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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Решение нестационарных задач динамики для
составных конструкций с распределенными параметрами в замкнутой форме
представляет актуальную проблему современной механики. Условия надеж-
ности и экономичности при создании рациональных инженерных конструк-
ций приводят к необходимости проведения динамических исследований на
основе более сложных расчетных моделей при обеспечении высокой точности
получаемых результатов. Актуальным представляется исследование уточнен-
ных моделей по отношению к классической теории стержней, пластин и обо-
лочек. В настоящей работе используется неклассическая модель, основанная
на кинематических гипотезах выдающегося отечественного ученого-механика
С.П. Тимошенко, для исследования недостаточно изученного процесса неста-
ционарного деформирования в пластинах, в том числе и переменного сече-
ния. Проблема разработки и теоретического обоснования новых алгоритмов
динамического расчета таких конструкций, моделируемых в виде систем с
бесконечном числом степеней свободы, и создание на их основе универсаль-
ных программных модулей является актуальной.

Целью работы является изучение нестационарных динамических про-
цессов в упруго закрепленных круглых и прямоугольных пластинах, включая
пластины ступенчато-переменного сечения, определение частот и форм сво-
бодных колебаний на основе построения замкнутых аналитических решений.

Методика исследования. В работе используется вектор-матричная фор-
ма метода конечных интегральных преобразований, особенность которой за-
ключается в том, что в процессе решения определяются все компоненты его
структуры из рассмотрения соответствующих подзадач без какой-либо апри-
орной информации о форме решения.

Научная новизна работы заключается в следующем: указанным ме-
тодом получены точные аналитические решения нестационарных задач для
прямоугольных и круглых пластин типа Тимошенко при наиболее общих гра-
ничных условиях для широкого класса динамических нагрузок. Использован
новый подход исследования в замкнутой форме нестационарных динамиче-
ских задач пластин ступенчатого сечения с конечной сдвиговой жесткостью.
Эффективность предлагаемого решения обеспечивается значительно мень-
шим, по сравнению с методами конечной аппроксимации, порядком разре-
шающей системы уравнений и высокой точностью получения частот и форм
свободных колебаний конструкции.

Практическая ценность и внедрение результатов:

• Получены эффективные расчетные соотношения, позволяющие исследо-
вать напряженно-деформированные состояния пластин Тимошенко при
наиболее общих условиях их опирания и динамического нагружения.

• Полученные в работе замкнутые решения могут быть использованы при
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оценке погрешностей различных приближенных алгоритмов и методов,
при расчете сложных фундаментов, дорожных плит покрытия, перекры-
тий сооружений, подпорных стенок гидротехнических сооружений.

• Результаты работы по договору о творческом содружестве с АО “Проек-
тно-изыскательский институт Самарагидропроект” использованы в со-
ставе технико-экономического обоснования расширения Волжской ГЭС
им. В.И. Ленина. Были выполнены расчеты (в соавторстве с Э.Я. Еле-
ницким) по определению несущей способности пространственного бло-
ка перекрытия здания ГЭС при действии статических и динамических
нагрузок. Ожидаемый экономический эффект 67000 тонн арматурной
стали.

Достоверность полученных результатов исследования обеспечивается
корректностью постановки и строгостью математического метода решения
рассматриваемых начально-краевых задач, сравнением полученных решений
в частных случаях с классическими решениями, а также соответствием ка-
чественных результатов общей физической картине исследуемых процессов.

На защиту выносятся:

• новые точные аналитические решения нестационарных задач для круг-
лой и прямоугольной (в том числе и переменного сечения) пластин при
произвольных динамических воздействиях методом конечных интегра-
льных преобразований для общих граничных условий;

• новая интерпретация метода начальных параметров для получения ана-
литического решения пластин ступенчатого сечения в виде, не содержа-
щем быстро возрастающих и убывающих частей, что позволяет исследо-
вать частотный спектр системы в более широком диапазоне;

• новая форма метода конечных интегральных преобразований, дополнен-
ная операцией суммирования по элементам составной конструкции;

• результаты численного анализа напряженно-деформированного состоя-
ния, спектра частот и форм колебаний составной конструкции.

Апробация работы. Основные положения и работа в целом доклады-
вались и обсуждались на следующих международных, всероссийских, регио-
нальных научных конференциях и симпозиумах, семинарах и школах:

• Научный семинар на кафедре “Математической теории упругости и био-
механики” Саратовского государственного университета под руковод-
ством доктора физико-математических наук, профессора Л.Ю. Коссо-
вича, Саратов, СГУ, 12 ноября 2008 г.

• Научный семинар “Современные проблемы математики и механики” под
руководством доктора физико-математических наук, профессора
Ю.Н. Радаева. Самара, СамГУ, 2005–2008 гг.;
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• Научный семинар “Актуальные проблемы механики, математики и ин-
форматики” под руководством доктора физико-математических наук,
профессора В.А. Ковалева. Москва, Московский городской университет
управления Правительства Москвы, 15 мая 2008 г.;

• Международная научная конференция “Дифференциальные уравнения
и смежные проблемы”. Стерлитамак, МГУ, АН Республики Башкорто-
стан, 24–28 июня 2008 г.;

• Семинар по механике деформируемого твердого тела под руководством
доктора физико-математических наук, профессора Д.Д. Ивлева. Чебок-
сары, Чувашский государственный педагогический университет им.
И.Я. Яковлева, 28 июня 2007 г.;

• 15-я Зимняя школа по механике сплошных сред. Пермь, Институт меха-
ники сплошных сред УрО РАН, 26 февраля – 3 марта 2007 г.;

• Второй Всероссийский симпозиум по прикладной и промышленной мате-
матике “Нелинейное моделирование и управление” (летняя сессия). г. Са-
мара, 1–6 июля 2001 г.;

• Международная конференция “Нелинейные проблемы дифференциаль-
ных уравнений и математической физики”. Нальчик, НАН Украины,
Институт математики, Кабардино-Балкарский госуниверситет, 2–6 июня
1997 г.;

• Шестая межвузовская научная конференция “Математические модели
и краевые задачи”. Инженерная Академия России, Самарский государ-
ственный технический университет. Самара, 29–31 мая 1996 г.;

• Региональные научно-технические конференции “Актуальные проблемы
в строительстве и архитектуре. Образование. Наука. Практика” под ру-
ководством доктора технических, профессора Ю.Э. Сеницкого. Самара,
СамГАСА, 1994–2004 гг.;

Публикации. По теме диссертационной работы опубликовано 19 печат-
ных работ. Работы с соавторами выполнены на паритетных началах.

Структура и объем работы. Диссертационная работа состоит из вве-
дения, четырех глав, заключения и списка литературы. Объем работы — 162
страницы машинописного текста, включая 28 рисунков, 4 таблицы и список
литературы из 236 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность диссертационного исследования,
сформулирована цель работы. Изложены основные положения диссертацион-
ной работы по главам.
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Первая глава представляет обзор и анализ литературы, посвященной
исследованию задач с распределенными параметрами при действии динами-
ческих нагрузок. Обосновывается выбор метода решения рассматриваемых
начально-краевых задач и подчеркивается актуальность настоящего иссле-
дования.

Отмечается, что аналитическому исследованию тонких прямоугольных
пластин посвящено огромное количество работ, начиная с С. Жермен, Г. Кирх-
гофа, Б. Навье, М. Леви, А. Лява. Затем эта проблема была отражена в
трудах таких ученых, как И.Г. Бубнов, В.З. Власов, А.С. Вольмир, Б.Г. Га-
леркин, А.Л. Гольденвейзер, Г. Генки, М. Губер, Д.Д. Ивлев, Ю.Д. Каплу-
нов, В.А. Ковалев, Л.Ю. Коссович, Т. Карман, А.Н. Крылов, С.Г. Лехниц-
кий, Л.С. Лейбензон, В.Б. Лидский, А.В. Манжиров, Р. Миндлин, А. Надаи,
П.Ф. Папкович, Ю.Н. Радаев, Е. Рейснер, С.П. Тимошенко, П.Е. Товстик,
А. и Л. Феппль и многие другие.

С середины XX в. возрос интерес к уточненным теориям пластин, так
как решение ряда задач на основе классических уравнений, связанных с ис-
следованием неустановившихся процессов, приводило к заметным погрешно-
стям в силу их физического и математического несовершенства. Обобщение
классической теории поперечных колебаний стержней, пластин и оболочек,
основанное на учете влияния инерции вращения и деформации поперечного
сдвига, связывают с именем выдающегося ученого-механика С.П. Тимошен-
ко. Он общепризнанно считается автором этой уточненной теории (1916 г.),
хотя учет инерции вращения еще был сделан ранее Дж. Релеем в 1877 г. В
неклассической теории колебаний стержней, пластин и оболочек эффективно
проявил себя метод конечных интегральных преобразований. Структурный
алгоритм этого метода отличается тем, что все составляющие решения нахо-
дятся из рассмотрения соответствующих подзадач без какой-либо первона-
чальной информации о форме этого решения. Достоинством такого подхода
в рассмотренных в диссертации задачах является единая форма представле-
ния замкнутых решений в хорошо разработанных элементарных функциях и
функциях Бесселя.

Во второй главе приводится точное решение динамической задачи для
прямоугольной пластины, лежащей на упругом основании с коэффициентом
постели γ, при наиболее общих (упругих) условиях опирания на двух ее про-
тивоположных краях.

Существенным представляется то, что полученное замкнутое решение по-
строено для произвольных динамических воздействий и в такой общей поста-
новке такая задача ранее не рассматривалась.
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Начально-краевая задача в безразмерной форме имеет следующий вид:

∇2W −
∂αξ

∂ξ
−

∂αη

∂η
− b1

∂2W

∂t2
− γW = −b2q,

b3

(
∂W

∂ξ
− αξ

)
+

∂2αξ

∂ξ2
+ b4

∂2αη

∂ξ∂η
+ b5

∂2αξ

∂η2
−

∂2αξ

∂t2
= 0,

b3

(
∂W

∂η
− αη

)
+

∂2αη

∂η2
+ b4

∂2αξ

∂ξ∂η
+ b5

∂2αη

∂ξ2
−

∂2αη

∂t2
= 0,

(1)

При t = 0 должны выполняться начальные условия

W =
∂W

∂t
= αξ =

∂αξ

∂t
= αη =

∂αη

∂t
= 0. (2)

Граничные условия имеют вид:

при ξ = 0 : W (0, η, t) = 0, αη(0, η, t) = 0,
∂αξ

∂ξ
+ µ

∂αη

∂η
= 0, (3)

при ξ = 1 : W (1, η, t) = 0, αη(1, η, t) = 0,
∂αξ

∂ξ
+ µ

∂αη

∂η
= 0, (4)

при η = 0 : b6

(
∂αη

∂η
+ µ

∂αξ

∂ξ

)
+ γ1αη = 0,

b7

(
∂W

∂η
− αη

)
− γ2W = 0, b8

(
∂αξ

∂η
+

∂αη

∂ξ

)
+ γ3αξ = 0, (5)

при η = ε : −b6

(
∂αη

∂η
+ µ

∂αξ

∂ξ

)
+ γ1αη = 0,

b7

(
∂W

∂η
− αη

)
+ γ2W = 0, −b8

(
∂αξ

∂η
+

∂αη

∂ξ

)
+ γ3αξ = 0. (6)

Граничные условия (3), (4) соответствуют шарнирному опиранию краев
пластины ξ = 0, 1, а условия (5), (6) на краях η = 0, ε — упругому закрепле-
нию относительно углов поворота и прогибов. Соотношения (1)—(6) представ-
ляют математическую формулировку рассматриваемой начально-краевой за-
дачи, в которой W , αξ, αη — прогибы и углы поворота нормали элемента в
плоскости ξζ и ηζ соответственно, ε = b/a, a, b, h — длина, ширина и высота
пластины, bj (j = 1, 2, . . . , 9) — постоянные, приведенные в тексте диссерта-
ции.

При построения общего решения в случае произвольной динамической
нагрузки сначала используем конечное синус- и косинус-интегральное пре-
образование Фурье по переменной ξ, а затем — в пространстве изображений
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к полученной краевой задаче — обобщенное конечное интегральное преобра-
зование по переменной η с компонентами вектор-функции ядра K1(λin, η),
K2(λin, η), K3(λin, η), определяемыми в процессе решения задачи. Такой об-
щий прием позволяет построить решение для наиболее общих (упругих) усло-
вий закрепления краев η = 0, η = ε.

В результате система уравнений (1) переходит в связанную систему диф-
ференциальных уравнений для соответствующих трансформант, а начальные
и граничные условия (2)—(6) будут также выражены через соответствующие
трансформанты и их производные.

Затем на сегменте [0, ε] вводится обобщенное конечное интегральное пре-
образование вида

ϕ(λin, n, t) =

ε∫

0

{f1Ws(n, η, t)K1(λin, η)+

+f2αc(n, η, t)K2(λin, η) + f3αs(n, η, t)K3(λin, η)}dη, (7)

Ws(n, η, t) =

∞∑

i=1

ϕ(λin, n, t)K1(λin, η)

‖ K ‖2
,

αs(n, η, t) =

∞∑

i=1

ϕ(λin, n, t)K3(λin, η)

‖ K ‖2
,

αc(n, η, t) =

∞∑

i=1

ϕ(λin, n, t)K2(λin, η)

‖ K ‖2
.

(8)

Здесь

‖ K ‖2=

ε∫

0

[
f1K

2

1
(λin, η) + f2K

2

2
(λin, η) + f3K

2

3
(λin, η)

]
dη

— квадрат нормы, f1, f2, f3 — весовые коэффициенты.
Выражение (7) представляет собой прямое преобразование, а (8) — форму-

лы обращения, справедливые при выполнении соотношения ортогональности:

ε∫

0

[
f1K1(λin, η)K1(λjn, η) + f2K2(λin, η)K2(λjn, η)+

+ f3K3(λin, η)K3(λjn, η)
]
dη = δj

i ‖K ‖2,

где δj
i — символ Кронекера.
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Использование двух условий структурного алгоритма метода конечных
интегральных преобразований позволяет, с одной стороны, получить счетную
последовательность задач Коши для трансформанты ϕ(λin, n, t)

ϕ̈(λin, n, t) + λ2

inϕ(λin, n, t) = b2b̃1qH(λin, n, t)

(i, n = 1, 2, 3, . . .),
(9)

решение которой, с учетом нулевых начальных условий, записывается в виде
интеграла следующим образом:

ϕ(λin, n, t) =
b2

b1λin

t∫

0

qH(λin, n, τ) sinλin(t − τ)dτ, (10)

а с другой стороны— позволяют найти как значения коэффициентов

f1 = 1, f2 = f3 = b̃1b̃3,

так и сформулировать однородную краевую задачу для компонент ядра ко-
нечного интегрального преобразования и получить граничные условия.

После решения соответствующих дифференциальных уравнений находим
выражение для компонент ядра интегрального преобразования, подстановка
которых в граничные условия приводит к однородной системе алгебраиче-
ских уравнений относительно произвольных постоянных. Это позволяет по-
лучить трансцендентное уравнение для определения безразмерных собствен-
ных частот колебаний пластины λin

det ‖Akm‖ = 0 (k, m = 1, 2, . . . , 6).

Применяя теперь к выражению трансформанты (10) последовательно фор-
мулы обращения конечного интегрального преобразования (8), а также синус-
и косинус-преобразований Фурье, получаем общие выражения для безраз-
мерных динамических прогибов W (ξ, η, t) и соответствующих углов поворо-
та нормали αξ(ξ, η, t), αη(ξ, η, t) пластины, справедливых для произвольной
динамической нагрузки q(ξ, η, t):

W (ξ, η, t) = 2

∞∑

i=1

∞∑

n=1

ϕ(λin, n, t)K1(λin, η) sinnπξ

‖K‖2
,

αξ(ξ, η, t) =
∞∑

n=0

∞∑

i=1

ϕ(λin, n, t)K2(λin, η) cosnπξ

Ωn‖K‖2
, Ωn =

{
1 при n = 0,

1/2 при n 6= 0,

αη(ξ, η, t) = 2

∞∑

i=1

∞∑

n=1

ϕ(λin, n, t)K3(λin, η) sinnπξ

‖K‖2
.
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В третьей главе рассматривается важная с теоретической и практиче-
ской точек зрения динамическая задача, когда конструкция имеет перемен-
ную толщину, изменяющуюся непрерывно или ступенчато. При этом средин-
ные плоскости участков пластины могут быть смещены относительно друг
друга.

Аналитическое решение построено путем применения метода начальных
параметров (МНП) в сочетании с методом конечных интегральных преобра-
зований. В отличие от традиционной схемы применения МНП (когда началь-
ные параметры имеют физический смысл перемещений и усилий), здесь в
качестве последних используются произвольные константы одного из участ-
ков (например, первого) плиты ступенчато-переменной толщины. Примене-
ние такого подхода не приводит к появлению в решении функций, имеющих
быстро возрастающие и быстро убывающие составляющие. В результате от-
падает необходимость в ортогонализации решения.

В качестве примера рассмотрена плита ступенчатого сечения, состоящая
из n элементов и имеющая шарнирное опирание на краях x = 0, l и произ-
вольное — на гранях y = 0, L (рис. 1, a).

Рис. 1. a) прямоугольная плита ступенчато-переменной толщины, b) сопряжение элемен-
тов на границе участков

Конструкция лежит на упругом основании и загружена произвольны-

ми динамическими нагрузками
−→
P (x, y, t) (j = 1, 2, . . . , n). Напряженно-

деформированное состояние участков плиты определяется следующими век-
торами:

~Dj(x, y, t) = [Uj, Vj, Wj, αxj, αyj]
T ,

~Fj(x, y, t) = [Nxj, Sj, Qxj,−Mxj,−Myj]
T ,

(11)

~Λj(x, y, t) = [ ~Dj, ~Fj]
T (j = 1, 2, . . . , n), (12)

где ~Dj, ~Fj — соответственно вектор-функции перемещений и усилий, отнесен-
ных к срединной поверхности j-го участка, индекс T означает транспони-
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рование матриц. Математическая формулировка задачи для составной кон-
струкции при нулевых начальных условиях в стандартной форме имеет вид:

(Lj + Gj∂
2/∂t2) ~Dj(x, y, t) = ~Pj(x, y, t), (13)

~Dj(x, y, 0) = 0, ∂ ~Dj(x, y, t)/∂t
∣∣
t=0

= 0, (14)

~Λj−1(x, aj−1, t) = Bj
~Λj(x, 0, t) (j = 2, 3, . . . , n), (15)

где Lj — матрица дифференциальных операторов, Gj — диагональная матри-
ца инерционных коэффициентов. Равенства (15) представляют кинематиче-
ские и статические условия сопряжения смежных элементов (рис. 1, b), вза-
имное смещение ej которых учитывается матрицей Bj.

Для замкнутой формулировки задачи к соотношениям (13)–(15) необхо-
димо добавить условия, соответствующие конкретным способам закрепления
продольных и поперечных ребер плиты (x = 0, l; y = 0, L).

Принятые условия шарнирного опирания на краях x = 0, l позволяют
использовать синус- и косинус-преобразования Фурье по переменной x:

~Λf
jk(y, t) =

aj∫

0

Φk(x)~Λj(x, y, t)dx, ~Λj = 2

∞∑

k=1

Φk(x)~Λf
jk. (16)

В результате применения преобразования (16) к исходной начально-краевой
задаче, соотношения (12)–(15) принимают вид:

~Λf
jk(y, t) =

[
~Df

jk,
~F f

jk

]T

, (17)

(
Ljk + Gj∂

2/∂t2
)

~Df
jk(y, t) = ~P f

jk(y, t) (j = 1, 2, . . . , n), (18)

~Df
jk(y, 0) = 0, ∂ ~Df

jk(y, t)/∂t
∣∣
t=0

= 0, (19)

~Λf
j−1,k(aj−1, t) = Bj

~Λf
jk(0, t) (j = 2, 3, . . . , n), (20)

~P f
jk(y, t) =

l∫

0

Φk(x)~Pj(x, y, t)dx.

Аналогичная процедура должна быть применена также для соответству-
ющих граничных условий на ребрах y = a0 для первого участка, y = an для
последнего участка конструкции.

С целью разделения переменных задачи (18)—(20) введем на сегментах
[0, aj] конечное интегральное преобразование по переменной y, дополненное
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операцией суммирования по элементам системы, что является новым в его
структуре:

ϕ(λki, t) =

n∑

j=1

aj∫

0

~̃
D

T

jki(λki, y)Gj
~Df

jk(y, t)dy, (21)

~Λjk(y, t) =

∞∑

i=1

ϕ(λki, t)
~̃
Λjki(λki, y)‖Zki‖

−2. (22)

Здесь (21) — прямое преобразование, (22)— формула обращения, справед-
ливая при выполнении обобщенного условия ортогональности

n∑

j=1

aj∫

0

~̃
Λ

T

jki(λki, y)Gj
~̃
Λjkm(λmk, y)dy =

{
‖Zik‖

−2, при i = m,

0, при i 6= m,

где
~̃
Λjkm(λmk, y) — вектор-функция форм перемещений и усилий, соответству-

ющих i-му тону собственных колебаний системы.
Применим преобразование (21) к уравнениям (18) и начальным услови-

ям (19). После выполнения соответствующих преобразований получим тож-
дество Лагранжа для самосопряженных операторов Ljk:

n∑

j=1

aj∫

0

~̃
D

T

jkiLjk
~Df

jkdy = Rki −
n∑

j=1

aj∫

0

(
~Df

jk

)T

Ljk
~̃
Djkidy, (23)

где Rki — внеинтегральные члены.
Использование двух условий структурного метода конечных интеграль-

ных преобразований
Rki = 0, (24)

n∑

j=1

aj∫

0

(
~Df

jk

)T

Ljk
~̃
Djkidy = −λ2

kiϕ(λki, t), (25)

представляющие равенство нулю внеинтегральных членов и операционное
свойство, позволяют получить уравнения для нахождения трансформанты

ϕ̈ki(t) + λ2

kiϕki(t) = pki(t) (i = 1,∞), (26)

которое представляет, с учетом начальных условий счетную последователь-
ность задач Коши для каждого тона колебаний, решение которой записыва-
ется в виде интеграла (12).
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Преобразуя выражение для внеинтегральных членов (24) с учетом зави-
симости (20) и (15) приходим к выражениям

~̃
Λj−1,ki(aj−1) = Bj

~̃
Λjki(0) (j = 2, 3, . . . , n). (27)

Полученные равенства (27) являются инвариантными по отношению к ис-
ходным краевым условиям (15) и обеспечивают обобщенную ортогональность
разложения (22).

Использование второго условия структурного метода конечных интеграль-
ных преобразований (25) позволяет получить дифференциальные уравнения
для форм колебаний системы:

n∑

j=1

aj∫

0

( ~Df
jk)

T (Ljk − λ2

kiGj)
~̃
Djkidy = 0. (28)

Из условия нетривиальности решения (~Df
jk 6= 0) приходим к следующим

равенствам:

(Ljk − λ2

kiGj)
~̃
Djkidy = 0 (j = 1, 2, . . . , n). (29)

Таким образом, дифференциальные уравнения (29) совместно с гранич-
ными условиями (27) и представляют ядровую задачу по определению соб-
ственных функций разложения (22).

Интегралы уравнений (29) могут быть представлены в матричной форме:

~̃
Λjki = Ajki

~Cjki, (30)

где Ajki — матрица общих решений однородных уравнений (29), ~Cjki — вектор-
столбец произвольных постоянных.

Подставляя (30) в (27) и выполняя стандартные процедуры метода на-

чальных параметров, выражаем искомые векторы ~Cjki произвольного j-го
элемента плиты через аналогичный вектор первого участка:

~Cjki =

{
2∏

m=j

[BmAmki(0)]−1Am−1,ki(am−1)

}
~C1ki (m = j, j − 1, . . . , 2). (31)

Заметим, что при наличии соотношения (31), достаточно сформулировать
краевые условия на границах плиты (y = 0 при j = 1, y = an при j = n), что
соответствует десяти граничным условиям задачи и обеспечивает замкнутую
форму ее решения.

В качестве примера произведен расчет фундаментной части водонапор-
ной плотины ГЭС при действии гидравлического удара (рис. 1, a). Нагрузка
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~Pj(x, y, t) внезапно приложена в момент времени t = 0 перпендикулярно ко
всей поверхности фундамента и остается в дальнейшем постоянной и рав-
ной P0. Расчеты выполнены при следующих исходных данных: L = 10м,
a1 = a4 = 4м, a2 = 3м, a3 = 2м, δ1 = δ4 = 2м, δ2 = 1.4м, δ3 = 1м,
E = 2, 7 · 104МПа, µ = 0, 16, P0 = 0, 1МПа, γ̃ = 28МПа/м.

На рис. 2 приведены эпюры перемещений и усилий в срединных плоско-
стях элементов в сечении y1 = L/2 при t1 = 0, 01 c. Как и следовало ожидать,
функции U и Mx имеют разрывы на границах участков в соответствии со сле-
дующими равенствами:

Uj−1(aj−1, y1, t1) − Uj(0, y1, t1) = −ejαxj(0, y1, t1),

Mx,j−1(aj−1, y1, t1) − Mxj(0, y1, t1) = −ejNxj(0, y1, t1).

Рис. 2. Эпюры перемещений и усилий фундамента плиты плотины ГЭС

Характерной особенностью полученных результатов является наличие про-
дольных усилий при действии на конструкцию поперечных нагрузок. Так,
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например, в рассматриваемом сечении y1 большая часть фундамента являет-
ся внецентренно растянутой, причем максимальные растягивающие усилия
возникают в ослабленной части конструкции (участок 3). Последнее обстоя-
тельство особенно важно при проектировании железобетонных сооружений,
при расчете сложных фундаментов, дорожных плит покрытия, подпорных
стен гидротехнических сооружений.

В работе рассмотрены примеры, которые позволяют проанализировать
отдельно влияние эксцентриситетов ступенчатых пластин на жесткостные
свойства системы и оценить вклад мембранного состояния. Обнаружено вли-
яние арочного эффекта на частоту основного тона несимметричной конструк-
ции, исследовано влияние тангенциальных сил инерций на значения первых
частот форм колебания конструкций, при этом сам спектр становится более
плотным.

В четвертой главе рассматривается неосесимметричная задача динами-
ки для упруго закрепленной относительно углов поворота и линейных сме-
щений круглой пластины Тимошенко, подверженной действию произвольной
нормальной к ее поверхности нагрузки. Система трех дифференциальных
уравнений движения составлена относительно нормального перемещения и
двух углов поворота поперечных сечений пластины. К полученным линей-
ным уравнениям в частных производных второго порядка с переменными
коэффициентами добавлена система краевых условий, соответствующая со-
стоянию пластины в начальный момент времени и схеме закрепления на кон-
туре: шесть начальных условий, шесть условий периодичности, три условия
ограниченности(регулярности решения) в центре пластины и три условия на
контуре, связывающие через коэффициенты жесткости γ1, γ2, γ3 моменты с
углами поворота, а поперечные силы с прогибами.

Решение полученной начально-краевой задачи осуществляется также, как
это описано во второй главе. В результате общие решения полученных урав-
нений выражаются в обычных и модифицированных функциях Бесселя. Из
условия нетривиальности решений получается трансцендентное уравнение
для определения собственных значений и связанных с ними круговых частот
свободных колебаний пластины.

Выражения для прогибов и углов поворота, представляющие общее реше-
ние исследуемой динамической задачи в виде двойных рядов, составляются
путем последовательного применения к трансформанте формул обращения
конечного интегрального преобразования и преобразования Фурье. Расчет-
ные соотношения для внутренних усилий определяются в результате диффе-
ренцирования построенных разложений. В работе указана процедура полу-
чения частных решений из полученного общего решения, справедливых для
идеализированных схем опирания. В качестве примера определена реакция
системы от сосредоточенного импульсного воздействия.

В работе исследовано влияние относительной толщины круглой пластины
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на изменение частот свободных осесимметричных колебаний (рис. 3). Пунк-
тирные линии соответствуют классической теории, а сплошные — уточнен-
ной. Для малых относительных толщин поправка Рэлея почти не оказывает
существенного значения на первые частоты колебаний пластины. Более то-
го, из сопоставления соответствующих кривых следует, что влияние инерции
вращения является не существенным для первых двух тонов ее колебаний λ1

и λ2 во всем рассмотренном диапазоне толщин 0.05 ≤ h/R ≤ 0.3.
Следует обратить внимание на то, что начиная с пятого тона и выше,

частотные кривые, обозначенные на графике сплошными линиями, при уве-
личении относительной толщины, начиная с некоторых значений h/R имеют
тенденцию к снижению.

Сопоставление частотных кривых, полученных с учетом и без учета по-
правки Рэлея выявляет причину ранее необъясненного эффекта понижения
частот при увеличении относительной толщины пластины. Действительно,
рост этого фактора при увеличении толщины h/R приводит к доминирую-
щему влиянию сил инерции, возникающих вследствие поворотов нормалей
сечений, что и проявляется в значительном уменьшении частот колебаний.

На рис. 4 представлены формы колебаний Wmn круглой пластины при
шарнирном закреплении и указаны соответствующие им собственные значе-
ния.

Рис. 3. Зависимость началь-
ных тонов колебаний круг-
лой пластины от их относи-
тельной толщины

Рис. 4. Формы колебаний W
mn

круглой пластины при
шарнирном опирании
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ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1) Получены аналитические решения нестационарных задач упруго закреп-
ленных прямоугольных и круговых пластин Тимошенко при достаточно
общих условиях закрепления и динамического загружения.

2) Предложена универсальная, обладающая высокой точностью, методика
расчета круглых и прямоугольных (в том числе переменного сечения)
пластин с конечной сдвиговой жесткостью для широкого класса неста-
ционарных динамических воздействий и произвольных условий закреп-
ления на контуре.

3) Интегрирование начально-краевой задачи для пластин переменного се-
чения, возможно, путем применения метода конечных интегральных пре-
образований, включающего дополнительную операцию суммирования по
элементам системы, что обеспечивает ортогональность получаемых раз-
ложений.

4) Выявлен эффект значительного повышения частоты основного тона ко-
лебаний плиты с несимметричным сечением, по сравнению с аналогич-
ной конструкцией, имеющей симметричный профиль. Обнаруженная осо-
бенность является проявлением широко известного арочного эффекта,
учет которого требуется нормативными документами (СНиП).

5) Принятая форма условий сопряжения элементов пластины сохраняет
на границах участков гипотезу плоских сечений, хотя в действительно-
сти эти сечения искривляются. Математическое моделирование показа-
ло, что результаты, полученные на основе приведенной методики, дают
оценку сверху в части определения частот и внутренних усилий, и оцен-
ку снизу в части определения перемещений конструкций. С инженерной
точки зрения такой подход является оправданным.

6) Разработанная методика и программное обеспечение позволило произ-
вести расчет и анализ напряженно-деформированного состояния допол-
нительной секции расширяемой части плотины Волжской ГЭС при раз-
личных режимах ее эксплуатации. При исследовании наиболее небла-
гоприятного расчетного случая для всего блока плотины в целом было
показано, что картина распределения изгибающих моментов в этом слу-
чае приводит к появлению перерезывающих усилий высокой интенсив-
ности. Выявлены зоны с растягивающими усилиями, которые следует
учитывать при проектировании железобетонных конструкций плотины.
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