на «удовлетворительно» оценивается от 11 до 19 баллов; ответ на «неудовлетворительно» оценивается от 0 до 10 баллов.

Таким образом, максимально возможная сумма баллов за все виды учебной деятельности студента за 4, 5 семестры по учебной практике «Вычислительная практика» составляет 100 баллов.

Пересчет полученной студентом суммы баллов ПО учебной вычислительной практике оценку (дифференцированный В осуществляется в соответствии с таблицей 2, при этом, если на собеседовании или публичной защите был дан ответ на «неудовлетворительно», то получение дифференциального зачета по учебной вычислительной практике возможно только после проведения повторной защиты/собеседования.

Таблица 2.2 – Таблица пересчета полученной студентом суммы баллов по учебной практике «Вычислительная практика» в оценку (дифференцированный зачет):

81-100 баллов	«отлично» / зачтено
65-80 баллов	«хорошо» / зачтено
50-64 баллов	«удовлетворительно» / зачтено
0-49 баллов	«неудовлетворительно» / не зачтено

9. Учебно-методическое и информационное обеспечение учебной вычислительной практики.

а) литература:

- 1. Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М. : БИНОМ. Лаб. знаний, 2008. 636 с. (109 экз.)
- 2. Калиткин, Н. Н., Численные методы: учебное пособие / Н. Н. Калиткин; под ред. А. А. Самарского. 2-е изд. Санкт-Петербург: БХВ-Петербург, 2011. 586, [6] с. (53 экз.)
- 3. Демидович Б. П., Марон И. А., Шувалова Э. 3. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. СПб.; М.; Краснодар: Лань, 2010. 400 с. (30 экз.)
- 4. Браун С. Visual Basic 6. Учебный курс/ пер. с англ. Е. Матвеев. М. : СПб. : Питер, 2009. 573с. (10 экз.)
- 5. Турчак Л. И., Плотников П. В. Основы численных методов. 2-е изд., перераб. и доп. М. : ФИЗМАТЛИТ, 2005. 300с. (16 экз.)

б) программное обеспечение и Интернет-ресурсы

- 1. Windows XP/Vista/7 Professional
- 2. Антивирус Касперского 6.0 для Windows Workstations
- 3. Microsoft Office профессиональный 2010.
- 4. Каталог образовательных Интернет-ресурсов. Режим доступа: http://window.edu.ru/window/
- 5. Зональная научная библиотека им. В.А. Артисевич Саратовского государственного университета им. Н.Г. Чернышевского. Режим доступа: http://library.sgu.ru/

10. Материально-техническое обеспечение учебной вычислительной практики.

Занятия проводятся в компьютерном классе с лицензионной операционной системой Windows и пакетом Microsoft Office с программой Microsoft Office Excel. Возможны программы Turbo Pascal, Delphi, Visual C++.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 22.03.01 «Материаловедение и технологии материалови профилем подготовки «Нанотехнологии, диагностика и синтез современных материалов»

Автор: доцент кафедры материаловедения, технологии и управления качеством, кандидат физико-математических наук, Ph.D., Клецов А.А.

Программа одобрена на заседании кафедры материаловедения, технологии и управления качеством от 20.09.2021 г., протокол № 2