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Общая характеристика работы

Актуальность темы. Многие вопросы построения и исследова-

ния математических моделей физических явлений приводят к задачам

спектрального анализа самосопряженных и несамосопряженных опера-

торов, т.е. исследованию спектра и разложению заданной функции в ряд

по собственным и присоединенным функциям (в дальнейшем с.п.ф.) опе-

ратора. В связи с развитием квантовой механики, при решении многих

задач которой спектральный анализ является основным математическим

аппаратом, в последние десятилетия интерес к спектральной теории ве-

лик, и в ее развитии достигнуты значительные успехи.

Большое внимание в спектральной теории уделяется вопросам рав-

носходимости разложений по с.п.ф. операторов и по известным системам

функций. Начало исследований по равносходимости было положено в ра-

ботах В.А. Стеклова, Е. Гобсона А. Хаара для случая дифференциаль-

ного оператора Штурма–Лиувилля; а также Я.Д. Тамаркина, М. Стоу-

на для дифференциального оператора произвольного порядка с произ-

вольными краевыми условиями (на базе асимптотических формул для

собственных значений и собственных функций, полученных Дж. Бирк-

гофом). Большой в клад в развитие этих вопросов внесли отечественные

математики В.А. Ильин, А.М. Седлецкий, А.П. Хромов, А.А. Шкаликов

и др.

Данная работе также посвящена исследованию равносходимости

разложений по с.п.ф. (с тригонометрическим рядом), а также исследу-

ются равномерная сходимость разложений по с.п.ф. к разлагаемой функ-

ции (аналог теоремы Жордана–Дирихле из теории тригонометрических
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рядов) и вопросы сходимости средних Рисса вида1, 2

− 1

2πi

∫
|λ|=r

g (λ, r) Rλf dλ, (1)

(где Rλf – резольвента рассматриваемого оператора, r такие, что на

окружности |λ| = r нет собственных значений рассматриваемого опера-

тора), которые обобщают рассматриваемые М. Стоуном средние Рисса

спектральных разложений

− 1

2πi

∫
|λ|=r

(
1− λ4

r4

)ζ

Rλf dλ, (ζ > 0) .

В настоящей диссертационной работе рассматривается оператор L,

порожденный функционально-дифференциальным выражением

l(y) = βy′(x) + y′(1− x) + p1(x)y(x) + p2(x)y(1− x), x ∈ [0, 1], (2)

где β2 6= 1, pj(x) ∈ C1[0, 1] (j = 1, 2) , и интегральным граничным усло-

вием

U(y) =

1∫
0

p(t) y(t) dt = 0, p(t) =
k(t)

tα(1− t)α
, (3)

где 0 < α < 1, k(t) ∈ C[0, 1] ∩ V [0, 1] 3, и удовлетворяет

(
k2(0)− γ2k2(1)

) (
k2(1)− γ2k2(0)

)
6= 0, γ = β −

√
β2 − 1.

1Гуревич А.П. Суммируемость по Риссу разложений спектральных разложений одного класса

интегральных операторов [Текст] / А.П. Гуревич, А.П. Хромов // Дифференц. уравнения. – 2001.

– Т. 37, № 6. – С. 809-814.
2Гуревич А.П. Суммируемость по Риссу разложений по собственным функциям интегральных

операторов [Текст] / А.П. Гуревич, А.П. Хромов // Известия ВУЗов. Сер. Математика. – 2003. –

№ 2(489). – С. 24-35.
3Здесь и в дальнейшем запись k(t) ∈ C[0, 1] ∩ V [0, 1] означает, что функция k(t) непрерывна на

[0, 1] и является на этом отрезке функцией ограниченной вариации.
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Оператор (2) с общим краевым условием U(y) = 0 относится к клас-

су функционально-дифференциальных операторов с инволюцией ϑ(x) =

= 1 − x, которая порождает оператор отражения Sy(x) = y(1 − x).

Операторы, содержащие оператор отражения, имеют давнюю историю

и интенсивно исследуются в настоящее время (Ch. Babbage, Ch. Dunkl,

А.А. Андреев, С.С. Платонов и др.) Наиболее полно эти операторы, воз-

никающие в различных спектральных задачах (в частности, при изуче-

нии разложений по с.п.ф. интегральных операторов, ядра которых име-

ют разрывы на диагоналях и кодиагоналях4,5 ), изучены А.П. Хромовым

и его учениками.

Рассматриваемый функционально-дифференциальный оператор (2)

замечателен своими свойствами: выступает как обобщение квадратно-

го корня из оператора y′′(x) (главная часть рассматриваемого операто-

ра l0 (y) = βy′(x) + y′(1 − x) обладает тем свойством что l0 (l0(y)) =

=
(
β2 − 1

)
y′′(x)); другое достоинство рассматриваемого оператора со-

стоит в том, что он представляет собой интересный частный случай си-

стемы Дирака.

Граничное условие (3) было впервые введено и изучено А.М. Сед-

лецким 6. А.М. Седлецкий рассматривал разложения суммируемой функ-

ции в ряд Фурье по системе EΛ =
{{

xkeiλnx
}mn−1

k=0

}∞

n=1
, где Λ = {λn}∞n=1 –

занумерованная в порядке неубывания модулей последовательность кор-
4Хромов А.П. Об обращении интегральных операторов с ядрами, разрывными на диагоналях

[Текст] / А.П. Хромов // Матем. заметки. – 1998. – Т. 64, № 6. – С. 932-942.
5Корнев В.В О равносходимости разложений по собственным функциям интегральных операто-

ров с ядрами, допускающими разрывы производных на диагоналях [Текст] / В.В. Корнев, А.П. Хро-

мов // Матем. сб. – 2001. – Т. 192, № 10. – С. 33-50.
6Седлецкий А.М. О равносходимости и равносумммируемости негармонических разложений Фу-

рье с обычными тригонометрическими рядами [Текст] / А.М. Седлецкий // Матем. заметки. – 1975. –

T. 18. – № 1. – С. 9-17.
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ней целой функции L(z) =
a∫

−a

eiztdσ(t), mn – кратность λn. Порождающая

мера dσ(t) имеет вид

dσ(t) =
k(t) dt

(a− |t|)α , dσ(t) =
k(t) dt

(a2 − t2)α ,

α ∈ (0, 1), var k(t) < ∞, k (a− 0) 6= 0, k (−a + 0) 6= 0. Ранее в литера-

туре этот случай не рассматривался, его исследование связано с преодо-

лением значительных трудностей. С точки зрения спектральной теории

операторов А.М. Седлецким была рассмотрена задача разложения функ-

ции из L1 [−a, a] в ряд Фурье по с.п.ф. оператора дифференцирования

с граничным условием
a∫

−a

y(x) dσ(x) = 0. Граничное условие (3) заменой

τ = 1/2− t приводится к виду, рассматриваемому А.М. Седлецким.

А.П. Хромовым7 был изучен оператор (2),(3) при p1 (x) ≡ p2 (x) ≡

≡ 0. Для него был получен аналог теоремы Жордана–Дирихле из теории

тригонометрических рядов. Оказалось возможным добавить потенциа-

лы (функции pj(x), j = 1, 2), которые создают значительные трудности

при изучении сходимости разложений по с.п.ф.

Цель работы состоит в том, чтобы для функционально-диффе-

ренциального оператора (2) с интегральным граничным условием (3), ве-

совая функция которого имеет степенную особенность, доказать теорему

равносходимости разложений по с.п.ф. и в обычный тригонометрический

ряд Фурье, получить аналог теоремы Жордана–Дирихле и исследовать

суммируемость обобщенных средних Рисса этого оператора.

Методы исследования. Основной метод, применяемый в рабо-

те, – это метод Коши–Пуанкаре интегрирования резольвенты рассматри-

ваемого оператора по расширяющимся контурам в комплексной плоско-
7Хромов А.П. Об аналоге теоремы Жордана–Дирихле для разложений по собственным функ-

циям дифференциально-разностного оператора с нтегральным граничным условием [Текст] /

А.П. Хромов // Докл. PAEН. – 2004. – № 4. – С. 80-87.
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сти спектрального параметра. При этом широко используются результа-

ты из теории функций вещественной и комплексной переменной, функ-

ционального анализа.

Научная новизна. Основные результаты работы являются новы-

ми и состоят в следующем:

1) Сформулирована и доказана теорема равносходимости разло-

жений произвольной суммируемой функции по с.п.ф. функционально-

дифференциального оператора с интегральным граничным условием, ве-

совая функция в котором имеет степенную особенность, и разложений

в тригонометрический ряд Фурье (внутри отрезка).

2) Получен аналог теоремы Жордана–Дирихле равномерной схо-

димости (на всем отрезке) разложений по с.п.ф. функционально-диффе-

ренциального оператора со степенной особенностью в граничном условии

к разлагаемой функции.

3) Найдены условия на функцию f(x), обеспечивающие равномер-

ную сходимость к ней (на всем отрезке) обобщенных средних Рисса функ-

ционально-дифференциального оператора с интегральным граничным

условием, весовая функция в котором имеет степенную особенность.

Практическая и теоретическая ценность. Работа носит тео-

ретический характер. Полученные результаты могут найти применения

в спектральной теории несамосопряженных операторов, при рассмотре-

нии граничных условий со степенными особенностями.

Апробация работы. Результаты исследований докладывались и

обсуждались на объединенном научном семинаре математических ка-

федр СГУ (под руководством профессора А.П. Хромова), на Воронеж-

ской зимней математической школе "Современные методы теории функ-

ций и смежные проблемы" (Воронеж, 2005), на Воронежских весенних

7



математических школах "Понтрягинские чтения – XVI, – XIX" (Воро-

неж, 2005, 2008), на 13й и 14й Саратовских зимних школах "Современные

проблемы теории функций и их приложения" (Саратов, 2006, 2008), на

апрельских конференциях сотрудников механико-математического фа-

культета СГУ "Актуальные проблемы математики и механики" (Сара-

тов, 2005, 2006, 2007, 2008).

Публикации. Основные результаты исследований опубликованы

в 7 научных работах [1]–[7]. Среди них 1 статья в научном журнале [6],

2 статьи в сборниках научных трудов [3], [5] и 4 тезиса докладов на

международных конференциях [1], [2], [4], [7]. 6 работ опубликованы без

соавторов. В статье [6] результаты каждого автора имеют свой пункт и

не перемешиваются, в диссертацию вошли только результаты, принад-

лежащие диссертанту. Работа [6] соответствует списку ВАК РФ.

Структура и объем диссертации. Диссертация состоит из вве-

дения, четырех глав и списка литературы. Первая и вторая главы раз-

делены на три и два параграфа соответственно. В каждой главе своя

нумерация параграфов, определений, лемм, теорем и формул. Общий

объем диссертации 117 страниц, из которых 6 страниц занимает список

литературы, состоящий из 54 наименований.

Содержание работы

Во введении обосновывается актуальность темы, обозначаются

направления и методы исследования, приводится обзор результатов по

исследуемой теме, описывается структура и краткое содержание основ-

ных этапов работы.

Первая глава диссертационной работы посвящена рассмотрению

резольвенты оператора L, порождаемого функционально-дифференци-

альным выражением (2) и интегральным граничным условием (3).
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В параграфе 1.1 нахождение резольвенты оператора L, скаляр-

ной функции Rλf = (L− λE)−1 f (E – единичный оператор, λ – ком-

плексный параметр), сводится к решению краевой задачи в пространстве

вектор-функций размерности два:

Bu′(x) + P (x)u(x) = λu(x) + F (x), x ∈ [0, 1],

Ũ(u) =
1∫
0

N (τ) u (τ) dτ = 0,
(4)

где u (x) = (u1 (x) , u2 (x))T (T – знак транспонирования), B =

β −1

1 −β

 ,

P (x) =

 p1 (x) p2 (x)

p2 (1− x) p1 (1− x)

 , F (x) = (f (x) , f (1− x))T , N (τ) =

= diag (p (τ) , p (1− τ)) . Система (4) есть система Дирака частного вида.

Лемма 1.1. Если λ таково, что Rλf существует, то u (x) =

= (u1 (x) , u2 (x))T , где u1 (x) = Rλf, u2 (x) = u1 (1− x) , удовлетворяет

системе (4). Обратно: если u (x) удовлетворяет (4) и соответству-

ющая однородная краевая задача имеет только тривиальное решение,

то Rλf существует и Rλf = u1 (x) , u2 (x) = u1 (1− x) .

Далее проводится диагонализация матрицы B и преобразование

u(x) = Qv(x), приводящее краевую задачу (4) к виду

v′(x) + P̃ (x)v(x) = λDv(x) + F̃ (x), Ũ(Qv) = 0,

где P̃ (x) = DQ−1P (x)Q, F̃ (x) = DQ−1F (x), Q =

1 γ

γ 1

 , D = diag (ω,−ω) ,

ω = 1√
β2−1

. Затем проводится преобразование H (x, λ) = H0(x)+ 1
λH1(x),

H0(x) = diag (h11 (x) , h22 (x)) , H1(x) =

 0 h12(x)

h21(x) 0

 – кодиагональ-

ная матрица, hjj (x) = exp

(
−

x∫
0

pjj (t) dt

)
(j = 1, 2), h12(x) = 1

2ωp12(x) ·

9



· h22(x), h21(x) = − 1
2ωp21(x)h11(x), pij (x) (i, j = 1, 2) – элементы мат-

рицы P̃ (x). Данное преобразование хорошо известно (для дифферен-

циальных уравнений 8 и для систем Дирака 9). После преобразования

v(x) = H (x, λ) w(x) краевая задача принимает вид

w′(x) + Pλ(x)w(x) = λDw(x) + Fλ(x), Uλ (w) = 0,

где Pλ(x) = 1
λH−1 (x, λ)

[
H ′

1(x) + P̃ (x)H1(x)
]
, Fλ(x) = H−1 (x, λ) F̃ (x),

Uλ (w) = Ũ (QH (x, λ) w) . Заметим, что элементы матрицы Pλ(x) до-

пускают оценку O( 1
λ), что важно при исследовании асимптотического

поведения решения краевой задачи.

Далее, в рассмотрение вводится вспомогательная краевая задача

z′(x) = λDz(x) + Φ(x), x ∈ [0, 1], Uλ (z) = 0, (5)

где z(x) = (z1(x), z2(x))T , Φ(x) = (ϕ1(x), ϕ2(x))T , ϕj(x) ∈ L1[0, 1] (j = 1, 2).

Пусть λ таково, что обратима матрица ∆(λ) = Uλ (Z) := (Uλ (Z1) , Uλ (Z2)) ,

Zj (x, λ) (j = 1, 2) – столбцы матрицы Z (x, λ) = diag
(
eλωx, e−λωx

)
. Тогда

решение (5) задается формулой:

R1, λΦ =

1∫
0

g0 (x, t, λ) Φ(t) dt−Z (x, λ) ∆−1(λ)Uλ

 1∫
0

g0 (x, t, λ) Φ(t) dt

 ,

где g0 (x, t, λ) = diag (g1 (x, t, λ) , g2 (x, t, λ)) ,

g1 (x, t, λ) =

−ε(t, x)eλω(x−t) при Re λω ≥ 0

ε(x, t)eλω(x−t) при Re λω ≤ 0
,

8Рапопорт И.М. О некоторых асимптотических методах в теории дифференциальных уравнений.

[Текст] / И.М. Рапопорт. – Киев: Изд-во АН УССР, 1954.
9Хромов А.П. О равносходимости разложений по собственным функциям интегральных опера-

торов с переменными пределами интегрирования [Текст] / А.П. Хромов // Интегральные преобра-

зования и специальные функции. Информационный бюллетень. – 2006. – Т. 6, № 1. – С. 46-55.
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g2 (x, t, λ) =

 ε(x, t)e−λω(x−t) при Re λω ≥ 0

−ε(t, x)e−λω(x−t) при Re λω ≤ 0
,

ε(x, t) =

1 при t ≤ x

0 при t > x
– функция Хевисайда.

В параграфе 1.2 с помощью метода, разработанного А.П. Хро-

мовым и О.И. Амвросовой 10,11, приводится необходимое изучение неко-

торых интегралов при больших значениях параметра, базирующееся на

асимптотике функции типа Миттаг-Леффлера. С опорой на эти исследо-

вания, в параграфе 1.3 получаются оценки второго слагаемого в фор-

муле для R1, λΦ при |λ| → ∞. Справедливо утверждение

Лемма 1.24. В области S = S1 ∪ S2 при больших значениях |λ|

имеют место оценки

‖R1, λΦ‖1 = O (κ (λ) ‖Φ‖1) , ‖R1, λΦ‖∞ = O (‖Φ‖1) ,

где ‖·‖1 и ‖·‖∞ понимаются как нормы в пространстве вектор-функций

размерности два L1 и L∞ соответственно,

κ (λ) =


1

Re λω

(
1−

∣∣e−λω
∣∣) при Re λω ≥ 0,

− 1
Re λω

(
1−

∣∣eλω
∣∣) при Re λω ≤ 0,

S1 (S2) – область, получающаяся из полуплоскости Re λω ≥ 0 (Re λω ≤ 0)

удалением всех нулей функции a0+a1 e−λω+a2 e−2λω
(
b0 + b1 eλω + b2 e2λω

)
10Амвросова О.И. Асимптотика собственных значений и теоремы равносходимости для операто-

ров со степенными особенностями в краевых условиях [Текст] / О.И. Амвросова Сб. "Функциональ-

ный анализ". // Ульяновск, 1983. – Вып. 21. – С. 3-11.
11Амвросова О.И. Теоремы равносходимости для операторов со степенными особенностями в кра-

евых условиях [Текст]: Автореф. дис. на соиск. учен. степ. канд. физ.-мат. наук / О.И. Амвросова. –

Саратов, 1985. – 13 с.
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вместе с круговыми окрестностями одного и того же достаточно ма-

лого радиуса δ1 (δ2), где a0 = h11(1)
(
k2(1)− γ2k2(0)

)
, b2 = (−1)2(α−1)a0,

a1 = b1 = (−1)α−1(1 − γ2)k(0)k(1) (1 + h11(1)h22(1)) , a2 = (−1)2(α−1)b0,

b0 = h22(1)
(
k2(0)− γ2k2(1)

)
.

В параграфе 1.3 получено представление для резольвенты Rλf .

Теорема 1.1. Резольвента оператора (2), (3) является первой

компонентой вектора QH (x, λ) MλR1, λFλ, Mλ = (E + R1, λPλ)
−1 .

Вторая глава посвящена получению теоремы равносходимости

разложений произвольной суммируемой функции по с.п.ф. функциональ-

но-дифференциального оператора (2) с интегральным граничным усло-

вием (3), весовая функция в котором имеет степенную особенность, и

разложений в тригонометрический ряд Фурье (внутри отрезка).

В параграфе 2.1 с использованием оценок для R1, λΦ проводятся

вспомогательные рассуждения и доказывается

Теорема 2.1. Для любой функции f(x) ∈ L1 [0, 1] справедливо со-

отношение

lim
r→∞

∥∥∥∥∥∥∥
∫

|λ|=r

QH (x, λ)
(
Mλ R1, λ Fλ (x)−R1, λH

−1
0 (x) F̃ (x)

)
dλ

∥∥∥∥∥∥∥
∞

= 0.

Данное соотношение является ключевым моментом при доказа-

тельстве теоремы равносходимости.

В параграфе 2.2 в рассмотрение вводится вспомогательная кра-

евая задача с периодическим краевым условием:

z′(x) = λDz(x) + Φ(x), x ∈ [0, 1], U0 (z) = z(0)− z(1) = 0, (6)

где z(x) = (z1(x), z2(x))T , Φ(x) = (ϕ1(x), ϕ2(x))T , ϕj(x) ∈ L1[0, 1] (j = 1, 2).

Находится решение задачи (5):
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Лемма 2.6. Для всех λ, таких что λω 6= 2πij, где i – мнимая

единица, j ∈ Z, краевая задача (6) однозначно разрешима и ее решение

задается формулой

R2, λΦ =

1∫
0

g0 (x, t, λ) Φ (t) dt−Z (x, λ) ∆−1
0 (λ) U0

 1∫
0

g0 (x, t, λ) Φ (t) dt

 ,

где ∆0 (λ) = U0 (Z).

Заметим, что R2, λΦ =
(
R0

λωϕ1, R
0
−λωϕ2,

)
, где R0

λ = (L0 − λ E)−1 –

резольвента оператора L0, порожденного y′ и периодическим краевым

условием y(0)− y(1) = 0.

Теорема 2.2 (теорема равносходимости). Для любой функции

f (x) ∈ L1 [0, 1] и для любого δ ∈ (0, 1/2) имеет место соотношение

lim
r→∞

∥∥Sr (f, x)− σr |ω| (f, x)
∥∥

C[δ,1−δ] = 0,

где Sr (f, x) – частная сумма ряда Фурье по с.п.ф. оператора L для

собственных значений, попавших в круг |λ| < r, σr |ω| (f, x) – част-

ная сумма тригонометрического ряда Фурье по системе экспонент

{exp 2πijx}+∞
j=−∞ для тех j, для которых 2π|j| < r |ω|.

В третьей главе доказан аналог теоремы Жордана–Дирихле рав-

номерной сходимости (на всем отрезке) разложений по с.п.ф. функцио-

нально-дифференциального оператора (2) с интегральным граничным

условием (3) к разлагаемой функции.

Теорема 3.1. (аналог теоремы Жордана–Дирихле) Пусть

функция f (x) ∈ C [0, 1] ∩ V [0, 1] и U (f) =
1∫
0

p (τ) f (τ) dτ = 0. Тогда

выполнено соотношение

lim
r→∞

‖ f (x)− Sr (f, x) ‖C[0,1] = 0,

где Sr (f, x) – частная сумма ряда Фурье по с.п.ф. оператора L для

собственных значений, попавших в круг |λ| < r.
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В четвертой главе найдены условия на функцию f(x), обеспечи-

вающие равномерную сходимость к ней (на всем отрезке) обобщенных

средних Рисса вида (1), где Rλf – резольвента оператора L, g (λ, r) удо-

влетворяет следующим условиям: 1) g (λ, r) непрерывна по λ в круге

|λ| ≤ r и аналитична по λ в круге |λ| < r при любом r > 0; 2) существу-

ет такая константа C > 0, что |g (λ, r)| ≤ C при всех r > 0 и |λ| ≤ r;

3) существует ζ > 0, что

g
(
rei arg λ, r

)
=



O
((

π
2 − θ

)ζ
)

, 0 ≤ θ ≤ π
2 ,

O
((

θ − π
2

)ζ
)

, π
2 ≤ θ ≤ π,

O
((3π

2 − θ
)ζ

)
, π ≤ θ ≤ 3π

2 ,

O
((

θ − 3π
2

)ζ
)

, 3π
2 ≤ θ ≤ 2π,

где θ = arg λω.

4) g (λ, r) → 1 при r →∞ и фиксированном λ.

Для рассуждений, проводимых в этой главе, оценки, полученные

ранее оказываются недостаточными. Следуя работам А.М. Седлецко-

го 12,13, оценки получаются с помощью другого метода, базирующегося

уже не на асимптотике финкций типа Миттаг-Леффлера, а на примене-

нии аппарата функций свертки.

Теорема 4.1. Для функции f (x) ∈ C [0, 1] и удовлетворяющей

граничному условию U (f) =
1∫
0

p (τ) f (τ) dτ = 0 выполняется соотно-

шение

lim
r→∞

∥∥∥∥∥∥∥f (x) +
1

2πi

∫
|λ|=r

g (λ, r) Rλf dλ

∥∥∥∥∥∥∥
C[0,1]

= 0.

12Седлецкий А.М. Аналитические преобразования Фурье и экспоненциальные аппроксимации,

II. [Текст] / А.М. Седлецкий // Современная математика. Фундаментальные направления. – Т. 6,

2003. – 162 с.
13Седлецкий А.М. Классы аналитических преобразований Фурье и экспоненциальные аппрокси-

мации [Текст] / А.М. Седлецкий. – М.: ФИЗМАТЛИТ, 2005. – 504 с.
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