Агафонова Нина Юрьевна

Мультипликаторы и наилучшие приближения по системам Виленкина

01.01.01 — вещественный, комплексный и функциональный анализ

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук Работа выполнена на кафедре теории функций и приближений Саратовского государственного университета им. Н. Г. Чернышевского.

Научный руководитель: кандидат физико-математических наук,

доцент

Волосивец Сергей Сергеевич

Официальные оппоненты: доктор физико-математических наук,

профессор

Рубинштейн Александр Иосифович

кандидат физико-математических наук,

доцент

Сахно Людмила Владимировна

Ведущая организация: Институт математики и механики

Уральского отделения РАН

Защита состоится 1 декабря 2011 в 15 ч. 30 мин. на заседании диссертационного совета ДМ 212.243.15 при Саратовском государственном университете им. Н. Г. Чернышевского по адресу: 410012, г. Саратов, ул. Астраханская 83, IX корп.

С диссертацией можно ознакомиться в Зональной научной библиотеке Саратовского государственного университета.

Автореферат разослан «_____» октября 2011 г.

Учёный секретарь диссертационного совета кандидат физико-математических наук, доцент

В. В. Корнев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Работа посвящена преобразованиям рядов Фурье по мультипликативным системам с диагональной матрицей, а также односторонним и двусторонним оценкам наилучших приближений по этим системам. В качестве приложения теории мультипликаторов получаются результаты о Λ —суммируемости рядов Фурье.

Первым примером мультипликативной системы, отличной комплексной тригонометрической системы, является система Дж. Уолша, введенная им в 1923 году. В 1947 году Н.Я. Виленкин изучил системы характеров коммутативных компактных нульмерных групп со второй аксиомой счетности. При отображении группы на промежуток [0,1) эти системы переходят в мультипликативные системы ортонормированных функций, называемых системами Виленкина или Виленкина-Прайса. Свойства рядов по этим системам напоминают свойства тригонометрических рядов, хотя есть и важные отличия.

Ряд вопросов теории рядов по мультипликативным системам, такие как абсолютная и равномерная сходимость, теория приближений и теоремы вложения, единственность разложений, изучены достаточно подробно. Среди авторов, внесших значительный вклад в их разработку, можно отметить С.В. Бочкарева, П. Бутцера, Д. Ватермана, Н.Я. Виленкина, Б.И. Голубова, А.В. Ефимова, Т. Квека, С.Ф. Лукомского, К. Оневира, А.И. Рубинштейна, М.Ф. Тимана, Н. Файна, Л. Япа.

Вместе с тем отметим, что теория мультипликаторов рядов Фурье (т.е. преобразований из одного пространства в другое, имеющих диагональный вид в пространстве коэффициентов Фурье) и задача оценки сверху или снизу наилучших приближений и модулей непрерывности в терминах коэффициентов Фурье для мультипликативных систем были изучены в малой степени. Для мультипликаторов можно отметить работу Дж. Моргенталера ¹, в которой ряд классических результатов из монографии А. Зигмунда ² перенесен на случай рядов Фурье—Уолша, и цикл работ Т. Квека и Л. Япа, связанных с мультипликаторами обощенных классов Липшица.

Теория мультипликаторов тригонометрических рядов Фурье началась с работы М. Фекете³. Ряд фундаментальных результатов

 $^{^1} G.~W.~Morgenthaler~$ On Walsh—Fourier series // Trans. Amer. Math. Soc. — 1957. — Vol.87, $\mbox{\it N}^{\mbox{\tiny 2}}.-$ Pp.452–507.

 $^{^{2}}$ А. Зигмунд Тригонометрические ряды // Мир. — 1965. — Т.1.

 $^{^3}M$. Fekete Über die Faktorfolgen welche die "klasse" einer Fourierschen Reihen unverändert lassen // Acta Sci. Math. — 1923. — Vol.1, №1.— Pp.148–166.

получен С. Верблюнским, Г. Гезом, А. Зигмундом, С. Качмажем, Ю. Марцинкевичем, И. Стейном. Задача о мультипликаторах, переводящих ряд Фурье функции из пространства X в равномерно сходящийся ряд Фурье, изучалась для разных видов пространств X Р. Бояничем, Г. Гёзом, Р. ДеВором, Й. Караматой, С.А. Теляковским, М. Томичем, Ф. Харшиладзе.

Оценки наилучших приближений и модулей непрерывности 2π —периодических функций в терминах коэффициентов Фурье получали С. Алянчич, Н.К. Бари, В.М. Кокилашвили, А.А. Конюшков, Л. Лейндлер, Г. Лоренц, М. Томич.

Очень важной оказалась идея Р. ДеВора—С.А. Теляковского о сужении класса последовательностей, определяющих мультипликатор до более удобного множества, например, класса коэффициентов Фурье—Стилтьеса.

Результаты, полученные для мультипликаторов, можно применять к проблеме Λ —суммируемости рядов Фурье с помощью прямоугольной матрицы общего вида. Здесь можно отметить работы Й. Караматы, М. Катаямы, М. Томича.

Предметом исследования являются мультипликаторы рядов Фурье по системам Виленкина и их наилучшие приближения.

Цель работы — построить критерии $\{\lambda\}_{n=0}^{\infty} \in (X,Y)$ для некоторых функциональных пространств X и Y, а также односторонние и двусторонние оценки наилучших приближений по системам Виленкина, а именно:

- Описать подпространства, в которых ряд Фурье по мультипликативной системе сходится по норме большего пространства и дать приложения общей теории к конкретным пространствам мультипликаторов;
- Охарактеризовать поведение рядов Фурье—Виленкина борелевских мер и получить аналоги результатов С.А. Теляковского и В.Р. Почуева для мультипликативных систем;
- Получить описание классов мультипликаторов из пространств Орлича и Лоренца в пространства обобщенно непрерывных функций и функций ограниченной вариации;
- Найти условия равномерной сходимости средних рядов Фурье—Виленкина, полученных с помощью общих матричных преобразований;

Найти условия принадлежности классам с заданной последовательностью наилучших приближений по системам Виленкина в терминах коэффициентов Фурье по этим системам. Получить аналоги теорем А.А. Конюшкова и Л. Лейндлера об эквивалентности О— и ≍—соотношений.

Методы исследования. При решении поставленных задач применяются общие методы функционального и действительного анализа, теории приближений и методы теории ортогональных рядов.

Научная новизна результатов. В работе доказаны критерии мультипликаторов равномерной сходимости рядов Фурье мультипликативным системам для некоторых пространств. Получены необходимые и достаточные условия принадлежности последовательностей $\{\lambda_n\}_{n=0}^{\infty}$ классу (X,Y), где в качестве X берутся пространства $L_{\Phi}, L^{p,q}, B$, L^1 , а в качестве Y— пространства $H^\omega_\infty,\,B,\,MC,\,$ а также пространства V и АС функций ограниченной вариации и абсолютно непрерывных функций на [0,1); получены необходимые и достаточные условия равномерной Λ —суммируемости рядов Фурье функций из пространств Орлича и L^1 , а также критерии равномерной Λ —суммируемости и Λ —суммируемости на группе G. Получены также некоторые следствия для матриц с обобщенно-монотонными коэффициентами. Доказаны аналоги критериев Теляковского и Почуева о мультипликаторах равномерной сходимости и сходимости в интегральной метрике для мультипликативных систем с ограниченной образующей последовательностью.

Все результаты, полученные соискателем и вошедшие в диссертационную работу, являются новыми и строго доказанными.

Практическая значимость полученных результатов. Основные результаты работы носят теоретический характер и могут найти применения в теории ортогональных рядов, теории приближений, гармоническом анализе. Они могут быть также использованы в учебном процессе при чтении специальных курсов для студентов, магистрантов и аспирантов.

Личный вклад. Все научные результаты, вошедшие в диссертационную работу, получены ее автором лично и самостоятельно. В совместных публикациях [8] научному руководителю принадлежит постановка задачи, в работе [1] — руководителю принадлежит постановка задачи и теоремы 3 и 4, не вошедшие в диссертацию.

Апробация результатов. Результаты работы докладывались и обсуждались на:

- научных семинарах кафедры теории функций и приближений;
- научно-практических конференциях сотрудников Саратовского государственного университета "Актуальные проблемы математики, механики и их приложения" (Саратов, 2006-2011);
- 13-ой Саратовской зимней школе "Современные проблемы теории функций и их приложения" (Саратов, 2006);
- 15-ой Саратовской зимней школе "Современные проблемы теории функций и их приложения посвящённой 125-летию со дня рождения В. В. Голубева и 100-летию СГУ (Саратов, 2010).

Публикации. Результаты диссертации опубликованы в 8 работах, из которых четыре [1–4]— в научных изданиях, рекомендованных ВАК для публикации основных научных результатов диссертации на соискание учёной степени кандидата наук.

Результаты, выносимые на защиту.

- критерий мультипликаторов равномерной сходимости функций из равномерного пространства Гёльдера и интегрального пространства Гёльдера;
- критерий мультипликаторов из пространств Орлича и Лоренца в равномерное пространство Гёльдера;
- оценки сверху наилучших приближений и модулей непрервности через коэффициенты Фурье по мультипликативным системам;
- эквивалентность O- и \asymp —соотношений для рядов по мультипликативным системам с обобщенно-монотонными коэффициентами;
- ullet критерии равномерной $\Lambda-$ суммируемости интегрируемых, непрерывных функций из пространств Орлича.

Структура и объем диссертации. Работа состоит из введения, трёх глав и библиографии, включающей 67 наименований. Каждая глава разбита на разделы, всего в диссертации 10 разделов. Общий объем работы 115 страниц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы диссертационной работы, определена ее цель, описана структура диссертации, при этом введены основные определения.

Пусть задана последовательность натуральных чисел $\mathbf{P}=\{p_n\}_{n=1}^{\infty}$, такая что $2\leqslant p_n\leqslant N$, при всех $n\in\mathbb{N}$. С помощью этой последовательности

построим новую последовательность $\{m_n\}_{n=0}^{\infty}$, определяя ее элементы следующим образом: $m_0=1, m_n=p_1\dots p_n$ при $n\in\mathbb{N}$. Тогда каждое $x\in[0,1)$ может быть представлено в виде

$$x = \sum_{n=1}^{\infty} x_n / m_n, \ 0 \leqslant x_n < p_n, \quad x_n \in \mathbb{Z}.$$

Рассмотрим группу $G(\mathbf{P})$, состоящую из элементов $\widetilde{x} = (x_1, x_2, \ldots)$, где $x_i \in \mathbb{Z}(p_i) = \{0, 1, 2, \ldots, p_i - 1\}, i \in \mathbb{N}$, и снабженную операцией $\widetilde{x} \oplus \widetilde{y} = \widetilde{z}$, где $\widetilde{z} = (z_1, z_2, \ldots) \in G(\mathbf{P})$ и $z_i = x_i + y_i \pmod{p_i}, i \in \mathbb{N}$. Операция $\widetilde{x} \ominus \widetilde{y}$ вводится аналогично. Для $\widetilde{x} \in G(\mathbf{P})$ и $k \in \mathbb{Z}_+$, записанного в виде $k = \sum_{i=1}^{\infty} k_j m_{j-1}$, определим

$$\widetilde{\chi}_k(\widetilde{x}) = \exp\left(2\pi i \left(\sum_{j=1}^{\infty} \frac{x_j k_j}{p_j}\right)\right).$$

Функции $\widetilde{\chi}_k(\widetilde{x}), k \in \mathbb{Z}_+$, составляют систему характеров группы $G(\mathbf{P})$, т.е. являются непрерывными в топологии группы $G(\mathbf{P})$ и обладают свойствами

$$\widetilde{\chi_n}(\widetilde{x} \oplus \widetilde{y}) = \widetilde{\chi_n}(\widetilde{x})\widetilde{\chi_n}(\widetilde{y}), \qquad \widetilde{\chi_n}(\widetilde{x} \ominus \widetilde{y}) = \widetilde{\chi_n}(\widetilde{x})\overline{\widetilde{\chi_n}(\widetilde{y})},$$

для всех $\widetilde{x},\widetilde{y}\in[0,1)$ и $n\in\mathbb{Z}_+$. Для $k,l\in\mathbb{Z}_+$ можно определить

$$k \oplus l := r = \sum_{i=1}^{\infty} r_i m_{i-1},$$

где $r_i = k_i + l_i \pmod{p_i}, \ k_i \in \mathbb{Z}(p_i)$. Аналогично определяется $k \ominus l$. Для системы $\{\widetilde{\chi_k}(\widetilde{x})\}_{k=0}^\infty$ справедливы равенства

$$\widetilde{\chi_k}(\widetilde{x})\widetilde{\chi_l}(\widetilde{x}) = \widetilde{\chi}_{k \oplus l}(\widetilde{x}), \qquad \widetilde{\chi_k}(\widetilde{x})\overline{\widetilde{\chi_l}(\widetilde{x})} = \widetilde{\chi}_{k \ominus l}(\widetilde{x}),$$

где $k,l \in \mathbb{Z}_+$, $\widetilde{x} \in G(\mathbf{P})$. Другими словами, система $\{\widetilde{\chi_k}(\widetilde{x})\}_{k=0}^\infty$ является мультипликативной, т.е. произведение двух функций системы снова принадлежит системе.

С помощью отображения группы $G(\mathbf{P})$ на полуинтервал $[0,1)^4$ свойства системы $\{\widetilde{\chi_k}(\widetilde{x})\}_{k=0}^\infty$ переносятся на систему $\{\chi_k(x)\}_{k=0}^\infty$, которую и называют системой Виленкина-Прайса.

 $^{^4} B.$ И. Голубов, А. В. Ефимов, В. А. Скворцов Ряды и преобразования Уолша: Теория и применения // М.— Наука. — 1987.

Пространство M(G) есть пространство борелевских мер на G, пространство C(G) непрерывных функций на G и пространство B(G) ограниченных измеримых функций на G с нормой $\|f\|_{\infty} = \sup_{\widetilde{x} \in G} |f(\widetilde{x})|$, а также пространства $L^p(G)$ интегрируемых в p—й степени на G функций с нормой

$$||f||_p = \left(\int\limits_C |f(\widetilde{x})|^p d\,\widetilde{x}\right)^{1/p}, \ 1 \leqslant p < \infty.$$

Для $f \in L^1(G)$ или $\mu \in M(G)$ можно определить коэффициенты Фурье формулами

$$\hat{f}(n) = \int_{G} f(\widetilde{x}) \overline{\widetilde{\chi}_{n}(\widetilde{x})} d\widetilde{x}; \qquad \hat{\mu}(n) = \int_{G} \overline{\widetilde{\chi}_{n}(\widetilde{x})} d\mu(\widetilde{x}), \ n \in \mathbb{Z}_{+}.$$

Введем в рассмотрение

$$\mathcal{P}_n = \{ f \in L^1[0,1) : \hat{f}(k) = 0, \ k \ge n \}, \qquad n \in \mathbb{N},$$

$$E_n(f)_p = \inf \{ \|f - t_n\|_p : t_n \in \mathcal{P}_n \}, \qquad n \in \mathbb{N},$$

$$\omega_n(f)_p = \sup_{0 < h < 1/m_n} \|f(x \oplus h) - f(x)\|_p, \qquad n \in \mathbb{Z}_+.$$

При $p = \infty$ рассматриваем $f \in MC[0,1)$).

Пространства Гёльдера определяются следующим образом

$$H_p^{\omega}[0,1) = \{ f \in L^p[0,1) : \omega_k(f)_p \leqslant C\omega_k; \ k \in \mathbb{Z}_+ \},$$

$$h_p^{\omega}[0,1) = \{ f \in L^p[0,1) : \omega_k(f)_p = o(\omega_k); \ k \in \mathbb{Z}_+ \},$$

где последовательность $\omega = \{\omega_k\}_{k=0}^{\infty}$ положительна и убывает к нулю, а C зависит от f, но не от k.

Для функций f, определенных на группе G, указанные определения аналогичны.

Пространство B[0,1) с нормой $\|f\|_{\infty} = \sup_{x \in [0,1)} |f(x)|$ есть множество измеримых и ограниченных на [0,1) функций. Его подпространством с той же нормой является множество MC[0,1) Р—непрерывных функций f, удовлетворяющих соотношению $\lim_{h \to 0} \|f(x \oplus h) - f(x)\|_{\infty} = 0$. Будем рассматривать также пространство UC[0,1) — пространство функций, ряды Фурье которых по системе $\{\chi_n(x)\}_{n=0}^{\infty}$ сходятся равномерно. Класс борелевских мер на [0,1) обозначим M[0,1)

Определим пространства Орлича и Лоренца.

 $Onpedenehue\ 1.\ N$ -функцией называется возрастающая, непрерывная на $[0,\infty)$ выпуклая функция $\Phi(u)$, такая что

$$\Phi(0) = 0, \quad \lim_{u \to \infty} \frac{\Phi(u)}{u} = +\infty \quad \text{ if } \quad \lim_{u \to 0} \frac{\Phi(u)}{u} = 0.$$

Функция $\Phi(u)$ может быть представлена в виде $\Phi(u) = \int_0^u p(t) dt$, где p(t)—правосторонняя производная $\Phi(u)$, неубывающая и непрерывная справа на $[0,\infty)$.

Рассмотрим обобщенную обратную к неубывающей функции p(t) функцию $q(s)=\sup\{t:p(t)\leq s\},\,s\in\mathbb{R}_+.$

Определение 2. Функцией, сопряженной по Юнгу к $\Phi(u)$, называется функция $\Psi(v) = \int\limits_0^v q(s)\,ds,\,v\in\mathbb{R}_+.$

При этом Ψ выпукла и обладает теми же свойствами, что и Φ .

 $Onpedenehue\ 3.\ \Pi$ усть $\Phi(x)-N$ —функция. Тогда пространство Орлича $L_{\Phi}[0,1)$ состоит из измеримых на [0,1) функций f, для которых конечна норма

$$||f||_{\Phi} = \left\{ \sup \left| \int_{0}^{1} f(x)g(x) dx \right| : \int_{0}^{1} \Psi(|g(x)|) dx \right) \le 1 \right\},$$

где $\Psi(x)$ — сопряженная по Юнгу функция к $\Phi(x)$. Относительно этой нормы $L_{\Phi}[0,1)$ является банаховым пространством.

Говорят, что Φ удовлетворяет Δ_2 -условию, если $\Phi(2u) \leq C\Phi(u), \, u \in [0,\infty).$

Определение 4. Пусть $1\leqslant p,q\leqslant\infty$. Пространство Лоренца $L^{pq}[0,1)$ состоит из измеримых функций f на [0,1), для которых $\|f\|_{pq}<\infty$, где

$$||f||_{pq} = \begin{cases} \left(\frac{q}{p} \int_{0}^{1} [t^{1/p} f^{*}(t)]^{q} \frac{dt}{t}\right)^{1/q}, & 1 \leq p < \infty, \quad 1 \leq q < \infty; \\ \sup_{t>0} t^{1/p} f^{*}(t), & 1 \leq p \leq \infty, \qquad q = \infty. \end{cases}$$

Здесь $\lambda_f(y)=|\{x\in[0,1):|f(x)|>y\}|,$ а $f^*(t)=\inf\{y>0:\lambda_f(y)\le t\},$ t>0, |E| обозначает меру множества E.

Пусть X и Y- некоторые функциональные пространства на [0,1) (группе G), непрерывно вложенные в $L^1[0,1)$ ($L^1(G)$).

Onpedenehue 5. Последовательность $\{\lambda_n\}_{n=0}^{\infty}$ такая, что для любой функции или меры из X ряд

$$\sum_{n=0}^{\infty} \lambda_n \hat{f}(n) \chi_n(x) \quad \left(\sum_{n=0}^{\infty} \lambda_n \hat{f}(n) \widetilde{\chi}_n(\widetilde{x}) \right)$$

является рядом Фурье (по системе $\{\chi_n\}_{n=0}^{\infty}$ $(\{\widetilde{\chi}_n\}_{n=0}^{\infty}))$ функции или меры из Y, называется мультипликатором класса (X,Y), $\{\lambda_n\}_{n=0}^{\infty}\in (X,Y)$.

Первая глава содержит результаты относительно мультипликаторов, связанных с пространствами E_F для $E = L^1[0,1)$ и E = MC[0,1) (в последнем случае $E_F = UC[0,1)$), где E — банахово пространство функций на $[0,1), E \subset L^1[0,1),$ а $E_F = \{f \in E : \lim_{n \to \infty} \|f - S_n(f)\|_E = 0\}.$

Здесь дается критерий принадлежности ряда $\sum_{k=0}^{\infty} a_k \widetilde{\chi}_k$ множеству

рядов Фурье борелевских мер на G в терминах $S_{m_n} = \sum_{k=0}^{m_n-1} a_k \widetilde{\chi}_k$ и аналогичный результат для пространства M[0,1) борелевских мер на [0,1), изучаются мультипликаторы классов (L_Φ,E) и $(L^{p,q},E)$, где L_Φ — пространство Орлича, $L^{p,q}$ — пространство Лоренца, а в роли E выступают пространства обобщенно-непрерывных, ограниченных функций, функций ограниченной вариации, абсолютно-непрерывных функций и пространства Гёльдера для равномерной метрики. Важным средством для описания таких классов являются критерии принадлежности ряда $\sum_{k=0}^{\infty} a_k \chi_k$ классу рядов Фурье функций из L_Φ , $L^{p,q}$, H_Φ^ω или $H_{p,q}^\omega$. Основными результатами раздела 1.2 являются

Теорема 1.2.1. Пусть $l_n(f) = \sum_{\nu=0}^{n-1} \lambda_{\nu} \hat{f}(\nu)$ для $f \in L^1[0,1)$. Для того, чтобы последовательность $\{\lambda_{\nu}\}_{\nu=0}^{\infty}$ принадлежала (E_F, UC) , необходимо и достаточно, чтобы нормы функционалов $l_n(f)$ в E_F были ограничены.

Теорема 1.2.4. Пусть $E = L_{\Phi}[0,1)$, где Φ удовлетворяет Δ_2 — условию, $E = L^1[0,1)$ или E = MC[0,1). Тогда $\{\lambda_k\}_{k=0}^{\infty} \in (L, E_F)$, в том и только в том случае, когда нормы $\|\Lambda_n\|_E := \sum_{k=0}^{n-1} \lambda_k \chi_k(x)$ ограничены.

Теорема 1.2.5. Пусть пространства E те же, что в теореме 1.2.4. Включение $\{\lambda_k\}_{k=0}^{\infty} \in (E,UC)$ справедливо тогда и только тогда, когда норми $\|\Lambda_n\|_{E^*}$ ограничены.

Здесь E^* —сопряженное к E пространство при $E \neq MC[0,1)$ и $E^* = L[0,1)$ при E = MC[0,1).

Результаты данного параграфа опубликованы в [8].

В разделе 1.3 дается критерий принадлежности ряда $\sum_{k=0}^{\infty} a_k \widetilde{\chi}_k$ множеству рядов Фурье борелевских мер на G в терминах $S_{m_n} = \sum_{k=0}^{m_n-1} a_k \widetilde{\chi}_k$ и аналогичный результат для пространства M[0,1) борелевских мер на [0,1).

Основным результатом является

Теорема 1.3.2. Пусть $1 \leq p \leq \infty$, последовательность $\{\omega_n\}_{n=0}^{\infty}$ убывает к нулю. Для того, чтобы последовательность $\{\lambda_k\} \in (M, H_p^{\omega})$ необходимо и достаточно, чтобы ряд

$$\sum_{k=1}^{\infty} \lambda_k \chi_k(x)$$

был рядом Фурье функции $g(x) \in H_p^\omega$.

Аналогичное утверждение верно для $(M(G), H_p^{\omega}(G))$.

Результаты данного параграфа опубликованы в [7].

В разделе 1.4 изучаются мультипликаторы классов (L_{Φ}, E) и $(L^{p,q}, E)$, где L_{Φ} —пространство Орлича, $L^{p,q}$ — пространство Лоренца, а в роли E выступают пространства обобщенно-непрерывных, ограниченных функций, функций ограниченной вариации, абсолютно-непрерывных функций и пространства Гёльдера для равномерной метрики. Важным средством для описания таких классов являются критерии принадлежности ряда $\sum_{k=0}^{\infty} a_k \chi_k$ классу рядов Фурье функций из $L_{\Phi}, L^{p,q}, H_{\Phi}^{\omega}$ или $H_{p,q}^{\omega}$.

Типичным результатом данного раздела является

Теорема 1.4.4. Пусть $\{\omega_n\}_{n=0}^{\infty}$ — убывающая κ нулю последовательность.

Последовательность $\{\lambda_k\}_{k=0}^\infty$ принадлежит классу (E,H_∞^ω) тогда и только тогда, когда

- 1) при E=L[0,1) существует $g(f)\in H_\infty^\omega$, такая, что $\hat{g}(k)=\lambda_k$, $k\in\mathbb{Z}_+;$
- 2) при E=B[0,1) существует $g\in H_1^\omega$, такая, что $\hat{g}(k)=\lambda_k,$ $k\in\mathbb{Z}_+;$
- 3) при $E=L_{\Phi}[0,1)$, где $\Phi-N$ -функция, существует $g\in H_{\Psi}^{\omega}$, такая, что $\hat{g}(k)=\lambda_k,\ k\in\mathbb{Z}_+;$
- 4) при $E = L^{p,q}[0,1), \ 1 такая, что <math>\hat{g}(k) = \lambda_k, \ k \in \mathbb{Z}_+.$

Результаты раздела 1.4 опубликованы в [6].

В разделе 1.5 содержатся основные результаты главы, относящиеся к мультипликаторам классов Гёльдера.

Теорема 1.5.1. Пусть $\{\lambda_n\}_{n=0}^{\infty}$ — последовательность коэффициентов Фурье-Стилтьеса борелевской меры μ по системе $\{\chi_n(x)\}_{n=0}^{\infty}$. Тогда $\{\lambda_n\}_{n=0}^{\infty} \in (H^{\omega}, UC)$ в том и только в том случае, когда $\lim_{k\to\infty} \varphi_k \|\Lambda_k\|_1 = 0$.

Здесь $\varphi_k = \omega_k$ при $m_n \le k < m_{n+1}$.

Теорема 1.5.3. Пусть $\{\lambda_n\}_{n=0}^{\infty}$ — последовательность коэффициентов Фурье функции $\Lambda(t) \in B[0,1)$. Тогда $\{\lambda_n\}_{n=0}^{\infty} \in (H_1^{\omega}, UC)$ тогда и только тогда, когда $\lim_{k\to\infty} \varphi_k \|\Lambda_k\|_{\infty} = 0$.

Теорема 1.5.5. Пусть $1 \leqslant p \leqslant \infty$, 1/p + 1/q = 1, ω u δ — положительные, убывающие κ нулю последовательности, такие что $\{\gamma_k\}_{k=0}^{\infty} = \{\omega_k/\delta_k\}_{k=0}^{\infty}$ тоже убывает κ нулю u удовлетворяет условию $\sum_{\nu=n}^{\infty} \nu^{-1} \gamma_{\nu} = O(\gamma_n)$.

Тогда последовательность $\{\lambda_k\}_{k=0}^\infty$ принадлежит классу $(H_p^\delta, H_\infty^\omega)$ тогда и только тогда, когда ряд $\sum\limits_{k=0}^\infty \lambda_k \widetilde{\chi}_k$ является рядом Фурье функции $f \in H_q^\gamma(G).$

Теоремы 1.5.1-1.5.4 опубликованы в [1], а теоремы 1.5.5 и 1.5.6 в [4].

Вторая глава диссертации содержит оценки наилучших приближений функций из $L_p[0,1)$ в терминах коэффициентов Фурье этих функций, а также описание классов функций, наилучшие приближения которых удовлетворяют одностороннему или двустороннему неравенству.

Рассматриваются ряды $\sum_{n=1}^{\infty} a_n \chi_n(x)$, коэффициенты которых удовлетворяют некоторым специальным условиям.

Будем писать $\{a_k\}_{k=0}^{\infty} \in A_{\tau}, \tau \geq 0$, если $\{a_k k^{-\tau}\}_{k=1}^{\infty}$ убывает, и $\lim_{k\to\infty} a_k = 0$, соответственно, $\{a_k\}_{k=0}^{\infty} \in A_{\tau}, \tau < 0$, если $\{a_k k^{|\tau|}\}_{k=1}^{\infty}$ возрастает и $\lim_{k\to\infty} a_k = 0$.

Будем говорить, что последовательность $\{a_k\}_{k=0}^{\infty} \in RBVS$ если 1) $a_k > 0, \quad k \in \mathbb{N}; \ 2) \lim_{k \to \infty} a_k = 0; \ 3) \sum_{k=m}^{\infty} |a_k - a_{k+1}| \le Ca_m,$ для любого $m \in \mathbb{N}.$

Будем говорить, что убывающая к нулю последовательность $\{\varphi_n\}_{n=1}^{\infty}$ удовлетворяет условию (B), если выполняется $\sum_{\nu=n}^{\infty} \nu^{-1} \varphi_{\nu} = O(\varphi_n)$.

Последовательность $\{\varphi_n\}_{n=1}^{\infty}$ удовлетворяет Δ_2 —условию, если $\varphi_n \leq C\varphi_{2n}, n \in \mathbb{N}.$

Основными результатами являются следующие теоремы.

Теорема 2.2.2. Пусть $\{a_n\} \in A_{\tau}, \tau \in \mathbb{R}, \ unu \ \{a_n\} \in RBVS, 1$

$$\sum a_n^p n^{p-2} < \infty.$$

Тогда сумма ряда $\sum\limits_{n=1}^{\infty}a_n\chi_n(x)$ принадлежит $L^p[0,1)$ и

$$E_n(f)_p \le C\left(n^{1-1/p}a_n + \left(\sum_{k=n}^{\infty} a_k^p k^{p-2}\right)^{1/p}\right), \quad n \in \mathbb{N}.$$

Теорема 2.2.3. Пусть $a_n \in A_\tau, \tau \in \mathbb{R}$, или $a_n \in RBVS$, 1 и

$$\sum_{n=1}^{\infty} a_n n^{-1/p} < \infty.$$

Тогда сумма ряда $\sum\limits_{n=1}^{\infty}a_n\chi_n(x)$ принадлежит $L^p[0,1)$ и

$$E_n(f)_p \le C\Big(n^{1-1/p}a_n + \sum_{i=n}^{\infty} a_i i^{-1/p}\Big).$$

Теорема 2.3.1. Пусть $\{\varphi_n\}_{n=1}^{\infty}$ удовлетворяет условиям (Δ_2) и $(B), 1 < q < p < \infty, a_n \in A_{\tau}, \tau \in \mathbb{R}$, или $a_n \in RBVS$. Пусть существует $f \in L^p[0,1)$, такая что $\hat{f}(n) = a_n, n \in \mathbb{N}$. Тогда следующие 6 условий попарно эквивалентны

$$E_n(f)_p = O(\varphi_n),$$

$$\sum_{k=n}^{\infty} a_k^p k^{p-2} = O(\varphi_n^p),$$

$$\sum_{k=n}^{\infty} a_k^{p'} = O(\varphi_n^{p'}), \quad 1/p + 1/p' = 1,$$

$$\sum_{k=n}^{\infty} k^{-1/p} a_k = O(\varphi_n),$$

$$a_n = O(n^{1/p-1} \varphi_n),$$

$$E_n(f)_q = O(n^{1/p-1/q} \varphi_n).$$

В теореме 2.3.2 аналогичные утверждения устанавливаются для \approx соотношений.

Результаты этой главы опубликованы в [2].

Третья глава диссертации посвящена изучению проблемы Λ суммируемости рядов Фурье функций из некоторых пространств.

Пусть $\{\lambda_{kn}\}_{k,n=0}^{\infty}$ — бесконечная матрица.

 $Onpedenehue\ 6.$ Если для каждого $n\in\mathbb{Z}_+$ ряд

$$\sum_{k=0}^{\infty} \lambda_{kn} \hat{f}(k) \widetilde{\chi}_k(\widetilde{x})$$

сходится равномерно к функции $g_n(f)(\widetilde{x})$, а $\{g_n(f)(\widetilde{x})\}_{n=0}^{\infty}$, в свою очередь, сходится равномерно к функции $g(f)(\tilde{x})$, то будем говорить, что ряд Фурье функции $f(\tilde{x})$ равномерно Λ —суммируем к $g(f)(\tilde{x})$ (аналогично на [0,1)).

Если же для каждого $n \in \mathbb{Z}_+$ ряд

$$\sum_{k=0}^{\infty} \lambda_k \hat{f}(k) \widetilde{\chi}_k(\widetilde{x})$$

к функции $g_n(f)(\widetilde{x})$, а последовательность равномерно сходится $\{g_n(f)(\widetilde{x})\}_{n=0}^\infty$ сходится в $L^1(G)$ к функции $g(f)(\widetilde{x})$, то ряд Фурье функции $f(\widetilde{x})$ Λ —суммируем в $L^1(G)$ к функции $g(f)(\widetilde{x})$ (аналогично на [0,1).

В разделе 3.1 даются условия равномерной Λ —суммируемости функций из пространств $L_{\Phi}[0,1), L^{1}[0,1)$. Основными результатами данного раздела являются критерии равномерной Λ —суммируемости для таких пространств.

Теорема 3.1.1. Пусть $\Phi(x) - N - \phi$ ункция, удовлетворяющая Δ_2 условию вместе с дополнительной по Юнгу функцией $\Psi(x)$. Для того чтобы ряды Фурье всех функций $f \in L_{\Phi}[0,1)$ были равномерно Λ суммируемы, необходимо и достаточно выполнение следующих условий:

- 1) $\lim_{n\to\infty} \lambda_{kn}$ существует для всех $k\in\mathbb{Z}_+;$
- 2) для всех $n \in \mathbb{Z}_+$ существует $K_n(t) \in L_{\Psi}[0,1)$, такое что $\hat{K_n}(i) =$ $\lambda_{in}, i \in \mathbb{Z}_+, u ||K_n||_{\Psi} = O(1).$

Теорема 3.1.2. Для того чтобы ряды Фурье всех функций $f \in$ $L^{1}[0,1)$ были равномерно Λ -суммируемы, необходимо и достаточно выполнение следующих условий:

- 1) Предел $\lim_{n\to\infty} \lambda_{kn}$ существует для всех $k \in \mathbb{N}$; 2) $\left| K_{in}(t) \right| := \left| \sum_{j=0}^{i-1} \lambda_{jn} \chi_{j}(t) \right| \leq M_{n}$ для всех $t \in [0,1)$ $u \ i \in \mathbb{N}$;
- 3) Существуют ограниченные функции $K_n(t), n \in \mathbb{Z}_+$, такие что $\hat{K}_n(i) = \lambda_{in}, i \in \mathbb{Z}_+, u \|K_n\|_{\infty} = O(1).$

В разделе 3.2 доказан аналог теорем 3.1.1 и 3.1.2 для пространства C(G) и приведен критерий Λ —суммируемости в $L^1(G)$.

Теорема 3.3.2. Для того, чтобы ряды Фурье всех функций $f \in L^1(G)$ были Λ -суммируемы в $L^1(G)$ к f, необходимо и достаточно выполнение условий:

- 1) для всех $k \in \mathbb{Z}_+$ верно $\lim_{n \to \infty} \lambda_{kn} = 1$;
- 2) при каждом $n \in \mathbb{Z}_+$ нормы $\|\Lambda_{in}\|_{\infty} := \left\|\sum_{j=0}^{i-1} \lambda_{jn} \widetilde{\chi}_j(\widetilde{x})\right\|_{\infty} \leqslant M_n$, где M_n не зависит от i;
- 3) существуют $K_n \in B(G)$, $n \in \mathbb{Z}_+$, такие что $\hat{K}_n(i) = \lambda_{in}$ для всех $i \in \mathbb{Z}_+$ и нормы $\|K_n\|_1$ ограничены.

Результаты главы опубликованы в [4].

В заключение автор выражает глубокую благодарность кандидату физико-математических наук Волосивцу Сергею Сергеевичу за научное руководство, постановку задачи и постоянную помощь и поддержку при выполнении данной работы.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

- [1] Агафонова, H. W. Мультипликаторы сходимости по норме рядов по мультипликативным системам / H. Ю. Агафонова, С. С. Волосивец // Mamem. $3amem\kappa u$. -2007. T. 82, N 4. C. 483–494.
- [2] *Агафонова*, *Н. Ю.* О наилучших приближениях функций по мультипликативным системам и свойствах их коэффициентов Фурье / Н. Ю. Агафонова // *Analysis Math.* − 2007. − Т. 33, № 4. − С. 247–262.
- [3] Агафонова, Н. Ю. О равномерной сходимости преобразованных рядов Фурье по мультипликативным системам / Н. Ю. Агафонова // Известия Саратовского университета. Новая серия. Сер. Математика. Механика. Информатика. 2009. Вып. 9, № 1. С. 3–8.
- [4] *Агафонова*, *Н. Ю.* О равномерной сходимости преобразованных рядов Фурье по мультипликативным системам / Н. Ю. Агафонова // *Известия Саратовского университета. Новая серия. Сер. Математика. Механика. Информатика.* 2011. Вып. 11, № 2. С. 3–8.

- [5] Агафонова, Н. Ю. А—суммируемость рядов Фурье по системам характеров / Н. Ю. Агафонова // Современные проблемы теории функций и их приложения: Материалы 15-ой Сарат. зимней школы, посвящ. 125-летию со дня рождения В. В. Голубева и 100-летию СГУ. Саратов: Изд-во Сарат. ун-та, 2010. С. 4—5.
- [6] Агафонова, Н. Ю. Мультипликаторы рядов Фурье из пространств Орлича и Лоренца по мультипликативным системам / Н. Ю. Агафонова // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам: Межвуз. Сб. научн. тр. Саратов: Изд-во Сарат. ун-та, 2010. Вып. 6. С. 3—24.
- [7] *Агафонова, Н. Ю.* О мультипликаторах рядов борелевских мер / Н. Ю. Агафонова // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам: Межвуз. Сб. научн. тр. Саратов: Изд-во Сарат. ун-та, 2007. Вып. 4. С. 3–10.
- [8] Волосивец, С. С. О мультипликаторах равномерной сходимости рядов по мультипликативным системам / С. С. Волосивец, Н. Ю. Агафонова // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам: Межвуз. Сб. научн. тр. Саратов: Изд-во Сарат. ун-та, 2005. Вып. 3. С. 3—23.

Работы [1–4] опубликованы в журналах, включённых в перечень ВАК ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание учёной степени кандидата наук.