Оценка вклада углекислого газа в наблюдаемый рост приповерхностной температуры воздуха методом дисперсионного анализа

Морозова С.В., Алимпиева М.А.

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, Саратов, Россия

[взято с сайта https://rg.ru]

Скорость роста глобально осредненной приповерхностной температуры воздуха на разных временных интервалах показывает следующие значения: 0,075 °C/10 лет за период 1901 — 2012 гг.; 0,17 °C/10 лет с 1976 года по 2012 год; 0,18 °C/10 лет - за 1976 – 2019 годы.

Материалы исследования:

- Данные о содержании углекислого газа в атмосфере (https://climate.copernicus.eu/)
- Аномалии приповерхностной температуры воздуха воздуха по данным Университета Восточной Англии, сайт (https://crudata.uea.ac.uk/cru/data/temperature/#datdow)

Временной интервал исследования - 1980 – 2018 гг.

Основным приемом дисперсионного анализа является расчет общей σ_x , факторной σ_f и остаточной дисперсий σ_z .

$$S_z = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2;$$

$$S_f = \sum_{i=1}^{q} \frac{\sum_{i=1}^{m_i} (x_i)^2}{m_i} - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2;$$

$$\sigma_f^2 = \frac{S_f}{K_f}, \sigma_z^2 = \frac{S_z}{K_z}, \sigma_x^2 = \frac{S_x}{K_x},$$

 S_x - общая сумма квадратов, S_f - факторная сумма квадратов, S_z - остаточная сумма квадратов

 $K_f = q$ -1, $K_z = K_x$ - K_f , $K_x = N$ -1 — числа степеней свободы,

q – число уровней (градаций) исследуемого фактора; N – число наблюдений.

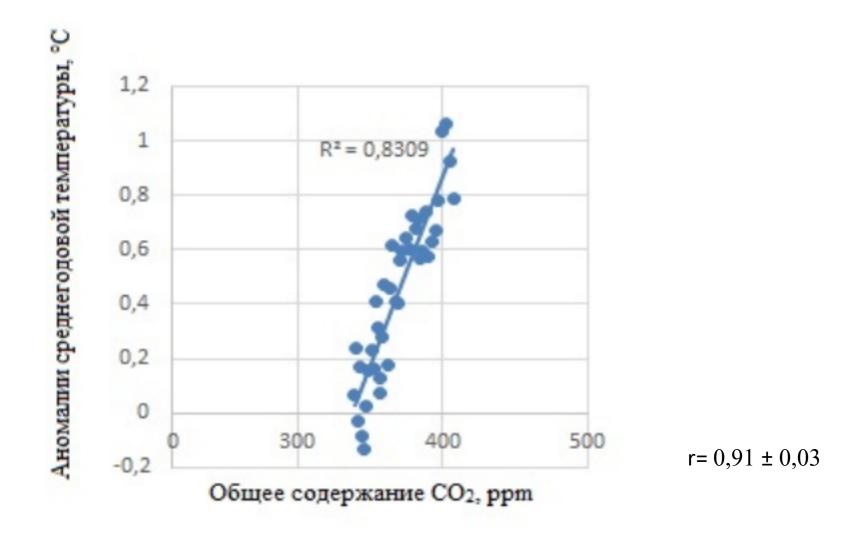


График корреляционного анализа (диаграмма рассеяния) между концентрацией CO₂ и аномалиями приповерхностной температуры воздуха

Распределение аномалий приповерхностной температуры воздуха в зависимости от концентрации углекислого газа

Статистические	Градации CO ₂ , ppm								
характеристики	338,8 - 349,8	349,8 - 360,8	360,8-	371,7-382,7	382,7-393,7	393,7 -	404,7-		
			371,7			404,7	415,7		
m _i	9	9	7	7	5	4	2		
S_f	0,75	0,74	0,50	0,13	0,17	0,50	0,33		

$$S_x = 3,587$$

$$S_f = 3,121$$

$$S_z$$
=0,466

$$\sigma_f^2 / \sigma_z^2 = 6,697$$

F кр. = 3,01 при 5 % -ном уровне значимости. Влияние концентрации углекислого газа на приповерхностную температуру воздуха статистически значимо

$$S_f / S_x = 0,87$$

Распределение концентрации углекислого газа в зависимости от аномалий приповерхностной температуры воздуха

Статистические	Градации аномалий температуры, °С								
характеристики	-0,57 - (-0,38)	-0,38 - (-0,19)	-0,19- 0,0	0,0 -0,19	0,0 - 0,38	0,38 - 0,57	0,57 -0,76		
m _i	5	10	3	10	8	1	2		
S_f	44,59	842,30	9,32	1243,20	842,50	0	5,92		

$$S_x = 15745,06$$

$$S_f = 2987,82$$

$$S_z$$
=12757,24

F кр. = 3,85 при 5 % -ном уровне значимости. Влияние роста температуры приземного слоя воздуха на увеличение концентрации углекислого газа в атмосфере статистически значимо

$$\sigma_f^2/\sigma_z^2 = 5,96$$

$$S_f/S_x=0.19$$

Выводы:

- Разделение вклада факторов различной природы, действующих в земной климатической системе и влияющих на процессы, происходящие в ней, можно провести статистическими методами, в частности, с помощью дисперсионного анализа.
- Вклад роста концентрации углекислого газа в процесс повышения приземной температуры воздуха оценивается в 87 %.
- Рост приповерхностной температуры воздуха, приводящий потеплению поверхности океана и оттаиванию карбонат-гидратов, статистически значимо влияет на концентрацию углекислого газа в атмосфере. Вклад повышения температуры в увеличение концентрации углекислого газа оценивается в 19 %.
- Процесс разгоняющегося потепления можно рассматривать как положительную обратную связь, действующую в земной климатической системе, действие которой вызвано антропогенным фактором.

Спасибо за внимание!!!