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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 
 Актуальность темы диссертации. В последние годы большое вни-
мание исследователей привлекает проблема управления хаосом. Впервые 
этот термин был введен в работе E. Ott, C. Grebogi, J. Yorke (1990), где был 
предложен метод стабилизации неустойчивых периодических орбит сис-
темы с хаотической динамикой путем малых контролирующих воздейст-
вий, что позволяет реализовать устойчивое периодическое поведение в той 
области параметров, где в отсутствие управления динамика является хао-
тической. В настоящее время управление хаосом превратилось в активно 
развивающееся направление нелинейной динамики, и этой проблеме по-
священо множество работ (см., например, монографию1). Среди многочис-
ленных методов управления хаосом наибольшую популярность приобрел 
так называемый метод автосинхронизации запаздывающей обратной свя-
зью (K. Pyragas, 1992). Суть этого метода состоит во введении дополни-
тельной обратной связи (ОС) с временем задержки, примерно равным пе-
риоду движения, которое желательно стабилизировать. Основным досто-
инством метода Пирагаса является его конструктивная простота. Работо-
способность этого метода была подтверждена многочисленными экспери-
ментами. В частности, в литературе описывается его применение в лазе-
рах, газоразрядных трубках, при стабилизации турбулентности в течении 
Тейлора–Куэтта, в электрохимических реакциях, для управления ферро-
магнитным резонансом, а также в биологических системах, например, для 
подавления сердечной аритмии. Однако метод Пирагаса не лишен ряда не-
достатков, основным из которых является низкая эффективность в случае 
стабилизации движения с достаточно малым периодом. В дальнейшем этот 
метод изучался и совершенствовался во многих работах.2

Следует отметить, что сравнительно мало изучено управление хао-
сом в распределенных автоколебательных системах (обзор некоторых ис-
следований можно найти в книге Д.И. Трубецкова и А.Е. Храмова3). В ча-
стности, практически не охваченными являются системы с запаздывающей 
обратной связью, которые играют важную роль в самых разных областях 
физики, таких как радиофизика и электроника, нелинейная оптика, физика 
и техника ускорителей, физика атмосферы, а также в моделях биологии, 
медицины, экономики, экологии и социальных наук. Хорошо известно, что 
подобные системы способны демонстрировать сложное, в том числе, хао-
тическое поведение4. Хотя задача управления хаосом в системах с запаз-

                                                 
1 Kapitaniak T. Controlling chaos: Theoretical and practical methods in non-linear dynamics. London: Academic 
Press, 1996. 196 p. 
2 Just W., Benner H., Schoell E. Control of chaos by time-delayed feedback: A survey of theoretical and experi-
mental aspects // In: B. Kramer (Ed.), Advances in Solid State Physics. Vol. 43, Springer, Berlin, 2003. P. 589. 
3 Трубецков Д.И., Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. Т.2. М.: Нау-
ка. Физматлит, 2004, 648 с. 
4 Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987. 424 с. 
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дыванием рассматривалась ранее5, ,6 7, следует отметить, что эти работы но-
сят в основном математический характер. Они игнорируют специфические 
особенности сложной динамики систем с запаздыванием, а возможность 
практического применения предложенных в них методов для управления 
хаосом в реальных радиофизических системах вызывает вопросы. Кроме 
того, отметим, что основное внимание уделялось вопросам стабилизации 
неустойчивых неподвижных точек. Эта задача важна для ряда приложе-
ний, в частности, для обработки информации с помощью нейронных сетей, 
однако для радиофизики представляет существенно меньший интерес, чем 
задача о стабилизации высокочастотных периодических колебаний. 

Среди автоколебательных систем с запаздыванием особую роль иг-
рают приборы вакуумной сверхвысокочастотной (СВЧ) электроники, в ча-
стности, генераторы на основе таких широко распространенных приборов, 
как пролетные клистроны и лампы бегущей волны (ЛБВ). Для таких сис-
тем весьма актуальной является проблема подавления разного рода пара-
зитных колебаний. Хотя исследования в этом направлении ведутся уже 
много лет, использование для этой цели методов управления хаосом в них 
практически не рассматривалось. Можно упомянуть лишь работу А.М. До-
лова и С.П. Кузнецова, где был предложен способ подавления автомодуля-
ции в лампе обратной волны.8 Метод основан на модуляции тока элек-
тронного пучка продетектированным выходным сигналом, поступающим 
на модулирующий электрод по цепи внешней обратной связи со специаль-
но подобранным временем запаздывания. В отличие от метода Пирагаса, 
время задержки в данном случае определяется не периодом неустойчивого 
движения, а периодом автомодуляции, который существенно больше. Это 
облегчает стабилизацию СВЧ колебаний. 

В целом вопросы управления хаосом в радиофизических системах с 
запаздыванием, в особенности — в приборах микроволновой электроники, 
изучены сравнительно мало. Представляется весьма актуальным предло-
жить методы управления хаосом в подобных системах, что позволило бы 
решить практически важную задачу подавления различных паразитных 
неустойчивостей, приводящих к возникновению автомодуляции, т.е. мно-
гочастотных или хаотических режимов генерации. За счет этого можно 
было бы расширить диапазон параметров, в котором генерируются устой-
чивые режимы одночастотных колебаний, а также повысить выходную 
мощность и КПД генерации в одночастотном режиме. 

Целью диссертационной работы является разработка эффективно-
го способа подавления автомодуляции в радиофизических распределенных 
автоколебательных системах с запаздывающей ОС на основе методики 

                                                 
5 Bunner M.J. // Chaos. 1999. Vol. 9, No. 1. P. 233. 
6 Guan X., Chen C., Peng H., Fan Z. // Int. J. Bifurcation and Chaos. 2003. Vol. 13, No. 1. P. 193. 
7 Guan X., Feng G., Chen C., Chen G. // Physica D. 2007. Vol. 227. P. 36. 
8 Долов А.М., Кузнецов С.П. // ЖТФ. 2003. Т.73. № 8. С. 139. 
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управления хаосом, позволяющего расширить диапазон устойчивости од-
ночастотных режимов и повысить выходную мощность генерации. 

Объект, предмет и методы исследования. Объектом исследования 
являются радиофизические распределенные системы с запаздывающей об-
ратной связью. Конкретно рассматриваются кольцевая автоколебательная 
система типа «усилитель–фильтр–линия задержки» с кубичной нелинейно-
стью, модели автогенераторов СВЧ диапазона на основе двухрезонаторно-
го клистрона и ЛБВ, а также кольцевой оптический резонатор, содержа-
щий среду с кубичной фазовой нелинейностью (система Икеды). Данные 
системы исследуются аналитическими и численными методами. Разрабо-
таны упрощенные модели в виде точечных отображений, для которых по-
лучены аналитические формулы, определяющие границы устойчивости 
стационарных режимов колебаний. Более сложные модели, описывающие-
ся дифференциальными уравнениями с запаздыванием или уравнениями в 
частных производных с граничными условиями, содержащими запаздыва-
ние, исследуются путем компьютерного моделирования. 

Основные положения, выносимые на защиту 
1. Включение в автоколебательную систему с запаздыванием дополни-

тельной цепи обратной связи (ОС), параметры которой подбираются та-
ким образом, что после прохождения двух ветвей цепи ОС компоненты 
сигналов на основной частоте имеют одинаковую фазу, а компоненты 
сигналов на паразитных частотах — противоположную, позволяет по-
давить режимы автомодуляции, включая хаотические со сплошным 
спектром, и стабилизировать одночастотные колебания в широком диа-
пазоне управляющих параметров. 

2. Применение разработанной методики управления хаосом посредством 
дополнительной обратной связи является наиболее эффективным в слу-
чае, когда параметр , имеющий смысл произведения времени запазды-
вания на ширину полосы пропускания системы, достаточно велик 
( ). При этом наибольшее повышение порога автомодуляции на-
блюдается, когда параметр , определяющий отношение амплитуд сиг-
налов в управляющей и основной цепях ОС принимает значения 

. 

γ

3γ ≥
k

0.3 0.4k ÷∼
3. В клистроне-генераторе введение дополнительной цепи запаздывающей 

ОС позволяет в 1.8–2 раза повысить ток пучка, при котором возникает 
автомодуляция, при неизменной глубине ОС. При этом в центре зоны 
генерации максимально достижимая выходная мощность увеличивается 
более чем в 1.5 раза, а КПД снижается в 1.25 раза по сравнению с гене-
ратором с одной цепью ОС. При отстройке фазы управляющей ОС при-
мерно на  от значения, соответствующего центру зоны генерации, 
мощность увеличивается более чем в 3 раза. 

π
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4. В генераторе на основе лампы бегущей волны введение дополнитель-
ной цепи запаздывающей ОС позволяет повысить ток пучка, при кото-
ром возникает автомодуляция, примерно в два раза при неизменной 
глубине ОС. При стабилизации режима генерации основной собствен-
ной моды максимально достижимая выходная мощность увеличивается 
в 1.88 раза, а КПД снижается в 1.25 раза по сравнению с генератором с 
одной цепью ОС. При стабилизации режимов генерации собственных 
мод с более высокими частотами выходная мощность может быть уве-
личена в 3.8 раза, а КПД — в 1.64 раза. 

Научная новизна. В диссертации предложен новый метод подавле-
ния неустойчивостей в распределенных автоколебательных системах с за-
паздыванием, основанный на введении дополнительной цепи запаздываю-
щей обратной связи. Метод существенно отличается от известных конст-
руктивной простотой и применимостью для широкого класса систем раз-
личных диапазонов длин волн, включая микроволновый и оптический. 
Впервые изучено применение разработанного метода для подавления ав-
томодуляции, включая хаотические режимы со сплошным спектром, в раз-
личных радиофизических системах с запаздыванием: генератор с кубичной 
нелинейностью, генераторы на основе двухрезонаторного пролетного 
клистрона и лампы бегущей волны, кольцевой оптический резонатор, со-
держащий среду с кубичной фазовой нелинейностью. Выявлены опти-
мальные параметры, при которых применение метода обеспечивает наи-
большее увеличение выходной мощности и, в ряде случаев, КПД в режиме 
одночастотной генерации по сравнению с традиционными конструкциями, 
содержащими единственную цепь обратной связи. 

Практическая значимость. В диссертации рассматриваются авто-
колебательные системы с запаздыванием, которые находят широкое прак-
тическое применение, в частности, для генерации электромагнитных коле-
баний различных диапазонов длин волн. Развитие разного рода неустойчи-
востей в таких системах приводит к возникновению автомодуляции, что 
ограничивает мощность генерации. Предложенный в диссертации метод 
подавления автомодуляции позволяет улучшить ряд важных для практики 
характеристик: значительно (в 2–3 раза) увеличить диапазон управляющих 
параметров, в котором реализуются устойчивые режимы одночастотной 
генерации, существенно повысить выходную мощность и, в ряде случаев, 
КПД генерации. Интерес для ряда приложений представляет обнаруженная 
возможность переключения между режимами генерации различных собст-
венных мод при варьировании фазы управляющей ОС. Также показана 
возможность использования дополнительной внешней ОС для подавления 
пульсаций частотной зависимости коэффициента усиления ЛБВ–
усилителя, возникающих за счет отражений. 

Результаты диссертации использовались в Саратовском госунивер-
ситете при выполнении НИР, поддержанных грантами РФФИ (№№ 05-02-
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16931, 06-02-16773, 09-02-00707) и аналитической ведомственной целевой 
программы «Развитие научного потенциала высшей школы» 
(№ 2.1.1/1738). 

Результаты диссертации также используются в учебном процессе на 
Факультете нелинейных процессов СГУ при чтении лекционного курса 
«Современные проблемы физики открытых нелинейных систем». 

Личный вклад соискателя. Все основные результаты, включенные 
в диссертацию, получены лично соискателем. Соискателем написаны все 
программы компьютерного моделирования, проведены численные экспе-
рименты, выполнен теоретический анализ упрощенных моделей. Обсуж-
дение и интерпретация результатов осуществлялись совместно с научным 
руководителем. 

Достоверность результатов диссертации обеспечивается использо-
ванием широко апробированных и хорошо зарекомендовавших себя мето-
дов численного моделирования, соответствием результатов теоретического 
анализа и численного моделирования, совпадением результатов, получен-
ных с помощью различных численных методов, воспроизведением в каче-
стве тестовых расчетов достоверных общепризнанных результатов, из-
вестных из литературы. 

Структура и объем работы. Диссертация состоит из Введения, че-
тырех глав, Заключения, двух приложений и списка литературы. Работа 
содержит 141 страницу текста, включая 48 рисунков и графиков, 2 табли-
цы и список литературы из 122 наименований. 

Апробация и публикации. Результаты диссертации неоднократно 
докладывались на ежегодных школах-конференциях «Нелинейные дни в 
Саратове для молодых» (2006–2008), I-IV конференциях молодых ученых 
«Наноэлектроника, нанофотоника и нелинейная физика» (Саратов, 2006-
2009), 13-й Международной школе-конференции «Foundations & Advances 
in Nonlinear Science» (Минск, Беларусь, 2006), Международных школах 
для студентов и молодых ученых по оптике, лазерной физике и биофизике 
Saratov Fall Meeting (Саратов, 2006–2008), XIII и XIV Зимних школах-
семинарах по электронике СВЧ и радиофизике (Саратов, 2006, 2009), VII 
Международной школе «Хаотические автоколебания и образование струк-
тур» (Саратов, 2007), Международной научно-технической конференции 
«Актуальные проблемы электронного приборостроения» (Саратов, 2008), 
Международной школе-семинаре «Статистическая физика и информаци-
онные технологии» StatInfo-2009 (Саратов, 2009). Результаты также обсу-
ждались на объединенных научных семинарах кафедры нелинейной физи-
ки и кафедры электроники, колебаний и волн СГУ и на научном семинаре 
Саратовского филиала ИРЭ РАН. По материалам диссертации опублико-
вано 18 работ, включая 5 статей в журналах, входящих в Перечень веду-
щих рецензируемых научных журналов и изданий, в которых должны быть 
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опубликованы основные научные результаты диссертаций на соискание 
учёной степени доктора и кандидата наук, 4 статьи в других изданиях, 9 
тезисов докладов. Список основных публикаций приведен в конце авторе-
ферата. 

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ 
Во Введении обоснована актуальность темы диссертации, указаны 

ее цели, научная новизна, практическая значимость и сформулированы по-
ложения, выносимые на защиту. 

 
Рис. 1. Схема кольцевого автогенератора с 
запаздыванием с двумя цепями обратной 
связи. 1 — усилитель, 2 — фильтр,
3 — фазовращатели, 4 — линии задержки, 
5 — аттенюаторы. 

В первой главе предлагает-
ся метод управления хаосом при 
помощи дополнительной ОС и де-
монстрируется его применение 
для подавления автомодуляции на 
примере обобщенной модели 
кольцевого автогенератора «уси-
литель–фильтр–линия задержки» с 
кубичной нелинейностью. В п. 1.1 
рассматривается модель автогене-
ратора, приводятся известные из 
литературы основные результаты 
анализа условий самовозбуждения 
и возникновения автомодуляции. 
В п. 1.2 описывается метод управ-

ления хаосом, основанный на введении дополнительной цепи ОС. Схема 
генератора приведена на рис. 1. Генератор состоит из усилителя 1, фильтра 
2 и двух цепей ОС, содержащих фазовращатели 3 и линии задержки 4, ко-
торые позволяют регулировать фазы сигналов ψ1,2 и времена задержки τ1,2, 
соответственно. Кроме того, одна из цепей ОС содержит регулируемый ат-
тенюатор 5, контролирующий относительный уровень мощности сигналов. 
Данная система описывается уравнением 

 ( ) ( ) ( ) ( ) ( )2 2
1 1 1 2 2 21 1 exp 1 expdA A k A A i k A A i

dt τ τ τ τ
⎡ ⎤+ γ = α − − ψ + − ψ
⎣ ⎦

, (1) 

где A — комплексная амплитуда сигнала, Aτ1,2 = A(t−τ1,2), α — параметр 
возбуждения, имеющий смысл произведения коэффициента усиления на 
глубину ОС, γ — параметр диссипации, обратно пропорциональный доб-
ротности фильтра, параметр k характеризует долю мощности сигнала, от-
ветвляемую во вторую цепь ОС.  

При k = 0, т.е., когда управляющая цепь ОС отсутствует, динамика 
данной системы подробно изучена (Н.М. Рыскин, А.М. Шигаев, 2002). 
Возникновение автомодуляции в подобных системах обусловлено наличи-
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ем достаточно крутого падающего участка на амплитудной характеристике 
усилителя (амплитудный механизм автомодуляции). 

Основная идея предлагаемого метода состоит в подборе параметров 
τ1,2 и ψ1,2 таким образом, чтобы компоненты сигналов на основной частоте 
после прохождения двух ветвей цепи ОС поступали бы на вход усилителя 
в фазе, а компоненты сигналов на автомодуляционных частотах — в про-
тивофазе и, таким образом, подавляли бы друг друга. Рассмотрение про-
хождения через цепь ОС модулированного сигнала, в спектре которого 
присутствуют основная частота ω  и паразитные частоты  показыва-
ет, что если выбирать параметры ОС в соответствии с соотношениями 

ω±Ω

 ( )1 2 1 2 2 nψ −ψ −ω τ − τ = π , (2) 

 ( )1 2 2 mΩ τ − τ = π + π , (3) 

сигналы на частотах , проходящие через различные ветви цепи ОС, 
оказываются в противоположных фазах и ослабляются. В то же время, па-
раметры генерируемого сигнала на основной частоте будут точно такими 
же, как в генераторе с одной цепью ОС, т.е. управление является невозму-
щающим. 

ω±Ω

В п. 1.3 развита упрощенная модель генератора в виде четырехмер-
ного точечного отображения 

 ( ) ( ) ( ) ( ) ( )2 2
1 1 1 2 2 21 1 exp 1 expn n n n nA k A A i k A A i− − − −

α ⎡ ⎤= − − ψ + − ψ
⎣ ⎦γ

, (4) 

справедливая в пределе , т.е. когда в полосу пропускания системы 
попадает большое число собственных мод генератора. Для нее получены 
аналитические выражения для границ области одночастотной генерации и 
показано, что максимальное повышение порога автомодуляции достигает-
ся при k = 1/3. При этом мощность генерации может быть повышена в 1.33 
раза по сравнению с системой с одной цепью ОС. 

1γ�

В п. 1.4 анализируется более строгая модель генератора, описываю-
щаяся дифференциальным уравнением с запаздыванием (1). Представлены 
результаты численного моделирования, которые показывают, что имеется 
возможность подавления автомодуляционных режимов, включая хаотиче-
ские, в широком диапазоне параметров. Обнаружено, что применение ме-
тода наиболее эффективно в случае , т.е. как раз в той области пара-
метров, где справедливо описание на основе точечного отображения (4). 
Аналитические результаты для отображения хорошо согласуются с чис-
ленными уже начиная с γ = 3. На рис. 2 приведены зависимости порога ав-
томодуляции от параметра  при различных значениях  (кривые 1–3) и 
соответствующая зависимость для отображения (кривая 4). Также иссле-
дована чувствительность метода к расстройке параметров управляющей 

1γ�

k γ
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ОС. Показано, что предложен-
ный метод управления хаосом 
является достаточно «грубым»: 
при отстройке фазы ψ2 и време-
ни задержки τ2 от оптимальных 
значений в пределах нескольких 
процентов порог автомодуляции 
снижается не более чем на 10%. 

 
 
Рис. 2. Зависимости порога автомодуляции 
от параметра k для уравнения с запаздыва-
нием (1), построенные при τ1 = 1.0, ψ1 = 0 и 
различных значениях γ: 0.3 (1), 1.5 (2), 3.0 
(3). Линией (4) показана граница устойчиво-
сти для отображения (4). Линия (5) соответ-
ствует порогу самовозбуждения. 

В п. 1.5 рассматривается 
возможность подавления режи-
мов гиперхаоса, возникающих в 
окрестности границ зон генера-
ции, где происходит слияние ат-
тракторов, сформировавшихся 
на базе двух различных собст-
венных мод (Кац В.А., Кузнецов 
С.П., 1987; Рыскин Н.М., Шига-
ев А.М., 2002). Показано, что 
подбором параметров управ-
ляющей цепи ОС, можно стаби-
лизировать периодические коле-
бания на базе как одной, так и 

другой моды, т.е. осуществить управляемую мультистабильность. В п. 1.6. 
проводится сравнение предлагаемого метода с другими методами управле-
ния хаосом в системах с запаздыванием, подтверждающее оригинальность 
метода и наличие ряда преимуществ перед известными ранее. 

Вторая глава посвящена изучению подавления автомодуляции в ав-
тогенераторе СВЧ диапазона на основе двухрезонаторного пролетного 
клистрона с помощью метода, предложенного в гл. 1. Ранее была подробно 
изучена сложная динамика клистрона с запаздывающей ОС (Н.М. Рыскин, 
А.М. Шигаев, 2001–2006) на основе математической модели генератора в 
виде системы уравнений с запаздыванием. В п. 2.1 получено обобщение 
этой модели на случай генератора с двумя цепями ОС: 

 ( ) ( ) ( ) ( ) ( )1
1 2 1 21 1 exp expdF F k F i kF i

dt
+ γ = γ − τ − − ψ + τ − ∆τ − ψ⎡ ⎤⎣ ⎦2 , (5)

 ( )2
2 1 1

1

2F i J F
dt F

+ γ = − α 1dF F . (6) 

Здесь F1,2 — безразмерные комплексные амплитуды колебаний в первом и 
втором резонаторах соответственно, J1 — функция Бесселя первого рода, 
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управляющие параметры α, γ, ψ1,2 и k имеют тот же смысл, что и в модели 
генератора с кубичной нелинейностью. 

По аналогии с гл. 1, в п. 2.2 анализируется упрощенная модель на 
основе точечного отображения 

 ( ) ( ) ( ) ( ) ( )1
1 1 1 1 1

1

2 1 exp expn n
n n n

n n

i F FF k J F i kJ F i
F F

−
+ −

−

⎡ ⎤α
= − − − ψ + − ψ⎢ ⎥γ ⎣ ⎦

2 . (7) 

В целом, динамика данной системы аналогична динамике модели с кубич-
ной нелинейностью (4). Максимальный порог автомодуляции наблюдается 
при k = 1/3. Однако необходимо отметить, что параметр α можно изменять, 
варьируя как ток пучка, так и глубину ОС. Если считать, что глубина ОС 
остается неизменной, то ток пучка увеличивается примерно в 1.8 раза, а 
выходная мощность — примерно в 1.5 раза. При этом происходит незначи-
тельное снижение КПД. Если же увеличивается глубина ОС при постоян-
ном токе пучка, эффект увеличения мощности отсутствует.  

 
 
Рис. 3. Зависимости амплитуды колебаний во 
входном (◊) и выходном (○) резонаторах от 
фазы управляющей ОС ψ2 при γ = 1.0, 
α = 5.0, k = 0.33, ∆τ = 3.41, ψ2 = −π/2. 

В п. 2.3 приводятся результаты численного моделирования для сис-
темы дифференциальных уравнений с запаздыванием (5), (6). Как и для 
системы с кубичной нелинейно-
стью, наиболее эффективно ме-
тод работает при больших зна-
чениях . В центре зоны гене-
рации (ψ

γ
1,2 = −π/2) результаты 

хорошо согласуются с моделью 
в виде точечного отображения. 
Далее анализируется поведение 
системы при отстройке от цен-
тра зоны генерации. Обнаруже-
но, что при этом амплитуда 
сигнала во входном резонаторе 
падает, а в выходном — растет 
(рис. 3). Физически такое пове-
дение объясняется тем, что при 
больших α электронный пучок 
сильно перегруппирован, и при 
уменьшении входного сигнала 
амплитуда гармоники тока, возбуждающей выходной резонатор, увеличи-
вается. В результате, при значении фазы ψ2 = π/2 можно еще больше уве-
личить выходную мощность (примерно в три раза при γ = 10.0). 
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В третьей главе применение метода демонстрируется для генерато-
ра на основе лампы бегущей волны. В п. 3.1 приводятся известные из ли-
тературы уравнения нестационарной нелинейной теории ЛБВ 
 F F LIτ ξ+ = − , (8) 

 ( )2 Re expL F iξξθ = − θ⎡ ⎤⎣ ⎦ . (9) 

 
Рис.
ной 
един
ляци

Здесь F — нормированная ам-
плитуда электромагнитной вол-
ны, синхронной с пучком, I — 
комплексная амплитуда первой 
гармоники сгруппированного 
тока, θ — фаза электрона в по-
ле волны, L — нормированная 
длина области взаимодействия, 
ξ и τ — безразмерные коорди-
ната и время. Нижними индек-
сами обозначаются соответст-
вующие частные производные. 
Таким образом, в данном слу-
чае метод подавления автомо-
дуляции применяется к про-
странственно распределенной 

урав
тиро

 

Пара

рассм
часто
учас
и др.
Тем 
зульт
можн
прим
рассм
стаби
ност
0.81 
гаетс

 

 

 4. Зависимости КПД (кривая 1) и выход-
мощности (кривая 2) в относительных 
ицах от параметра . Порог автомоду-L
и в системе с одной цепью ОС L = 3.1.
системе, которая описывается 
нениями в частных производных. Граничное условие для поля, адап-
ванное на случай генератора с двумя цепями ОС, имеет вид 

( ) ( ) ( ) ( )1 2
1 20; 1 1; 1; .i iF k e F ke Fψ ψ⎡ ⎤ξ = τ = ρ − ξ = τ − τ + ξ = τ − τ⎣ ⎦  (10) 

метры ρ, k, τ1,2, ψ1,2 имеют тот же смысл, что и выше.  
В отличие от систем с амплитудным механизмом автомодуляции, 
отренных в гл. 1,2, в ЛБВ–генераторе автомодуляция возникает по 
тному механизму, и ее появление обусловлено наличием вогнутого 
тка на амплитудно-частотной характеристике усилителя (Ю.П. Блиох 
, 1993). Важно, что возникновение автомодуляции происходит жестко. 
не менее, предложенный метод хорошо работает и в этом случае. Ре-
аты численного моделирования, приведенные в п. 3.2, показали воз-
ость повышения тока пучка, при котором возникает автомодуляция, 
ерно в два раза по сравнению с системой с одной цепью ОС. Вначале 
атривается случай, когда параметры подобраны таким образом, что 
лизируется основная собственная мода. При этом выходная мощ-
ь увеличивается в 1.88 раза, а КПД снижается и составляет примерно 
от максимального значения, которое в отсутствие управления дости-
я вблизи порога автомодуляции (см. рис. 4). Еще большего увеличе-
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Рис. 5. Зависимость выходного сигнала ЛБВ–
генератора от времени при установлении коле-
баний в процессе стабилизации высшей собст-
венной моды.

ния мощности можно добить-
ся, если выбрать параметры 
управляющей ОС таким обра-
зом, чтобы стабилизировать 
колебания на одной из более 
высокочастотных мод, кото-
рые более эффективно взаи-
модействуют с пучком за счет 
эффекта нелинейного тормо-
жения. Этот процесс иллюст-
рирует рис. 5, где показан 
пример установления стацио-
нарных колебаний при стаби-
лизации высшей моды. Вид-
но, что вначале практически 
устанавливаются колебания на основной моде, однако затем после дли-
тельного переходного процесса происходит установление высшей моды, 
амплитуда которой значительно больше, чем у основной. Расчеты показы-
вают, что при этом удается повысить мощность в 3.8 раза, а КПД — в 1.64 
раза. 

Как известно, отражения от границ замедляющей системы формиру-
ют паразитную ОС, что может привести к сильной изрезанности частотной 
зависимости коэффициента усиления ЛБВ и даже к самовозбуждению уси-
лителя. Если при этом пренебречь взаимодействием с несинхронной по-
путной волной, система описывается теми же уравнениями, что и в случае 
внешней ОС, с временем запаздывания, которое зависит от разности меж-
ду скоростью пучка и групповой скоростью волны. В п. 3.3 показано, что 
введение дополнительной внешней ОС с таким же временем задержки по-
зволяет сгладить пульсации коэффициента усиления и предотвратить са-
мовозбуждение. При этом необходимо, чтобы глубина внешней ОС равня-
лась модулю коэффициента отражения, а фаза отличалась на π. 

Четвертая глава посвящена анализу подавления автомодуляции в 
кольцевом нелинейном резонаторе, содержащем среду с кубичной фазовой 
нелинейностью. Данная система играет большую роль в нелинейной опти-
ке (K. Ikeda, 1979). В п. 4.1 сформулирована модель системы, которая опи-
сывается нелинейным уравнением Шредингера (НУШ) 

 ( ) 2
0 2t x xxi A VA A A A′′+ + ω +β = 0  (11) 

с запаздывающим граничным условием 
 ( ) ( ) ( ) ( )1 2

10, 1 , ,i ii t
in 2A t A e k e A l t t ke A l t tψ ψω ⎡ ⎤= + ρ − − ∆ + − ∆⎣ ⎦ . (12) 

В уравнениях (11), (12) A(x,t) — медленно меняющаяся комплексная ам-
плитуда сигнала, V — групповая скорость, 0′′ω  — параметр дисперсии 
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Рис. 6. Границы области устойчивости одночастотного режима на плоскости пара-
метров k, Ain для отображения (13) при ψ1,2 = −π/3 (а) и ψ1,2 = 0 (б). Показаны линии 
бифуркации удвоения периода (сплошная кривая), Неймарка–Сакера (пунктир) и ка-
сательной бифуркации (штриховая линия). Кружки — границы устойчивости для 
пространственно-временной модели (11), (12). 

групповой скорости, β — параметр нелинейности, Ain и ω — амплитуда и 
частота внешнего сигнала,  — протяженность нелинейной среды. Смысл 
параметров ρ, k, ∆t

l
1,2  и ψ1,2 тот же, что и ранее. В п. 4.2 развита упрощен-

ная модель в виде четырехмерного точечного отображения 

 ( ) ( ) ( )2 2
1 1 11 exp expn in n n n nA A k A i A i kA i A i+ − 1 2−

⎡ ⎤= + ρ − + ψ + + ψ
⎣ ⎦

, (13) 

являющегося обобщением известного отображения Икеды. Модель спра-
ведлива в случае, когда дисперсия в среде пренебрежимо мала. Проведен 
теоретический анализ устойчивости неподвижных точек отображения (13), 
найдены аналитические выражения, определяющие границы возникнове-
ния различных бифуркаций в пространстве управляющих параметров. 
Также рассмотрен случай малой добротности резонатора, когда можно 
описать систему двумерным отображением и сократить число управляю-
щих параметров. Представлены результаты численного моделирования, 
которые хорошо согласуются с аналитической теорией. В зависимости от 
значений фаз ψ1,2 область устойчивости на плоскости параметров k, Ain 
может иметь различную структуру. В одном случае (рис. 6(а)), максималь-
ный порог автомодуляции определяется точкой пересечения линий бифур-
каций удвоения периода и Неймарка–Сакера при k = 1/3, аналогично ото-
бражениям (4) и (7). При других значениях фаз присущая системе Икеды 
мультистабильность приводит к тому, что верхней границей области ус-
тойчивости служит линия складки (рис. 6(б)). При этом в области 

 можно получить одночастотные колебания в широком диапа-
зоне изменения интенсивности внешнего сигнала. 

0.3 0.4k ÷∼
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 В п. 4.3 рассматривается более строгая пространственно-временная 
распределенная модель системы, описывающаяся уравнениями (11), (12). 
Обнаружено, что в случае слабой дисперсии результаты хорошо согласу-
ются с поведением точечного отображения (13), хотя границы, рассчитан-
ные для пространственно-временной модели, лежат несколько выше 
(рис. 6). В случае сильной дисперсии, когда нестационарное поведение в 
основном обусловлено не неустойчивостью Икеды, а модуляционной не-
устойчивостью, динамика системы является более сложной вследствие 
конкуренции различных собственных мод резонатора. Однако при соот-
ветствующем подборе времени задержки и фазы в управляющей цепи об-
ратной связи удается стабилизировать одночастотные режимы в широкой 
области параметров. В целом, в зависимости от параметров, развитый ме-
тод позволяет увеличить пороговую амплитуду входного сигнала, при ко-
торой возникает автомодуляция, в 1.5–2 раза. 

В Заключении сформулированы основные результаты и выводы 
диссертации. 

В Приложениях 1,2 описываются конечно-разностные методы чис-
ленного моделирования ЛБВ–генератора с запаздыванием и кольцевого 
нелинейного резонатора, соответственно. 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 
 В настоящей диссертационной работе идея управления хаосом ис-
пользуется для подавления паразитных неустойчивостей в радиофизиче-
ских распределенных автоколебательных системах с запаздыванием. 
Предложен способ подавления автомодуляции, основанный на введении 
дополнительной цепи обратной связи (ОС), параметры которой подбира-
ются таким образом, что после прохождения двух ветвей цепи ОС компо-
ненты сигналов на основной частоте имеют одинаковую фазу, а компонен-
ты сигналов на паразитных частотах — противоположную, подавляя таким 
образом друг друга. Сопоставление с известными из литературы методами 
управления хаосом в системах с запаздыванием показывает, что предло-
женный метод является оригинальным и имеет ряд существенных пре-
имуществ. Он отличается конструктивной простотой и может использо-
ваться, вообще говоря, для широкого класса автогенераторов с запаздыва-
нием различных диапазонов длин волн. Метод устойчив к расстройке 
управляющих параметров: изменение фазы и задержки в управляющей це-
пи ОС в пределах нескольких процентов от оптимальных значений приво-
дит к снижению порога автомодуляции не более чем на 10%. 
 Применение метода продемонстрировано на примере широкого кру-
га систем с запаздыванием, в которых автомодуляция возникает по раз-
личным механизмам. Рассмотрены кольцевая автоколебательная система 
типа «усилитель–фильтр–линия задержки» с кубичной нелинейностью, 
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модели автогенераторов СВЧ диапазона на основе двухрезонаторного 
клистрона и ЛБВ, а также кольцевой оптический резонатор, содержащий 
среду с кубичной фазовой нелинейностью (система Икеды). Показана воз-
можность подавления автомодуляции, в том числе, хаотической, включая 
режимы гиперхаоса, которые возникают вблизи границ зон генерации. При 
этом значительно расширяется диапазон параметров, в котором устойчивы 
одночастотные режимы колебаний, и увеличивается мощность одночас-
тотной генерации. 
 Развиты упрощенные модели рассматриваемых систем в виде четы-
рехмерных точечных отображений, для которых найдены аналитические 
выражения, определяющие границы устойчивости одночастотного режима 
на плоскостях управляющих параметров. Обнаружено, что максимальное 
увеличение порога автомодуляции достигается при 1 3k = , где  — пара-
метр, определяющий отношение амплитуд сигналов в управляющей и ос-
новной ветвях цепи ОС. 

k

 Показано, что наибольшее увеличение мощности генерации обеспе-
чивается в случае, когда число мод, попадающих в полосу пропускания 
системы достаточно велико, т.е. , где параметр  имеет смысл произ-
ведения времени задержки на ширину полосы пропускания. В частности, 
для кольцевого автогенератора с кубичной нелинейностью диапазон пара-
метров, в котором стационарный режим является устойчивым, расширяет-
ся примерно в 2.5 раза, а максимальная мощность колебаний увеличивает-
ся примерно на 40%. Для клистрона-генератора в центре зоны генерации 
ток пучка, при котором возникает автомодуляция, увеличивается в 1.8–2 
раза при неизменной глубине ОС. При этом мощность генерации увеличи-
вается в 1.5 раза, а КПД уменьшается в 1.25 раза. При отстройке фазы 
управляющей ОС примерно на 

1γ� γ

π  от значения, соответствующего центру 
зоны генерации, удается увеличить мощность более чем в 3 раза. 

Для ЛБВ–генератора применение развитого метода позволяет повы-
сить ток пучка, при котором возникает автомодуляция, примерно в два 
раза. Когда стабилизируются колебания на основной собственной моде, 
выходная мощность увеличивается в 1.88 раза, а КПД снижается и состав-
ляет примерно 0.81 от максимального значения, которое в отсутствие 
управления достигается вблизи порога автомодуляции. Если же стабили-
зировать одночастотные колебания на собственных модах с более высоким 
частотами, удается повысить выходную мощность в 3.8 раза, а КПД — в 
1.64 раза. Также показана возможность использования дополнительной 
внешней ОС для подавления пульсаций частотной зависимости коэффици-
ента усиления ЛБВ–усилителя, возникающих за счет отражений. 

Следует, однако, заметить, что исследование подавления автомоду-
ляции в генераторах на основе ЛБВ и клистронов проведено для случая, 
когда модуляция по скорости полагается малой, а также не учитываются 
силы пространственного заряда. Таким образом, приведенные выше коли-
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чественные характеристики относятся к случаю, когда КПД генерации 
достаточно мал. 

Установлено, что применение метода позволяет стабилизировать ре-
жимы стационарной генерации на различных собственных модах. При 
этом, изменяя фазу управляющей цепи ОС при неизменных остальных па-
раметрах, можно осуществлять переключения между различными модами, 
т.е. реализовать управляемую мультистабильность. 
 Показана возможность подавления различных неустойчивостей в 
кольцевом резонаторе, содержащем среду с кубичной фазовой нелинейно-
стью. При слабой дисперсии, когда автомодуляция обусловлена неустой-
чивостью Икеды, в зависимости от фазы обратной связи возможны два ти-
па зависимости порога автомодуляции от параметра . В одном случае 
максимальная амплитуда входного сигнала, при которой возникает неус-
тойчивость, определяется точкой пересечения линий бифуркаций удвоения 
периода и Неймарка–Сакера при 

k

1 3k = . В другом случае, когда эти линии 
не пересекаются, границей устойчивости одночастотного режима служит 
линия складки, и в области 0.3 0.4k ÷∼  можно получить одночастотные 
колебания в широком диапазоне изменения интенсивности внешнего сиг-
нала. В целом, в зависимости от параметров, развитый метод позволяет 
увеличить амплитуду входного сигнала, при которой возникает автомоду-
ляция, в 1.5–2 раза. 
 В случае сильной дисперсии, когда динамика системы определяется 
модуляционной неустойчивостью, на стадии автомодуляции происходит 
возбуждение нескольких собственных мод резонатора. В этом случае не-
обходимо подбирать параметры управляющей цепи ОС таким образом, 
чтобы условия подавления приближенно выполнялись для различных па-
разитных мод. При этом также удается повысить пороговое значение ам-
плитуды входного сигнала примерно в два раза. 
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