МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»

Факультет нано- и биомедицинских технологий

СОГЛАСОВАНО

Зав. кафедрой материаловедения, технологии и управления качеством, д.ф.-м.н., профессор С.Б. Вениг

«16» марта 2016 г.

УТВЕРЖДАЮ

Декан факультета нано- и биомедицинских технологий, д.ф.-м.н., профессор С.Б. Вениг

«<u>/в</u>» <u>марта</u> 2016 г.

Фонд оценочных средств текущего контроля и промежуточной аттестации по дисциплине

Измерение и контроль основных параметров материалов и биодатчиков

Направление подготовки 22.04.01 Материаловедение и технологии материалов

Профиль подготовки Материаловедение фармацевтического и медицинского назначения»

Квалификация (степень) выпускника магистр

Форма обучения очная

Саратов, 2016

1. Карта компетенций

Контролируемые компетенции	Планируемые результаты обучения (знает, умеет, владеет, имеет навык)		
(шифр компетенции)			
ОК-7 – в части готовности	Знает: основные классы современного оборудования и приборов для обработки материалов		
самостоятельно выполнять	фармацевтической промышленности, методы экспериментального исследования процессов		
исследования на современном	обработки материалов.		
оборудовании и приборах (в	Умеет: выражать и обосновывать собственную позицию по вопросам, касающимся методов		
соответствии с целями магистерской	обработки материалов фармацевтической промышленности, самостоятельно выполнять		
программы)	исследования на современном оборудовании и приборах.		
	Владеет: основными понятиями и идеями науки о материалах и методах материаловедения,		
	навыками выполнения исследований на современном оборудовании и приборах		
ОПК-8 готовностью	Знает: основные методы испытаний при разработке материалов и структур для бидатчиков.		
проводить экспертизу процессов,	Умеет: проводить экспертизу процессов, материалов, методов испытаний материалов		
материалов, методов испытаний	фармацевтического и медицинского назначения.		
	Владеет: навыками проведения испытаний материалов фармацевтического и медицинского		
	назначения.		

ПК-8 — способностью самостоятельно разрабатывать методы и средства автоматизации процессов производства, выбирать оборудование и оснастку; ПК-9 — готовностью к

профессиональной эксплуатации современного оборудования и приборов в соответствии с целями магистерской программы; ПК-11 — способностью самостоятельно использовать технические средства для измерения и контроля основных параметров технологических процессов;

Знает: основы методов и типовые средства автоматизации процессов производства, выбирать оборудование и оснастку; основные правила эксплуатации современного оборудования и приборов; основы применения технических средств для измерения и контроля основных параметров технологических процессов; методики проектирования технологических процессов производства материала и изделий из него с заданными характеристиками; методики расчета и конструирования технологические оснастки с использованием современных прикладных программ.

Умеет: самостоятельно разрабатывать методы и средства автоматизации процессов производства, выбирать оборудование и оснастку; эксплуатировать современное оборудование и приборов; использовать технические средства для измерения и контроля основных параметров технологических процессов; проектировать технологические процессы производства материала и изделий из него с заданными характеристиками; рассчитывать и конструировать технологические оснастки с использованием современных прикладных программ.

Владеет: способностью самостоятельно разрабатывать методы и средства автоматизации процессов производства, выбирать оборудование и оснастку; готовностью к профессиональной эксплуатации современного оборудования и приборов в соответствии с целями магистерской программы; методами и правилами профессиональной эксплуатации современного оборудования и приборов в соответствии с целями магистерской программы; правилами и методами использования технические средства для измерения и контроля основных параметров технологических процессов; самостоятельно проектировать технологические процессы производства материала и изделий из него с заданными характеристиками; навыками расчета и конструирования технологической оснастки с использованием современных прикладных программ.

СПК-9 – способность к использованию технических средств

Знает: основные виды технических средств и электронных приборов для измерения и контроля основных параметров биодатчиков, основные методы и средства автоматизации процессов

и электронных приборов для измерения и контроля основных параметров биодатчиков; СПК-11 — разрабатывать методы и средства автоматизации процессов измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам

измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам

Умеет: использовать стандартные технические средства и универсальные электронные приборы для измерения и контроля основных параметров биодатчиков; разрабатывать методы и средства автоматизации процессов измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам

Владеет: способностью использования технических средств и электронных приборов для измерения и контроля основных параметров биодатчиков; основами разработки методов и средств автоматизации процессов измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам

2. Показатели оценивания планируемых результатов обучения

Семестр	Шкала оценивания. Баллы рейтинга, нормированные на максимальный балл, выставляемый на экзамене, %			
	«не удовлетворительно»	«удовлетворительно»	«хорошо»	«отлично»
	(0-59)	(60 - 74)	(75 – 89)	(90 – 100)
3	Студент не способен	Студент усвоил основное	Студент способен	Студент самостоятельно
семестр	самостоятельно выделять	содержание материала	самостоятельно выделять	выделяет главные положения в
	главные положения в	дисциплины, но имеет пробелы	главные положения в	изученном материале и
	изученном материале	в усвоении материала, не	изученном материале.	способен дать краткую
	дисциплины.	препятствующие дальнейшему	Знает основные методы и	характеристику основным
	<u>Не знает</u> методы и	усвоению учебного материала.	средства измерения и контроля,	идеям проработанного
	средства измерения и	Имеет не систематизированные	обеспечивающих эффективное,	материала дисциплины.

контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов структур, соответствующих мировым стандартам; особенности объектов, биологических объектов как исследования; основные типы И варианты конструкции биодатчиков и электродов; основные физические принципы, лежащие в основе работы биодатчиков; метрологические характеристики, методы испытания, проверки и калибровки биодатчиков.

знания об основных методах и средствах измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам; особенности биологических объектов, как объектов исследования; основные типы и варианты конструкции биодатчиков и электродов; основные физические принципы, лежащие в основе работы биодатчиков; метрологические характеристики, методы испытания, проверки и калибровки биодатчиков.

технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам; особенности биологических объектов, как объектов исследования; основные типы и варианты конструкции биодатчиков и электродов; основные физические принципы, лежащие в основе работы биодатчиков; метрологические характеристики, методы испытания, проверки и калибровки биодатчиков. При этом допускает неточности при использовании научных терминов или в выводах и обобщениях из наблюдений и опытов.

Показывает глубокое знание и понимание методов измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство материалов и структур, соответствующих мировым стандартам; особенности биологических объектов, как объектов исследования; основные типы и варианты конструкции биодатчиков и электродов; основные физические принципы, лежащие в основе работы биодатчиков; метрологические характеристики, методы испытания, проверки и калибровки биодатчиков. Может обосновать выбор биосенсорных структур, опираясь на международные

			стандарты и обеспечение
			эффективного, технически и
			экологически безопасного
			контроля и производства.
Студент не умеет	Студент непоследовательно и	Студент умеет последовательно	Студент умеет последовательно
выражать и обосновывать	несистематизировано выражает	эксплуатировать современное	<u>и логично</u> выражать и
собственную позицию по	и обосновывает собственную	оборудование и приборы,	обосновывать собственную
вопросам, касающимся	позицию по вопросам,	использовать технические	позицию по вопросам,
методов контроля	касающимся методов контроля	средства и электронные	касающимся методов контроля
параметров материалов и	параметров материалов и	приборы для измерения и	параметров материалов и
датчиков, используемых в	датчиков, используемых в	контроля основных параметров	датчиков, используемых в
фармацевтической	фармацевтической	биодатчиков; проводить	фармацевтической
промышленности,	промышленности,	экспертизу процессов,	промышленности,
самостоятельно выполнять	самостоятельно выполнять	материалов, методов	самостоятельно выполнять
исследования на	исследования на современном	испытаний; в соответствии с	исследования на современном
современном	оборудовании и приборах	методами и задачами	оборудовании и приборах.
оборудовании и приборах.		проведения медико-	Студент <u>умеет</u> самостоятельно
	Студент <u>испытывает</u>	биологических исследований	разрабатывать методы и
Студент <u>не способен</u>	затруднения при	выбирать наиболее	средства измерения и контроля,
профессионально	самостоятельной эксплуатации	необходимые по	обеспечивающих эффективное,
эксплуатировать	современного оборудования и	метрологическим	технически и экологически
современное	приборов, использования	характеристикам,	безопасное производство
оборудование и приборы,	технических средств и	конструктивным и	материалов и структур,

использовать технические средства и электронные приборы для измерения и контроля основных параметров биодатчиков; проводить экспертизу процессов, материалов, методов испытаний; в соответствии с методами и задачами проведения медико-биологических исследований выбирать наиболее необходимые по метрологическим характеристикам, конструктивным и электрическим параметрам типы и варианты конструкций биодатчиков; применять знания, полученные в ходе изучения фундаментальных базовых электронных приборов для измерения и контроля основных параметров биодатчиков; непоследовательно и с нарушением правил проводит экспертизу процессов, материалов, методов испытаний; допускает незначительные ошибки при проведении медикобиологических исследований и выборе наиболее необходимые по метрологическим характеристикам, конструктивным и электрическим параметрам типов и вариантов конструкций биодатчиков; способен применять знания, полученные в ходе изучения фундаментальных базовых дисциплин

Но при этом студент

электрическим параметрам типы и варианты конструкций биодатчиков; применять знания, полученные в ходе изучения фундаментальных базовых дисциплин, при этом допускает незначительные неточности в алгоритмах экспетиз, не влияющих на её результат. Студент умеет самостоятельно эксплуатировать современное оборудование и приборы; использовать технические средства для измерения и контроля основных параметров материалов фармацевтического и медицинского назначения с помощью биодатчиков, при этом допускает незначительные технические ошибки и неточности, которые исправляет при помощи

стандартам; особенности биологических объектов, как объектов исследования; основные типы и варианты конструкции биодатчиков и электродов; основные физические принципы, лежащие в основе работы биодатчиков; метрологические характеристики, методы испытания, проверки и калибровки биодатчиков. Студент умеет использовать стандартные технические средства и универсальные электронные приборы для измерения и контроля основных параметров биодатчиков; разрабатывать методы и средства автоматизации процессов измерения и контроля, обеспечивающих

соответствующих мировым

дисциплин	затрудняется в использовании	преподавателя.	эффективное, технически и
	технических средств для		экологически безопасное
	измерения и контроля основных		производство материалов и
	параметров материалов		структур, соответствующих
	фармацевтического и		мировым стандартам.
	медицинского назначения с		
	помощью биодатчиков,		
	соответствующих мировым		
	стандартам.		
Студент не владеет	Студент владеет основными	Студент <u>владеет</u> основными	Студент показывает глубокое и
основными понятиями и	понятиями и идеями науки о	понятиями и идеями науки о	полное владение всем объемом
идеями науки о	материалах и методах	материалах и методах	изучаемой дисциплины в части
материалах и методах	материаловедения, навыками	материаловедения, навыками	способности самостоятельно
материаловедения,	выполнения исследований на	выполнения исследований на	выполнения исследований на
навыками выполнения	современном оборудовании и	современном оборудовании и	современном оборудовании и
исследований на	приборах.	приборах; навыками выбора	приборах; навыками выбора
современном	Студент в основном способен	типа и варианта конструкций	типа и варианта материалов и
оборудовании и	выполнять исследований на	биодатчиков в соответствии с	конструкций биодатчиков в
приборах; навыками	современном оборудовании и	методами и задачами	соответствии с методами и
выбора типа и варианта	приборах; владеет навыками	проведения медико-	задачами проведения медико-
конструкций	выбора типа и варианта	биологических исследований,	биологических исследования,
биодатчиков в	конструкций биодатчиков в	при этом допускает	удовлетворяющего по
соответствии с методами	соответствии с методами и	незначительные ошибки и	метрологическим

и задачами проведения медико-биологических исследований, удовлетворяющего метрологическим характеристикам, конструктивным электрическим параметрам; методами и навыками выполнения исследований современном оборудовании приборах. Студент способностью владеет использования технических средств и электронных приборов измерения для контроля основных параметров биодатчиков; основами разработки методов средств

задачами проведения медикобиологических исследований, но допускает ошибки в расчете метрологических характеристик, определении конструктивных и электрических параметров; методами и навыками выполнения исследований на современном оборудовании и приборах. Студент не уверенно владеет способностью и использования технических средств и электронных приборов для измерения и контроля основных параметров биодатчиков; основами разработки методов и средств автоматизации процессов измерения и контроля, обеспечивающих эффективное, технически и экологически безопасное производство

недочеты при воспроизведении изученного материала. Студент в основном способен выполнять исследований на современном оборудовании и приборах; владеет навыками выбора типа и варианта конструкций биодатчиков в соответствии с методами и задачами проведения медикобиологических исследований, но допускает ошибки в расчете метрологических характеристик, определении конструктивных и электрических параметров. Студент владеет способностью использования технических средств и электронных приборов для измерения и контроля основных параметров биодатчиков; основами разработки методов и средств

характеристикам, конструктивным и электрическим параметрам; методами и навыками выполнения исследований на современном оборудовании и приборах. Студент владеет навыками установления межпредметных и внутрипредметных связей, творчески применяет полученные знания, способен использовать технические средства и электронныа приборы для измерения и контроля основных параметров материалов с помощью биодатчиков; основами разработки методов и средств автоматизации процессов измерения и контроля, обеспечивающих эффективное,

технически и экологически

автоматизации процессов	материалов и структур,	автоматизации процессов	безопасное производство	ì
измерения и контроля,	соответствующих мировым	измерения и контроля,	материалов и структур,	1
обеспечивающих	стандартам	обеспечивающих эффективное,	соответствующих мировым	ì
эффективное, технически		технически и экологически	стандартам.	i)
и экологически		безопасное производство		İ
безопасное производство		материалов, соответствующих		i)
материалов и структур,		мировым стандартам, <u>способен</u>		i)
соответствующих		самостоятельно исправить		İ
мировым стандартам		обнаруженные преподавателем		İ
		ошибки и недочеты.		i)

3. Оценочные средства

3.1 Задания для текущего контроля

а) Отчеты по лабораторным и практическим занятиям

В процессе выполнения заданий по лабораторным и практическим занятиям студенты должны сформировать письменные отчеты по результатам выполнения практических и лабораторных заданий, в которых они самостоятельно рассматривают поставленную преподавателем проблему в соответствии с индивидуальным заданием. Отчет в письменной форме является одним из механизмов отработки первичных навыков научно-исследовательской работы и представления результатов исследований.

Требования к отчету

Содержание отчета по практическим и лабораторным занятиям должно учитывать требования к отчету о научно-исследовательской работе, установленные Межгосударственным стандартом ГОСТ 7.32-2001.

Во введении необходимо сформулировать цель и задачи работы, обосновать актуальность, научную новизну, практическую значимость рассматриваемого материала, связь решаемой проблемы с работами других авторов.

В практической части работы необходимо в логической последовательности изложить ход и порядок выполнения решаемой задачи, отразить этапы ее выполнения с необходимой степенью детализации.

В заключительной части отчета обязательно наличие основных результатов и выводов по затронутым проблемам. Только при соблюдении этих требований может оцениваться уже собственно содержательная часть работы.

Критерии оценивания

Лабораторная работа или практическое задание считается выполненным в том случае, если:

- студент представил отчет о проделанной работе, соответствующий предъявляемым требованиям к структуре и оформлению;
- содержание отчета соответствует заявленной теме, демонстрирует способность студента к самостоятельной исследовательской работе;
- отчет содержит самостоятельные выводы студента, аргументированные с помощью данных, представленных в научной литературе.

Лабораторная работа или практическое задание считается невыполненным в том случае, если:

- структура и оформление отчета не соответствуют предъявляемым требованиям;
- содержание отчета носит реферативный или формальный характер;

- отсутствуют самостоятельные выводы студента по исследуемой теме.

3.1.1 Задания для практических занятий

1) Биодатчики для медицины и фармацевтики

<u>Цель задания:</u> научиться выбирать биодатчики в зависимости от их применения и конкретных задач

Задание: провести анализ литературных источников для ознакомления с различными классами биодатчиков, областями их использования. Систематизировать биодатчики в зависимости от области применения, типа трансдьюсера, типа биоселективного элемента, принципа работы и пр. Выявить «слабые» места, сформулировать существующие проблемы в области экспертизы материалов, методов исследования биообъектов. Подготовить доклад.

2) Статические и динамические характеристики биодатчиков.

<u>Задание:</u> провести анализ литературных источников, систематизировать параметры характеристики биодатчиков в зависимости от типа трансдьюсера, принципа работы, регистрируемого аналита и пр. Подготовить доклад.

3) Контроль концентрации субстратов и биотехнологических продуктов.

<u>Цель задания:</u> Изучить основные физические принципы, лежащие в основе методы контроля с помощью титригметрических, оптических и биохимических (ферментативных) с помощью биодатчиков.

Задание: проанализировать и классифицировать эффекты, лежащие в основе работы титригметрических, оптических и биохимических (ферментативных) биодатчиков. Проанализировать преимущества и недостатки каждого метода, достижимые значения наиболее важных параметров (физический предел, обусловленный физико-химическими процессами), обозначить области применения каждого метода.

4) Потенциометрические методы контроля pH и ионного состава. Датчики pH и ионоселективные электроды.

<u>Цель задания:</u> научиться выбирать материалы для создания рН - датчиков и ионоселективных электродов.

<u>Задание:</u> проанализировать и классифицировать материалы, используемые для создания рН - датчиков и ионоселективных электродов. Провести анализ научных публикаций последних лет для выявления наиболее перспективных направлений для

улучшения параметров потенциометрических датчиков за счет использования современных материалов и технологий.

5) Основные параметры контроля и управления биотехнологическими процессами. Общие требования к методам и средствам контроля. Современное состояние методов и средств автоматического контроля в биотехнологии.

<u>Цель задания:</u> изучение общих требований к методам и средствам контроля. Изучение специфики контроля и управления биотехнологическими процессами. Установление роли биодатчиков как первичных преобразователей информации в автоматизации процессов измерения

<u>Задание</u>: проанализировать общие требования к методам и средствам контроля, специфику контроля и управления биотехнологическими процессами. Подготовить доклад на заданную тему и презентацию, содержащую графическое изображение (в виде диаграмм, графов) результатов проведенных анализа и классификации.

Перечень лабораторных работ (примерный)

1) Проведение измерений с помощью потенциометрического биосенсора

<u>Цель работы</u>: изучить принцип работы потенциометрического биосенсора, получить навыки использования Потенциометрического биосенсора для определения параметров и характеристик физиологических растворов

<u>Задание</u>: с помощью потенциометрического биосенсора измерить потенциал рабочего электрода относительно электрода сравнения в электрохимической ячейке, получить информацию о рН раствора, активности ионов в электрохимической реакции, концентрации аналита.

2) Проведение измерений с помощью амперометрического биосенсора

<u>Цель работы</u>: изучить принцип работы амперометрического биосенсора, получить навыки использования потенциометрического биосенсора для определения параметров и характеристик физиологических растворов.

<u>Задание:</u> с помощью амперометрическог биосенсора измерить динамику изменения тока, возникающего вследствие окисления или восстановления молекул аналита в биохимической реакции, протекающей в растворе.

3) Построение математической модели амперометрического биосенсора

<u>Цель работы</u>: получение навыков по разработке и модификации биосенсоров на основе прогнозов, полученных при математическом моделировании параметров и характеристик биосенсоров.

<u>Задание: с</u> помощью системы сбора и анализа данных LabVIEW 8.5 реализовать математическую модель амперометрического биосенсора, объясняющую поведение кривой

выходного сигнала амперометрического биосенсора с кислородочувствительным трансдьюсером.

4) Проведение измерений с помощью биосенсора на основе ион-селективного полевого транзистора

<u> Цель работы:</u> изучить принцип работы биосенсора на основе ион-селективного полевого транзистора

<u>Задание:</u> исследовать параметры физиологического раствора с помощью биосенсора на основе ион-селективного полевого транзистора. Рассчитать чувствительность к исследуемому аналиту, определить порог обнаружения и точность измерений.

5) Проведение измерений с помощью оптического биосенсора.

<u> Цель работы:</u> изучить принцип работы оптического биосенсора

Задание: с помощью оптического биосенсора определить изменение оптических свойств реагента, происходящего при взаимодействии определяемого компонента с иммобилизованным реагентом посредством регистрации электромагнитного излучения от реагента при его освещении. Исследовать возможность увеличения чувствительности и других параметров оптического биодатчика при использовании в качестве чувствительного слоя нанокомпозитный материал.

6) Калибровка биодатчика — установление зависимости между показаниями средства измерительной техники (прибора) и размером измеряемой (входной) величины

<u>Цель работы</u>: проводить контроль материалов (сред), используемых в медицине и фармацевтике с помощью биодатчиков, обеспечивая надлежащее качество и точность измерений.

<u>Задание</u>: установить зависимости между показаниями биодатчиков различных типов (выходным сигналом) и размером измеряемой (входной) величины.

3.2 Промежуточная аттестация

Методические указания

Промежуточная аттестация по дисциплине «Измерение и контроль основных параметров материалов и биодатчиков» проводится в виде экзамена. Учебным планом по направлению подготовки «Материаловедение и технологии материалов», профиль подготовки «Материаловедение фармацевтического и медицинского назначения» предусмотрена одна промежуточная аттестация по всем разделам данной дисциплины. Подготовка студента к прохождению промежуточной аттестации осуществляется в период лекционных, лабораторных и практических занятий, а также во внеаудиторные часы в рамках самостоятельной работы студента. Во время самостоятельной подготовки студент

пользуется конспектами лекций, основной и дополнительной литературой по дисциплине (см. перечень литературы в рабочей программе дисциплины).

Критерии оценивания

Во время экзамена студент должен дать развернутый ответ на вопросы, изложенные в билете. Преподаватель вправе задавать дополнительные вопросы по всему изучаемому курсу. Во время ответа студент должен продемонстрировать знания по всему изучаемому материалу. Студент должен уметь разделять факты и их интерпретацию, уметь аргументировать свои утверждения и приводить соответствующие практические примеры. Полнота ответа определяется показателями оценивания планируемых результатов обучения (раздел 2).

Список вопросов, выносимых на экзамен

- 1. Использование сенсоров в медицине и фармацевтике. Классификация измерений в фармацевтике и медицине.
- 2. Проблемы измерения медико-биологических показателей.
- 3. Перспективы создания современных биодатчиков и электродов.
- 4. Понятие об измерительном преобразователе. Определение и назначение измерительного преобразователя. Характеристики и параметры измерительного преобразователя.
- 5. Принципы преобразования неэлектрических величин в электрически сигналы.
- 6. Понятие «датчик биомедицинской информации» (ДБИ). Основные специальные и метрологические требования, предъявляемые к ДБИ. Классификация ДБИ.
- 7. Определения биосенсора. Распознающие элементы. Чувствительные элементы биодатчиков. Трансдьюсеры и детектирующие устройства
- 8. Методы иммобилизации Аналитические характеристики.
- 9. Электрохимические трансдьюсеры.
- 10. Потенциометрические биосенсоры.
- 11. Оптические сенсоры.
- 12. Основные характеристики и параметры биосенсоров и методы их измерения и контроля
- 13. Тензометрические полупроводниковые чувствительные элементы. Гальваномагнитные чувствительные элементы. Емкостные чувствительные элементы.
- Электроды и электродные системы. Классификация электродов для биомедицинских исследований. Основные характеристики электродов Металлические электроды. Полупроводниковые микроэлектронные электроды. Электроды для медицинской техники.
- 15. Распознавание биологических объектов. Распознавание молекул с помощью спектроскопии. Распознавание молекул с помощью химических реагентов.

реагентов. Распознавание ионов. Аналитические характеристики биосенсоров. Микроаналитические системы.

ФОС для проведения промежуточной аттестации одобрен на за	аседании ка-
федры материаловедения, технологии и управления качеством	
(протокол № от	
Автор: доцент кафедры материаловедения,	
технологии и управления качеством,	
к.фм.н. С.В. Стецюра	