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ВВ  ВВ  ЕЕ  ДД  ЕЕ  НН  ИИ  ЕЕ    
 

  Компьютерное моделирование является основным мощнейшим инструментом исследования 
сложных систем и структур. Использование строгих компьютерных моделей позволяет адекватно 
производить их анализ, синтез или оптимизацию и зачастую вытесняет  натурный эксперимент. Для 
большого числа рассматриваемых задач проведение натурного эксперимента чрезвычайно сложно или 
невозможно вовсе, поэтому развитие методов математического моделирования является чрезвычайно 
важным и актуальным.  

В прикладной электронике  и электродинамике, включая и оптику, использование строгих 
методов анализа и синтеза при моделировании означает применение алгоритмов на основе уравнений 
Максвелла и строгих решений уравнений движения. Важным элементом, влияющим на адекватность 
моделирования, служит корректное введение материальных уравнений и уравнений движения частиц, 
а также учет нелинейных свойств.  

В последнее время все большее значение приобретают автоматизированные системы анализа 
и проектирования приборов, устройств и структур СВЧ, КВЧ и оптических диапазонов. Применение 
электродинамических методов происходит для всех частот используемых электромагнитных волн, 
включая и оптический диапазон, причем в оптике традиционные методы анализа вытесняются 
строгим электродинамическим рассмотрением. Наряду с традиционными частотными подходами к 
моделированию развиваются и пространственно-временные методы, что характеризует бурный 
прогресс прикладной нестационарной электродинамики и оптики. Другими актуальными 
современными направлениями, представленными в сборнике, являются моделирование наноструктур 
(включая квазипериодические структуры) и применение электродинамических методов к нелинейным 
задачам. 
 Девятый выпуск сборника продолжает серию публикаций трудов научных семинаров 
объединенной первичной ячейки (IEEE MTT/ED/AP/CPMT.PS Saratov–Penza Chapter) входящей в 
международную научную организацию Institute of Electrical and Electronic Engineers. Указанная ячейка 
создана летом 1995 г. в Саратове и Пензе. В сборник вошли труды, представленные в 2008 г. на 
очередном двенадцатом семинаре (Saratov–Penza Chapter Workshops), который являлся шестым 
семинаром данной первичной ячейки под названием «Workshop on Electromagnetics of microwaves, 
submillimeter and optic waves». С 2003 года семинары под указанным названием проводятся ежегодно в 
сентябре в рамках международной конференции «Saratov Fall Meeting» в Саратовском 
государственном университете. 

________________________________ 
 
 

II  NN  TT  RR  OO  DD  UU  CC  TT  II  OO  NN  
 

 In recent time there was an increasing development of Computer Aid Design (CAD) methods and 
rigorous approaches for microwave electron devices, units and elements all over the world and in Russia 
particularly. These methods have been applied both for linear and nonlinear systems and structures in time 
and spectrum domains. There is growing interest in electromagnetic and optics to nanostructures and 
metamaterials.  
 The correct introduction of material and motion equations and using of strict electrodynamic models 
play important role in adequate numerical simulation of structures. Recently the nonstationary approach for 
electromagnetics and electronics stays more desirable and applicable. The nanostructures such as photonic 
crystals and metamaterials play the important role in modern science and cause the different methods of its 
simulation. These directions of modeling is also have mirrored in the present 9-th issue.   

In 1995 on July 11 the IEEE Joint MTT/ED Chapter has been formed in Saratov and Penza under the 
sponsorship and help of Electron Devices and Microwave Theory and Techniques Societies (ED–S and MTT–
S). Then it has been supported by Antennas and Propagation, Components, Packaging, and Manufacturing 
Technology and Nuclear and Plasma Science Societies (APS, CPMTS and NPSS), and now it is named as 
IEEE MTT/ED/AP/CPMT/NPSS Saratov–Penza Chapter included into the IEEE Russian Section. 
 This issue contains the papers presented at the 11-th IEEE MTT/ED/AP/CPMT Saratov–Penza 
Chapter Workshop named as “Electromagnetics of Microwaves, Submillimeter and Optic Waves” which has 
been held in conjunction with Saratov Fall Meeting at the Saratov State University in the September, 2008. 
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Abstract - Results of research of effects of self-influence of magnetostatic waves in the 2D -
structure consisting of two ferromagnetic films, on the basis of the numerical solution of system of 
two-dimensional nonlinear Schrödinger equations are presented. The basic features of these effects 
in comparison with similar in 2D-structure on the basis of one film are analyzed and possibility of 
use of the coupled structures for control of formation of 2D-nonlinear wave bunches and packages 
magnetostatic waves is considered. 

 
1. Introduction 

 
At present the scientific interest is attracted by researches of nonlinear effects of self-

influence of waves in various mediums on the basis of the solution of system of coupled 
nonlinear Schrödinger equations (see, for example, [1-5]). It is necessary to notice, that 
such researches play the important role, first of all, in problems of nonlinear optics [1], in 
hydrodynamics, the physicist of plasma, in vacuum and solid-state electronics, and in other 
areas [2-5]. In particular, such problems play a basic role in a case when distribution of 
several types of normal waves is possible, for example, fast and slow waves of a spatial 
charge [4,5], a signal containing some spectral component [5], in case of need the account 
of interaction of the direct and reflected waves [3]. 

Such researches represent special interest in a case magnetostatic waves (MSW), 
propagating in ferromagnetic films since the nonlinear effects of self-influence caused by 
modulation instability of waves, here are shown at rather small power levels [6-8]. In 
particular, the system coupled Schrödinger equations was used in [8] for the description of 
MSW behavior at simultaneous excitation of two signals on different frequencies. 

New possibilities of control of effects of self-influence on MSW arise at use in quality 
waveguide systems of multilayered ferromagnetic structures [9-12]. In such structures 
coupling leads to essential change of MSW dispersive characteristics, that also influences 
character of modulation instability of waves [12,13]. 

It is necessary to notice, that in the works specified above [9-12] on research of 
influence of coupling on effects of MSW self-influence in ferromagnetic structures the one-
dimensional case was considered. To such problem there corresponds a situation when 
excitation of waves in boundless ferrite structure the antenna with a length is much more 
than MSW wave length.  However certain interest is represented also by the researches 
directed on studying of the nonlinear phenomena in two-dimensional ferromagnetic 
structures in which distribution of 2D-wave bunches and packages takes place. The account 
of limited width of structure allows to analyse also the effects connected with reflexion of a 
wave from cross-section borders of a film. With reference to a single film results of such 
researches are adduced in [7,14] in which possibility of formation of 2D-channels of 
BVMSW, in particular, is shown. 
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The present work is devoted research of features of effects of self-influence MSW in 
2D-structure consisting of two ferromagnetic films, on the basis of the numerical solution 
of system of two-dimensional nonlinear Schrödinger equations. 

 
2. Theoretical model 

 
The investigated structure consists of two ferromagnetic films, in thickness D  and 

magnetization of the saturation 0M . The films are located in a plane ( )yx,  and divided by a 
dielectric layer in thickness d . Magnetic field 0H  directed long an axis y, tangential to 
surfaces of films and orthogonal to the exciting antenna in length a  what located between 
films.  Along an axis y  will propagate backward volume MSW (BVMSW) what has 
modulation instability in longitudinal and cross-section directions [6]. 

According to the model two-layer ferromagnetic structure described in [11,12], we 
will assume, that mutual influence of MSW in each of films is carried out through high-
frequency magnetic fields. It allows in the equations of movement for a vector of 
magnetization and the equations of magnetostatic effective magnetic fields 2,1H  in  each 

film 1 or 2 to present as follows: 1,22,1
0

2,12,1 hKhHH ++= , where 2,1h - variable high-

frequency magnetic fields, 0
2,1H - constant components, K  - coefficient of coupling between 

layers. Value K  can  be calculated on the basis of the linear theory (see, for example, [13]). 
Let's admit also, that nonlinearity of each film is defined only by size of variable 
magnetization of this film, i.e. the nonlinearity caused by change longitudinal components 
of the magnetic moment

2,1
yM , for each layer is set in the form of [11]: 

( )2
2,10 ||1

2,1
mMM y −≈ , where 2,1m  – variable magnetizations in films 1 and 2, accordingly, 

which values are defined by high-frequency magnetic fields both one, and other film.  The 
important feature of the considered coupled ferromagnetic structures is separation of the 
dispersive curve concerning to MSW in a single film, on two, corresponding to two normal 
waves in structure – fast and slow - with wave numbers sfk ,  [13], and group velocities 

sf
sf k

V
,

, ∂
∂

=
ω . On the basis of the made assumptions it is possible to receive system of the 

nonlinear equations for envelope amplitudes of high-frequency magnetizations of fast and 
slow waves sf ,ϕ , which for a considered case will look like: 
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∂
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∂
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∂
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characterizing nonlinearity, and depending on parameters of films and size of coupling K ; 
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sf ,α -parameter of dissipation. The index “f” concerns a fast wave with fkk =  and an 

index "s" – to a slow wave with skk = . Unlike [11,12] system of the equations (1) it is 
written down for two-dimensional model, it was thus supposed, that longitudinal 

components sf
x

sf
y kk ,, >>  i.e. sf

y

sf

k
V ,

,

∂
∂

=
ω . Amplitudes of normal waves sf ,ϕ

 

are 

associated with amplitudes of waves in each of the identical films 2,1ϕ  a following ratio 
[13]: 

1,22,1, ϕϕϕ ±=sf .     (2) 
The system (3) contains a number of differences from the similar NSE systems 

applied to the analysis of the nonlinear phenomena in other mediums (see, for example, [2-
6,18,19]). The system concerns structure in which there are two waves extending with 
different group velocities that leads to occurrence of the cross nonlinear complex-
conjugated members in the equations (3). Coefficients in (3) are defined not only MSW 
dispersion, but also depend on size of coupling and can vary in very wide limits [11,12]. 
Besides, in the equations dispersion spreading of envelope amplitude in a cross-section 
direction, and also damping in ferromagnetic films, that essentially for the analysis of 
MSW behavior, are considered.   

 
 

3. Calculation results 
 
On the basis of the received model researches of features of nonlinear wave processes 

and effects of self-influence were carried out in the 2D-coupled ferromagnetic structures. 
Boundary conditions in a longitudinal direction along a magnetic field were set as: At 

0=y  ( ),),,(
,0, axСostyх
sfsf πϕϕ = if 20 ax ≤≤  and 0),,(, =tyхsfϕ , if 

22 xLxa ≤≤ ; at yLy =  0),,(, =tyхsfϕ , where xy LL , - lengths of structure in 
directions y  and x . The case of excitation of system by a continuous signal of constant 
envelope amplitude fast and slow waves sf ,0ϕ  at y =0  was considered. Boundary 
conditions in a cross-section direction x  were set in a kind of «a magnetic wall», i.e. at 

2xLx ±=  0),,(, =tyxsfϕ . Initial conditions at 0=t  looked like 
( )axСosх afsf πϕϕ ,0, )0,0,( = . 

The analysis carried out for films by thickness D =7,2 µm with magnetization of 
saturation 04 Mπ =1750 Gs and length yL =4 cm, placed in an external magnetic field 

0H =1391 Oe for which in [14] results of numerical research of nonlinear effects of self-
influence are resulted at excitation dipole-exchange BVMSW on frequency f = 5,82 GHz 
with wave number k =63 cm-1 in single yttrium-iron garnet films. Coefficients in system (1) 
calculate off from a dispersive relationship for coupled dipole BVMSW [13], propagating 
in structure from two identical films with the parameters resulted above. Value of 
parameter of coupling K  in such system lays in limits from ( 0=K  at ∞→d ) to ( 1=K  at 
for 0=d  a film of the doubled thickness). Calculations were spent at the fixed size of 
coupling K =0,4 that corresponds to a thickness of a dielectric interval Dd = . Value of 
parameter of coupling got out so that thresholds of nonlinear effects on fast and slow waves 
differed weakly. Coefficients for fast and slow waves in system (1) at the chosen sizes of 
parameters of structure have following values: fV =4,25·106 cm/s, sV =2,75·106 cm/s, 
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f
yA =3,41·103  cm2/ s, f

xA =2,14·105  cm2/ s, s
yA  = 2,47·103  cm2/s,  s

xA = 2,12·105  cm2/s, 

s
f

f
s

s
s

f
f BBBB ===  =-7,3·109  s-1, a case of absence of losses, i.e. sf ,α =0 are presented. 

If one normal wave is excited in structure the equations in (1) describe behavior of 
amplitude envelope amplitude in a single film and coincide with the similar equations in 
[6,7,14]. In this case, as shown in [7,14], at amplitude of an entrance signal above some 
threshold value, formation one or several stationary waveguide channels takes place. 

If in structure it is excited two waves, fast and slow for the description of behavior 
envelope amplitude it is necessary to use the system (1). Excitation of two waves 
( 0,0 00 ≠≠ sf ϕϕ ) is possible if to supply a signal only in one film ( 0,2 20010 == ϕϕϕ  thus 

000 ϕϕϕ == sf ). The basic features of wave evolution in this case, unlike MSW behavior in 
a single film or the excitation of one wave considered above a case, will be caused, first of 
all, by existence of two normal waves with various velocities ( fV and sV ) in the structure. 

 At amplitude above some threshold value formation waveguide channels, both on 
fast, and on slow waves takes place. Because of different coefficients of a dispersion and 
nonlinearity of normal waves wave channels have various velocities and parameters. At 
the small amplitude of  an entrance signal close to a threshold of self-focusing, the sizes of 
channels on fast and slow waves differ weakly (see the results presented on fig. 1) see. The 
basic role in wave evolution in this case is played by a difference of their group velocities. 
 

 
 
                                         a                                                                                 b 
Fig. 1. Lines of equal level the amplitudes showing evolution of envelope amplitude in films 1 and 
2  at   excitation of two waves in structure  at  t =200  ns  ( a =0,25 cm, xL =1 cm): (а)  0ϕ =0,005; 

(b) 0ϕ =0,06 
  

If the signal originally supplies in a film 1 after some time t  the difference in group 
velocities of fast and slow waves will lead to formation in a film 2 a perturbation of length 
( )tVV sf −  between forward fronts of fast and slow waves (see fig. 1a). Perturbation will be 
«lengthen out» and travel eventually by the structure end. After perturbation will travel by 
the structure end, the whole of power will be concentrated in a film 1. The similar picture 
will be, if a signal to supply only in a film 2. 

 At increase in amplitude of an entrance signal the channels formed on each of 
waves, have not only different velocities, but also the various characteristic sizes, and also 
there can be various a number of channels on each of waves. Joint distribution of fast and 
slow waves in this case will lead to formation of the stationary channel not only in a film 
1, but also in a film 2 (in which the signal originally did not supply), as is shown in fig. 1b 
at 0ϕ =0.06. 



 

 10 

At the further increase in amplitude of an entrance signal (fig. 2 see) energy of the 
basic bunch supplying in a film 1, divided already between three bunches extending in 
waveguide regime under some angle, it looks like from fig. 2 (and both in a film 1, and in a 
film 2 at that). Hence, it is possible to conclude, that existence of two waves in the coupled 
structure and various character of their nonlinear self-focusing leads to that the signal of 
the large amplitude supplied only in one of films, divided between films, and the signal 
with small amplitude – is not pumped over in other film. 

Limitation of the cross-section sizes of a film leads to reflex ion of wave channels 
from boundaries. As a result, both in a single film, and in the coupled structure, the 
symmetric picture from minima and maxima envelope amplitude of a signal is created on 
width of films. However, in case the width of a film is close to the sizes of the exciting 
antenna in a single film takes place  waveguide  distribution of a signal with width of the 
wave front, coinciding with width of a film. In the coupled structure formation of channels 
on fast and slow waves, with various parameters and evolution in time, allows to observe 
following dynamics, which cannot be realized in a single film (see the results presented on 
fig. 3). If the sizes of a film coincide with the sizes of «a focal spot» (the area in a film 
plane, on some distance from the exciting antenna in which the width of a bunch is 
minimum), is observed stationary sequence of impulses in a film 2 (in which the signal 
originally did not supply) as is shown in fig. 3а, 3b. In a stationary state impulses remain 
practically immovable, and along a film 2 eventually only there is an increasing number of 
impulses. 
 
 
 
 

 
 
 
 

Fig. 2. Distribution of intensity of a wave bunch in films 1 ( || 1ϕ ) and 2 ( || 2ϕ ) in a plane ( )yx,  at 
t = 200 ns at excitation of two normal waves in structure  ( a =0,25 cm, xL =4 cm, 0ϕ =0,09) 
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                   a 
 

b 

Fig. 3. Evolution of envelope amplitude in a plane ( )yx,  at a = xL =0,25 cm: (a) in films 1 

and 2; (b) lines of equal level of envelope amplitude  in a film 2 ( || 2ϕ |) during the various 
moments of time 

 

4. Conclusion 
 

On the basis of the numerical investigation the self-channeling caused by presence of 
coupling in ferromagnetic structure in comparison with similar effects in single 2D-
structure are analyzed. 

It’s shown, that at excitation by a continuous signal various character of self-
channeling for fast and slow waves leads to dependence of efficiency of swapping of a 
signal from one film in another from amplitude of a signal (there is «a nonlinear 
coupling»). In particular, for signals of the large amplitude there is an intensive swapping 
of a signal from one film in another, and for small amplitude – swapping is absent.  Reflex 
ion from cross-section borders of films of fast and slow waves in system gives difficult 
interferential picture of behavior envelope amplitude in both films. Thus, if the width of the 
antenna is equal to width of a film and coincides with the sizes of «a focal spot», creation 
of stationary sequence of impulses along the second film is possible. 

The results received in work concern a case of fixed value of coupling ( K =Const). 
Change of size of coupling over a wide range, as shown in case of the analysis of one-
dimensional similar structures, can lead to change of character of instability magnetostatic 
waves (see, for example, [12]), and it can be of interest as well with reference to 2D-
structures. The last opens more ample opportunities of control of nonlinear effects in the 
2D-coupled ferromagnetic film structures. 
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   Abstract – The integral and integrodifferential equations and functionals in two-dimensional 
dielectric waveguide cross-section and the iteration algorithms of their solutions have been 
considered. The parameters of H-modes are determined numerically for square dielectric 
waveguide. 
 
 The rectangular dielectric waveguides (RDWs) have been considered and 
investigated for various practical applications in the series of works [1–30]. They have been 
used as probes, in the structures of filters and planar integrated circuits, as elements of 
resonators, for measurements of dielectric material properties, and for other purpose. 
Different approximate and rigorous approaches have been applied to analyze the RDW and 
its discontinuities. There are: the decomposition on the cylindrical harmonics [2,12,17], the 
Marcatili’s approach [3], the transverse resonance method [13], the generalized telegraph 
equation method [9], the finite difference method [12,15,24], the mode matching method 
[6,16], the integral equation method [17,18,25,26] and the variation approach [5]. For 
numerical investigations of these approaches several numerical algorithms have been 
applied: the moment method, the Bubnov-Galerkin method, the collocations, the finite 
elements, the finite differences and some others. The dimensions of such approaches are 
very high when good accuracy is need. Therefore the precise determination of RDW mode 
parameters is actual [14]. In this paper we introduce the simple relations and effective 
algorithm for accurate determinations of eigenmodes (eigenwaves) and complex Н-waves 
for RDW. The approach is based on two-dimensional hyper-singular integral equation and 
iteration procedure for its solution which allow one to determine parameters of modes with 
very high accuracy and small computing resources. Instead of usually used infinite-
dimensional functional banach spaces we seek the solution in the two-dimensional 
Euclidean numeric space with analytical field presentation. The algorithm is easily 
generalized on other RDR modes and for nonuniform RDW in one direction. 
 Let consider the open RDW with constant permittivity κε +=1  in the region 

ax ≤ , by ≤ , and equal to unit permittivity outside of them. We seek the solution in the 

form ( ) ( ) ( )zjrErE γ−= ⊥ exprrrr . For the H- modes we have 0≡zE , ⊥= EE
rr

. The transverse 
components in the dielectric region are presented evidently with respect of symmetry as: 

( ) ( )
( )

( )
( )














=⊥ y

y
x
x

rEx β
β

α
α

χ
β

sin
cos

sin
cosr ,          ( ) ( )

( )
( )
( )














=⊥ y

y
x
x

rEy β
β

α
α

χ
α

cos
sin

cos
sinr ,                 (1,a) 

( ) ( )
( )

( )
( )














=⊥ y

y
x
x

rEx β
β

α
α

χ
β

cos
sin

sin
cosr ,       ( ) ( )

( )
( )
( )














−=⊥ y

y
x
x

rEy β
β

α
α

χ
α

sin
cos

cos
sinr .                 (1,b) 

It should be taken separately either upper or lower significances in each of round brackets 
(first and second). Then they include all cases of solution symmetry or parity-oddness 
regarding to transverse coordinates. The electric field (1) is solenoidal: 0=⋅∇ ⊥⊥ E

r
. Here 

2222
0 βαγεχ +=−= k  is the transverse wave number in the dielectric. Moreover, the 

filed inside satisfies the wave (Helmholtz) equation inasmuch as we apply the condition 
2222

0 γβαε ++=k .                                                    (2) 
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It is convenient to classify the modes by component zH  parity-oddness properties 
relatively x and y coordinates using which one can express all other electric and magnetic 
components.  Particularly, for electric filed (1) there are ( ) yHjE zx ∂∂−= // 2

0 χωµ , 
( ) xHjE zy ∂∂= // 2

0 χωµ . It is need else to find two additional equations connecting three 
quantities ( γβα ,, ) in order to determine the propagation constant γ . We will use for this 
the hyper-singular integral equation (IE) for electric field in the cross-section S of arbitrary 
inhomogeneous dielectric waveguide (DW) [25,26]: 

( ) ( ) ( )[ ] ( )( ) ( ) ( ) ydxdrErrrHkzjzjjrE
S

′′′′′−+−∇⊗−∇
−

= ⊥⊥⊥⊥⊥⊥⊥ ∫
rrrrrrrrr κχγγ 0

2
0

2
0004

  .       (3) 

Here yyxx ∂∂+∂∂=∇⊥ // 00
rr , the symbol ⊗  denotes the tensor (dyadic) multiplication, 

( )2
0H  is the Hankel function of second kind and zero index, 22

00 γχ −= k  is transverse 
wave number in vacuum, the zero indexes denote the orthonormal coordinate vectors. Let 
( ) ( )( ) 4/0

2
0 ⊥⊥⊥⊥ ′−−=′− rrjHrrg rrrr χ  denotes the two-dimensional Green’s function (GF). The 

operator corresponding with equation (3) belongs to pseudo-differential ones [31]. In our 
case the equation has the form  

( ) [ ] ( ) ( ) ydxdrErrgkrE
S

′′′′−+∇⊗∇= ⊥⊥⊥⊥⊥⊥⊥⊥ ∫
rrrrrr

2
0κ .                          (4) 

Let ( )⊥⊥ rF rr
 is the continuously differentiable vector in the rectangular region S. We turn 

from the equation (4) to corresponded bilinear functional: 
( ) ( ) ( ) ( ) ( ) 02

0 =−′′′′−−=Φ ∫ ∫∫ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ IdxdyydxdrErrgrFkdxdyrErF
S SS

rrrrrrrrrr
κ .         (5) 

The equality to zero in the (5) is achieved on the exact solution. The integral I in (5) may be 
transformed as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) .dSSdrErrgrFdlSdrErrgrFr

dxdyydxdrErrgrFI

S SL S

S S

′′′−⋅∇⋅∇−′′′−⋅∇⋅=

=′′′′−∇⊗∇=

∫ ∫∫ ∫

∫ ∫

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

⊥⊥⊥⊥⊥⊥⊥⊥

rrrrrrrrrrrrrr

rrrrrr

κνκ

κ
 

(6) 
Here L  is the bounding rectangular contour for rectangular cross-section, dxdyrddS ≡≡ 2  
is the elementary surface element, νr  is the unite normal to the contour vector in the plane 
x,y. It is convenient to take the function ⊥F

r
 so that her normal component is zero on the 

contour. Then the first integral in the (6) disappears. If one demands the condition 
( ) 0=⋅∇ ⊥⊥⊥ rF rr

 then the second integral in the (6) disappears. On assumption of both 
conditions one has 0=I . The equality (5) gives the additional condition for 
γ determination. Fitting two vector-functions ( )⊥⊥ rF rr

 one can get two necessary conditions. 
However, if the function ( )⊥⊥ rF rr

 is chosen, then the ( )⊥rFx x
rr

0  and ( )⊥rFy y
rr

0  also are the same 
functions. Indeed, their normal components are equal to zero if it is justly for initial vector-
function F

r
. Thus, choice of two-component vector-function defines two additional 

conditions. 
 It is expedient to choose the weight functions F

r
 in such way that they have the 

same symmetry as the desired solution. Then the functions with zero normal components 
on the contour (accurate within any multiplier) take the form 

( ) ( )
( )

( )
( )






′′′′
′′









′′
′

=⊥ y
y

x
x

rF
nl

nl

m

m
x ββ

ββ
α
α

sin
cos

sin
cosr ,      ( ) ( )

( )
( )
( )






′′
′









′′′′
′′

=⊥ y
y

x
x

rF
l

l

mm

mm
y β

β
αα
αα

cos
sin

cos
sinr   ,          (7) 
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( ) ( )
( )

( )
( )






′′′
′′′′









′′
′

=⊥ y
y

x
x

rF
ll

ll

m

m
x ββ

ββ
α
α

cos
sin

sin
cosr ,      ( ) ( )

( )
( )
( )






′
′′









′′′′
′′

−=⊥ y
y

x
x

rF
l

l

mm

mm
y β

β
αα
αα

sin
cos

cos
sinr .           (8) 

Here ( ) amm /2/1 πα −=′ , amm /πα =′′ , bll /πβ =′ , ( ) bll /2/1 πβ −=′′ , ,...2,1, =lm , and the 
functions (7)–(8) are solenoidal. They may be used as initial approaches to the solutions for 
the modes with appropriate indexes. It is possible to use also non solenoidal functions. The 
same, for example, are the functions ( )⊥rFx x

rr
0 , ( )⊥rFy y

rr
0 . At the same time the integral I 

may be defined for each function. 
 Substituting the relations (7)–(8) in to functional (5), we get the necessary number  
equations for α  and β  determination. Thus, using the two above named functions we have 

( ) ( ) ( ) yy
S

y
S

y IIdxdyydxdrErrgrFk 0
2
0 /








+′′′′−= ∫ ∫ ⊥⊥⊥⊥

rrrrκα   ,                          (9) 

( ) ( ) ( ) xx
S

x
S

x IIdxdyydxdrErrgrFk 0
2
0 /








+′′′′−= ∫ ∫ ⊥⊥⊥⊥

rrrrκβ    .                       (10) 

Here xI  and yI  are the significances of integral (6), yx II −= , and xI0β  and yI0α  are the  
significances of the first integral in (5) for these two function. As example, for the upper 
functions in the (1,а) there is 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ,sinsinsinsin

coscoscoscos0









′−
′−

+
′+
′+









′−
′−

+
′+
′+

=

=′′= ∫ ∫
− −

l

l

l

l

m

m

m

m

a

a

b

b
lmx

bbaa

dxdyyyxxI

ββ
ββ

ββ
ββ

αα
αα

αα
αα

ββαα
 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) .sinsinsinsin

sinsinsinsin0









′+
′+

−
′−
′−









′+
′+

−
′−
′−

=

=′′= ∫ ∫
− −

l

l

l

l

m

m

m

m

a

a

b

b
lmy

bbaa

dxdyyyxxI

ββ
ββ

ββ
ββ

αα
αα

αα
αα

ββαα
 

Correspondingly, the integrals in the numerators of  (9)–(10) may be introduced as: 

( ) ( ) ( ) ( ) ( ) =′






 ′−
∂
∂′+′−

∂
∂′

∂
∂

−=−= ∫ ∫ ⊥⊥⊥⊥⊥⊥⊥ dSSdrrg
y

rErrg
x

rErF
x

II
S S

yxxyx
rrrrrrrκ  

( ) ( ) ( ) ( ) ( ) .dSSdrrg
y

rErrg
x

rErF
yxS S

yxy ′






 ′−
∂
∂′+′−

∂
∂′

∂
∂

= ∫ ∫ ⊥⊥⊥⊥⊥⊥⊥
rrrrrrrκ  

Instead of equations (9)–(10) one can use similar relations for the functions (7)–(8) under 
the different indexes, and also for other functions. Such equations with the relation (2) 
allow to determine the eigenmodes with the parameters nα , nβ , nγ  for each 0k , where 

,....2,1,0=n  denotes their numeration. It is appropriate to introduce this numeration for 
each group of modes having the adjusted symmetry (for example, with even component xE  
relative to both coordinates). It must notice that nα  and nβ  depend from frequency and do 
not coincide with the significances ( )am 2/π  and ( )bl 2/π ,  where m and l  are the integers 
(the numbers of field variations with the coordinates). Therefore the classification like mlH  
is not quite successful. If the permittivity ε  is real then there are the slow surface 
eigenmodes with 0kn >γ . In this case the transversal wavenumber 0χ  is imaginary, and GF 
is presented by MakDonald’s  function 0K  and is real. There is finite number of such 
functions for any given frequency. In the opposite case the GF is complex, and the problem 
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is not self-conjugate. Complex in this case will be the modes and their parameters. All 
modes are complex in presence of dielectric loss i.e. for the case εεε ′′−′= j . 

The mode parameters are entering nonlinearly into the equations. To determine 
these, it is proper to use the iteration methods and algorithms. If the principle of contraction 
is fulfilled then iteration approaches converge to appointed value from any initial 
approximation in this region. Let such solutions 0α , 0β , 0γ  are determined. The 

corresponding transverse function is ( )yxE ,0

r
. The test functions for the second mode 

determination must be orthogonal to 0E
r

. It is obvious, this is  

( ) ( ) ( ) ( ) ( ) ( ) 2

000 ,/,,,,,,~ yxEyxEyxEyxEyxEyxE
rrrrrr

⊥⊥ −= , 

where the Dirac’s brackets denote the innerproduct in the form of the integral over S from 
product of functions,  denotes the norm, and ⊥E

r
 is determined from (1). 

 Other based on the equation (4) approach follows from the integration by parts and 
construction of quadratic functional. Let write the (4) in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ydxd
y

rrgrE
x

rrgrE
x

ydxdrErrgkrE
S

yxx
S

x ′′







∂

′−∂′+
∂

′−∂′
∂
∂

+′′′′−= ∫∫ ⊥⊥
⊥

⊥⊥
⊥⊥⊥⊥⊥

−
rr

r
rr

rrrrr 2
0

1κ , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ydxd
y

rrgrE
x

rrgrE
y

ydxdrErrgkrE
S

yxy
S

y ′′







∂

′−∂′+
∂

′−∂′
∂
∂

+′′′′−= ∫∫ ⊥⊥
⊥

⊥⊥
⊥⊥⊥⊥⊥

−
rr

r
rr

rrrrr 2
0

1κ . 

Then the right  integrals are integrating by parts. For example: 

( ) ( ) ( ) ( ) ( ) ( )
−′′

′∂
′∂′−=′′

′∂
′−∂′=′′

∂
′−∂′ ∫∫∫ ⊥

⊥⊥
⊥⊥

⊥
⊥⊥

⊥ ydxd
x

rErrgydxd
x

rrgrEydxd
x

rrgrE
S

x

S
x

S
x 2

2

2

2

2

2 r
rr

rr
r

rr
r  

( ) ( ) ( ) ( )[ ]∫
−

−′′−′−+−′′−−−
b

b
xxxx ydyaEyyaxgyaEyyaxg ,,,,  

( ) ( ) ( ) ( )
∫
−

′





′∂
′−∂′−+−

′∂
′∂′−−−

b

b

xx yd
x

yaEyyaxg
x

yaEyyaxg ,,,, , 

( ) ( ) ( ) ( ) ( ) ( )
−′′

′∂′∂

′∂
′−=′′

′∂′∂
′−∂′=′′

∂∂
′−∂′ ∫∫∫ ⊥

⊥⊥
⊥⊥

⊥
⊥⊥

⊥ ydxd
yx
rE

rrgydxd
yx

rrgrEydxd
yx

rrgrE
S

y

S
y

S
y

r
rr

rr
r

rr
r

222

 

( ) ( ) ( ) ( )[ ]∫
−

−′−′+′−−′−′−−
a

a
yxyx xdbxEbyxxgbxEbyxxg ,,,,  

( ) ( ) ( ) ( ) ( ) ( )
−′′

′∂′∂

′∂
′−=′








′∂

′−∂
′−+−

′∂

′∂
′−−− ∫∫ ⊥

⊥⊥
−

ydxd
yx
rE

rrgyd
y

yaE
yyaxg

y
yaE

yyaxg
S

y
b

b

yy
r

rr
2,

,
,

,

 

( ) ( ) ( ) ( )[ ]∫
−

−′′−′−+−′′−−−
b

b
yyyy ydyaEyyaxgyaEyyaxg ,,,,  

( ) ( ) ( ) ( )
∫
−

′







′∂
−′∂

+′−−
′∂

′∂
−′−−

a

a

yy xd
x

bxE
byxxg

x
bxE

byxxg
,

,
,

, . 

The remaining integrals result by index replacement x ↔  y. by virtue of electric field 
solenoidality the first equation is transformed thus: 

( ) ( ) ( ) −′′′′−= ⊥⊥⊥⊥
− ∫ ydxdrErrgkrE x

S
x

rrrr 2
0

1κ  

( ) ( ) ( ) ( )[ ]∫
−

−′′−′−+−′′−−−
b

b
xxxx ydyaEyyaxgyaEyyaxg ,,,,  
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( ) ( ) ( ) ( )[ ]∫
−

′−′+′−−′−′−−
a

a
yxyx xdbxEbyxxgbxEbyxxg ,,,, . 

The second equation follows by replacement x ↔  y.  Obviously, it is sufficient to conside 
two cases from four cases determined by (1). Let, for example, consider the first: 

( ) ( ) ( )yxEx βαχβ coscos/= , ( ) ( ) ( )yxEy βαχα sinsin/= . Multiplying the first equation on 

xE  and integrating over the S, one can get the equation for βα / : 

( ) ( ) ( ) ( ) ( ) +′′′′′′− ∫ ∫ ∫ ∫−
a b a b

ee
x dxdyydxdyxyxyxGyxkI

0 0 0 0

2
00

1 coscos,|,coscos βαβακ

( ) ( ) ( ) ( ) ( ) =′′′+ ∫ ∫ ∫
a b b

ee
xx dxdyydyayyxGyx

0 0 0

coscos|,coscos βαβα  

( ) ( ) ( ) ( ) ( )∫ ∫ ∫ ′′′=
a b a

ee
xy dxdyxdbxxyxGyx

0 0 0

sinsin|,coscos βαβα
β
α . 

Here the integral xI0  is defined for ββαα =′=′ ,  and the following kernels are introduced: 
( ) ( ) ( ) ( ) ( )[ ]yyxxgyyxxgyyxxgyyxxgyxyxGee ′+′++′+′−+′−′++′−′−=′′ ,,,,,|, , 
( ) ( ) ( ) ( ) ( )[ ]yyaxgyyaxgyyaxgyyaxgyyxG xxxx

ee
xx ′++−′−+−′+−+′−−=′ ,,,,|, , 
( ) ( ) ( ) ( ) ( )[ ]byxxgbyxxgbyxxgbyxxgxyxG xxxx

ee
xy +′+−−′+−+′−+−′−=′ ,,,,|, . 

The second equation for αβ /  is derived in a similar way. Using the vector form of above 
equations, we have the quadratic functional for 2

0k : 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )∫ ∫

∫ ∫ ∫
′′⋅′−

′′⋅′′−⋅+
=

⊥⊥⊥⊥⊥⊥

⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
−

S S

S L L

SdSdrErErrg

ldldrErrrgrErdSrE
k rrrrrr

rrrrrrrrrrrr
ννκ 21

2
0  .               (11) 

Here the first integral in the numerator is equal ( ) 2
0

2
0

21 / χαβκ yx II +− , and the integral in 
the denominator has the form 

( ) ( ) ( ) ( ) ( ) ( )[ ]∫ ∫ ∫ ∫ ′′′′′′+′′′′
a b a b

yyyxxx dxdyydxdyxEyxyxGyxEyxEyxyxGyxE
0 0 0 0

,,|,,,,|,, . 

By its symmetry the double loop integral in the numerator is converted to the sum of two-
dimensional integrals with limits on integrals ( )a,0  and ( )b,0 . As it is easily seen, it is 
equal to zero. The introduced kernels are depended on mode type. Thus, if xE  is even 
relatively both arguments then ee

x GG ≡  (symbol “e” denotes the parity). The functional 
(11) depends nonlinearly depends on 2

0k  and it may be used to determine wave number 
dependence on γ . Particularly, setting the γ  for the case of square waveguide with 
symmetrical mode βα =  and zero-order approximation for 0k , one can get the relation 

( ) 2/22
0 γεα −= k  which allows to determine the next order approximation for 0k  from 

(11), i.e. to construct the dispersion low ( )0kγ . 
The dispersion for quadratic DW with permittivity 4=ε  is presented at Fig. 1, 2. 

The calculations have been performed by getting the stationary values of functional (11), 
which have been obtained by successive approximations method (SAM). The SAM rate of 
convergence near the critical frequencies is strongly reduced and the region of convergence 
is converged. Therefore it is impossible to approach closely to critical frequencies. 
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In the regions near the critical frequencies there are the mode jumps to the 
neighboring highest mode branches, i.e. each γ  corresponds with the highest 0k  obtained 
by SAM. Sometimes for two first modes near the second critical frequency it is possible to 
find two  0k  values.  Note, that GF turn to infinity at the critical  frequency.   The   integrals   

0.0 2.0 4.0 6.0
0.0

4.0

8.0

12.0
γa

k0 a

1

2

 
Fig. 1. Dispersion in the quadratic dielectric waveguide: solid curves – modes  eo

nnH δδ ++ , , 

dashed curves – modes ee
nnH δδ ++ , , dashed straight line – 0k=γ  and εγ 0k=  
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Fig. 2. Dispersion of the mode eoHδδ   of square section dielectric waveguide with c 0.4=ε : the 

curves 3, 5 have been obtained by iteration method, the curves 1 and 2 correspond to lines 0k=γ  

and εγ 0k= , the curve 4 has been obtained by bisection method 
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in  (11)  have  been calculated by mean-value method and decomposition of intervals ( )a,0  
and ( )b,0  on N parts with taking into account the symmetry. 

The singularity has been taken into account by extraction of corresponding 
elementary regions (for which ⊥⊥ ′= rr rr ) and by the analytical integration over the equivalent 
circular regions with equal square 22 / Na  (for ba = ). The results of lower mode  eoHδδ  
calculation are produced in the table for two values N. We have used such classification: 
index “e” on the fist place denotes the component zH  parity with regard to x, and on the 
second place – relative to y. Correspondingly index “o” denotes the oddness. The index δ  
is not integer and depended from frequency. It designates the number of field variation 
along the coordinates, i.e. is is determined from the equation ( ) ( )an 2/πδα += . For 
quadratic DW the modes are doubly degenerate. After the passage from dispersion branches 
the index δ  gets the jump. Therefore it is convenient to introduce such mode classification: 

( )( )
µν

δδ ++ nnH . Here νµ,  have the values oe, , and mode number n  – values ,...2,1,0  Then the 
main mode has 0=n .  

The main mode eoHδδ  dispersion is presented in the Fig. 2. The first part of curve 
corresponds with Fig. 1. The second part of curve has been obtained by iteration of (9). In 
the region of second critical frequency and lower this iterations do not converge. And the 
convergence to main mode takes place for the functional (11) in the region lower the 
second crucial frequency. Here there is the analogy with dielectric resonators for which the 
iterations converge to the mode with lowest resonant frequency. 
 
The mode eoHδδ  parameters for quadratic DW under the two numbers N of integration points 

ak0  α  δ  aγ  

N=3 N=5 N=3 N=5 N=3 N=5 
0.70 0.61597 0.61642 0.71682 0.71600 0.45634 0.45683 
0.75 0.64525 0.64606 0.74307 0.74489 0.47305 0.47365 
0.80 0.67424 0.67485 0.76756 0.76759 0.48866 0.48935 
0.90 0.72989 0.73066 0.81269 0.81408 0.51738 0.51826 
1.00 0.78405 0.78461 0.85409 0.85512 0.54373 0.54438 
1.10 0.83742 0.83847 0.89051 0.89503 0.56853 0.56979 
1.20 0.89049 0.89168 0.93056 0.93485 0.59241 0.59327 
1.30 0.94364 0.94499 0.96742 0.97004 0.57735 0.61755 

 
 Let consider the algorithm generalization for inhomogeneous in one y-direction 
RDW, i.e. let consider that permittivity is the function of this coordinate: ( )yεε = . In the 
case of RDW symmetry it is usually even function. Let use the piecewise constant its 
approximation. It means that there are the coordinate massive ly , for which 00 =y , 

2/byN = , and in each layer the permittivity has the constant value lε , Nl ,...,2,1= . We 
determine the field by the functions (1) with parameters α , lβ , γ . Inasmuch as the 
component xE  continuous, and the component yE  has the jump at the division boundaries, 
there are only two independent parameters from 1+N  parameters α , lβ . Let take such α  
and 1β , and the remaining we will expressed through 1β . For example, for above 
considered case we have 

( ) ( )llllll yy 11 coscos ++= ββββ ,        ( ) ( )llllll yy 11 sinsin ++= βεβε ,                 (12) 
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and ( ) ( ) ( )llllllll yy βεεβββ 22
11 sin/1/cos ++ −= , 1,...,2,1 −= Nl . If the function ( )yε  is 

neither even nor odd then no y symmetry, therefore the dependence must be taken as 
( ) ( )yByA llll ββ cossin + . In this case the layers may be unsymmetrical placed in the RDW 

region ay ≤≤0 . For N layers we have the 13 +N  unknown magnitudes, the ( )12 −N  
conditions of kind (12) and the N conditions of kind (2). One more condition we impose 
taking 11 =A  by force of problem homogeneity. Thus, again we have the two unknown 
parameters. It is easier to express the amplitudes in the layers via the amplitudes in the first 
layer using the transfer matrix. Note, that the odd function ( )yε  for 0<y  means 
symmetric negative permittivity values, which hypothetical (only at one frequency) may 
correspond to plasma RDW with y-nonuniform (nonequilibrium) charge carriers 
distribution. 
 At last, let consider the extension for the E- modes and for hybrid modes HE and 
EH. There are the three E-filed components in all these cases. For E- mode more proper to 
use the formulating relatively the two magnetic field components. In this case the singular 
integrodifferential equation is 

( ) ( ) ( ) ( ) ( )( ) ( )∫ ′′×−∇′′′−×−∇= ⊥⊥⊥
−

⊥⊥⊥⊥⊥
S

rdrHzjrrrrgzjrH 2
0

1
0 ˆˆ rrrrrrrrrr

γεκγ   .            (13) 

It is offered in the general form for the inhomogeneous anisotropic dielectric and means the 
availability of tri-component magnetic field. The E- modes in the uniform RDW are 
described by the equation 

( ) ( ) ( ) ( ) ( ) 







′′′−+′′×∇′′−×∇

−
= ∫∫ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

SS

rdrHrrgrdrHrrgrH 2221 rrrrrrrrrr
γ

ε
ε   .      (14) 

The test-functions for magnetic field are the same as (1). The integration in (14) with 
corresponding weight function leads to the functional with weakly singular (logarithmically 
singular) kernel. If one uses the electric field formulation then it is necessary to introduce 
the additional term into (4) and also the additional equation for longitudinal component: 

( ) [ ] ( ) ( ) ( ) ( )








′′′−∇−′′′−+∇⊗∇= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∫∫ rdrErrgjrdrErrgkrE z
SS

222
0

rrrrrrrrr
γκ ,         (15) 

( ) ( ) ( ) ( ) ( )








′′′−+′′′−⋅∇−= ⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∫∫ rdrErrgrdrErrgjrE z
SS

z
2

0
2 rrrrrrrr χγκ .                (16) 

In the case of E- mode with even component zE  relatively x and y we have 
( ) ( ) ( ) ( ) ( )zjyxrEx γβαχαγ −−= expcossin/ 2r , 
( ) ( ) ( ) ( ) ( )zjyxrEy γβαχβγ −−= expsincos/ 2r , 

( ) ( ) ( ) ( )zjyxjrEz γβα −= expcoscosr . 
In general case for such hybrid mode one must use 

( ) ( ) [ ] ( ) ( ) ( )zjyxBArEx γβααβχγ −−= expcossin/ 2r , 

( ) ( ) [ ] ( ) ( ) ( )zjyxBArEy γβαβαχγ −+−= expsincos/ 2r , 
( ) ( ) ( ) ( )zjyxjBrEz γβα −= expcoscosr . 

According to homogeneity of the problem we can arbitrary set one of amplitude 
parameters, putting for example 1=B . Consequently, there are three scalar equations (15)–
(16) for tree parameters determination. The modes with different symmetries have similarly 
forms. Often the other classifications are used: x

mnE  or y
mnE  in [3], or even ⊥HE - mode and 

odd ||HE - mode according to Schlosser [1] (when ba > ). Concerning the modes with 
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0=yE  or 0=xE  may be considerable. They may be treated as H- modes concerning x or y 
axes, or as modes LE. The indexes m and n here are also integer only approximately. 
Evident, the test functions for such even mode are ( ) ( )yxEx βαγ coscos= , 

( ) ( )yxjEz βαα cossin= . 
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Fig. 3. Dispersion zk′=γ  for LM2 - mode (a) and deceleration (b) in the plane-parallel waveguide at 
the following parameters of infinite coats: 0.3=ε  (the curve 1); 0.12=ε  (2); 0.120.12 j−=ε (3 

– daggers); 4100.1 j−=ε  (4) 
 
 The plane-parallel waveguide structures have been also considered in this paper. In 
this case the rigorous dispersion equation [33] 

( ) 02/tan =+ akjZZ x
e
w

e                                                        (17) 

had been sole using the iteration approach. Here the dimension b  is infinite, e
wZ  is the 

wave core impedance and eZ  is the covering impedance transformed to the core at ax = . 
The multilayered and homogeneous finite and infinite coating has been considered. The 
results of the equation (17) solutions are presented in the fig. 3-5 for different electro-
physical parameters of coating and hollow core. The iterations have been performed using 
the step by step impedances, xk  and zk  calculations from high frequencies with little step. 
The initial values for xk  have been taken as the values at previous frequency value. The fig. 
1–2 present the results for mode with index m=1 for real and complex permittivity values. 
The retardation is less then unity and weakly changing. It sharply falls down and reaches 
the its minimum and the loss increases at some frequency. At very low frequencies the 
wave is slow and leaky with great attenuation. The slowness in this case is caused by wave 
penetration into coating which refractive index is greater than unity and the reflection 
coefficient for near 2/π  glancing angle is not small. The fig. 3 demonstrates the 
deceleration for first four modes when the coating is the copper with ( )ωεσε 00 /10 j−=  
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and the conductivity 7
0 108.5 ⋅=σ  S/m. For the quasi-T- mode in the wide frequency band 

the deceleration n is practically equal to unity and increases at very low frequencies. In the 
region sufficiently low than cutoff we have 1<<n , but there is the sharp increase up to 
values 1>>n  in the region of  superlow frequencies. The cutoff is defined by the condition 

πmakx 2=  and corresponds to the condition ∞=0σ .  The multilayered coatings including 
the dielectric and semiconductor layers have been investigated also. For the semiconductor 
plasma there is three cases. The first corresponds to low frequencies when ε ′  is negative. 
The second one corresponds to the real part coating permittivity values 10 <′< ε , and the 
third  when 1>′ε  corresponds to the hollow center channel waveguide which is realized at 
high frequencies. 

 
 
 
 

 
 
 

Fig. 4. Deceleration of even LM2m- modes (m=0,1,2,3) for small in the case ( )ωεσε 00 /10 j−= , 
7

0 108.5 ⋅=σ  S/m (copper) 
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Fig. 5. The deceleration (a) and the normalized loss (b) for even LM2m- modes (the number of curve 

corresponds to the value m) at small frequencies for copper walls correspond to fig. 4 
 
 

Conclusions 
 

The nonlinear equations for two-component transverse RDW wavenumber 
determination have been obtained using dielectric waveguide integral equation and 
corresponding functionals. The eigenmode dispersion problem is reduced to the solution of 
two nonlinear equations for two parameters. For this the standard numerical methods may 
be applied, for example, the iterations procedures or the minimization of discrepancies. 
Apparently, the last way may be more efficient to determine all dispersion branches, and 
also for the regions near critical frequencies. The dimension for the quadratic DW with 
symmetric modes ( βα = ) is unit. The derived equations also may be used below the 
frequency cutoff, and for the lossy dielectric case when the propagation constant γ  is 
complex.  

The extension of derived equations for nonuniform in one direction RDW has been 
performed using the piecewise constant approximation. In this case the problem dimension 
equals to three, i.e. one must solve three equations with three unknowns.  

The field presentation as the sum of functions like (1) with unknown amplitudes and 
the set of parameters which satisfy (2) may be used in the case of DR with arbitrary 
boundary. Such functions play a part of metaharmonic functions for field approximation 
along with cylindrical harmonics [1,17,32]. 

The on-dimensional case of core coated by finite or infinite multilayered coating has 
been also investigated numerically using the iteration procedures. The results of complex 
mode solutions demonstrate some interesting properties at low frequencies. 
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   Abstract – The nonconventional problem statement about the electrooptical effect of the Pockels 
in form of the Maxwell equations for some electrooptical crystals is offered. The generalized 
expressions, which spot allowances to the components of the impermeability tensor caused by the 
linear electrooptical effect,   are obtained. The expressions for the components of vector of electric 
intensity of optical plane wave propagating in the given electrooptical crystals, are deduced. The 
Maxwell scalar equations which have been written down concerning required components of 
dielectric density and magnetic intensity of optical plane wave, taking into account the Pockels 
electro-optical effect for crystal of lithium niobate, are gained. The given statement of a problem 
about the Pockels electro-optical effect in form of the Maxwell equations allows to transfer to the 
wave equations and to find their solutions for optical waves propagating in presented crystals, 
taking into account the Pockels electro-optical effect. 
 

1. Introduction 
 
 At studying of propagation of electromagnetic waves in anisotropic mediums, 
including the presence of an external electric field, the method of an ellipsoid of refractive 
exponents [1] is widely used. The given method allows to determine refractive exponents in 
the given propagation directions in a crystal, but does not give, in our opinion accurate 
representation about the transformation of the field structures of electromagnetic waves in 
the process of their propagation in anisotropic mediums, in particular in electrooptical 
crystals in the conditions of existence of the Pockels electro-optical effect.    
  In the present work a problem statement about propagation of optical waves in the 
some  crystals in the presence of the linear electro-optical effect, in form of the Maxwell 
equations is offered, allowing further to solve a task  concerning fields of these waves.  
   

2. The definition of the components of the impermeability tensor of a crystal 
in the conditions of existence of the Pockels electro-optical effect 

  
The propagation of optical waves in a crystal is identified by the impermeability tensor: 

( ) 1
0 ˆˆ −= εεη ,       (1) 

where 
















=
ο

ο

ο

00
00
00

ˆ

zz

yy

xx

ε
ε

ε
ε  -  the permittivity tensor in coordinates system which coincides 

with main dielectric axes in a crystal (without the Pockels electro-optical effect); 0ε - a 
permittivity of vacuum, and we consider, that the crystal is the homogeneous, non-
absorptive and magnitno-isotropic medium. 
 According to a quantum theory of solid bodies, the impermeability tensor depends 
on allocation of charges in a crystal. Superimposition of exterior electric field стE

r
 will lead 

to redistribution of latent electricities and to partial deformation of the ionic lattice, what in 
turn will lead to change of the impermeability tensor: 
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( ) стст 0)( kijkijijij ErE =−=∆ ηηη
r

,    (2) 
where the summation index k means: x=1 , y=2 , z=3 ; 










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

==
ο

ο

ο

ο

00
00
00

ˆ)0(ˆ

zz
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xx

η
η

η
ηη  - the impermeability tensor without the Pockels electro-optical 

effect, and: ο
0ο

xx
xx ε

εη = , ο
0ο

yy
yy ε

εη = , ο
0ο

zz
zz ε

εη = ; 
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


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

==

zzzyzx

yzyyyx

xzxyxx

E
ηηη
ηηη
ηηη

ηη ˆ)(ˆ ст
r

 - the impermeability tensor in the presence of a stationary 

exterior electric field стE
r

;  







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









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
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  ˆ
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rrr
rrr
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rrr

r  -  the electro-optical tensor of the third rank. 

 The electric intensity of optical beam (of electromagnetic plane wave), taking into 
account the Pockels electro-optical effect, is determined by the vector relation: 

DE
rr

 ˆ1

0

η
ε

= , 

where D
r

 - the electric inductance vector, or three scalar expressions which have been 
written down in the Cartesian coordinates system, at which axes coincide with main 
dielectric axes in the unperturbed crystal (i.e. without an exterior electric field): 

( )zxzyxyxxxx DDDE ηηη
ε

++=
0

1 ,   

( )zyzyyyxyxy DDDE ηηη
ε

++=
0

1 ,                            (3) 

( )zzzyzyxzxz DDDE ηηη
ε

++=
0

1 ,    

The components of the indignant impermeability tensor in expressions (3) are determined 
as follows: 

xxxxxx ηηη ∆+= ο ;  xyxy ηη ∆= ;  xzxz ηη ∆= ; 

yxyx ηη ∆= ;  yyyyyy ηηη ∆+= ο ;  yzyz ηη ∆= ;      (4) 

zxzx ηη ∆= ;  zyzy ηη ∆= ;  zzzzzz ηηη ∆+= ο . 
The allowances to expressions (4) for a components  of the impermeability tensor, caused 
by electro-optical effect, in a general form are determined on the basis of a relation (2), 
taking into account a known rule of a relabel of pair coefficients: ;2)22(     ;1)11( ⇒⇒  

;3)33( ⇒    6)21()12(     ;5)31()13(     ;4)32()23( ⇒=⇒=⇒= , as follows: 
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1,1111 zyxzyx ErErErErErEr ++=++=∆η ; 
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ст
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1,122112 zyxzyx ErErErErErEr ++=++=∆=∆ ηη ; 
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ст
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ст
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ст
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1,133113 zyxzyx ErErErErErEr ++=++=∆=∆ ηη ; 
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1,2222 zyxzyx ErErErErErEr ++=++=∆η ; 
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ст
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ст

12
ст

11 zyxxx ErErEr ++=∆η ; 
ст

63
ст

62
ст

61 zyxyxxy ErErEr ++=∆=∆ ηη ; 
ст

53
ст

52
ст

51 zyxzxxz ErErEr ++=∆=∆ ηη ; 
ст

23
ст

22
ст

21 zyxyy ErErEr ++=∆η ;        
(5) 

ст
43

ст
42

ст
41 zyxzyyz ErErEr ++=∆=∆ ηη ; 

    ст
33

ст
32

ст
31 zyxzz ErErEr ++=∆η . 

 
3.  The definition of the components   of vector of an electric intensity 

of optical plane wave, propagating in crystals of lithium niobate, 
barium titanate, strontium-barium niobate 

 
For the crystal of lithium niobate ( 3LiNbO ), having a symmetry point group 3m, the 

electro-optical tensor is determined in the form [2]: 
 



























−

−

=

00
00
00

00
0
0

ˆ

22

51

51

33

1322

1322

r
r

r
r
rr
rr

r ,     (6) 

where at optical wave length (mcm) 633,0=λ : (m/V) 106,8 12
13

−⋅=r , 
(m/V) 108,30 12

33
−⋅=r , (m/V) 104,3 12

22
−⋅=r , (m/V) 1028 12

51
−⋅=r . 

Then allowances to the impermeability tensor, caused by the Pockels electro-optical 
effect, defined by expressions (5), for crystal 3LiNbO  become: 

( ) ст
13

ст
22 zyxx ErEr +−=∆η ; ( ) ст

22 xyxxy Er−=∆=∆ ηη ; ст
51 xzxxz Er=∆=∆ ηη ; 

(7) 
ст

13
ст

22 zyyy ErEr +=∆η ; ст
51 yzyyz Er=∆=∆ ηη ; ст

33 zzz Er=∆η . 

The components of the vector of electric intensity E
r

 of optical plane wave, propagating in 
the given crystal, taking into account the linear electro-optical effect, expressed through the 
components of the electric inductance vector D

r
, are defined by substitution of expressions 

(7) into (4), and then the obtained result - into expressions (3), and become: 

( ) ( ) 









+−++−+= zxyxxzy

xx
x DErDErDErErE ст
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ст
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13
ст

22ο
0

11
εε
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( ) 


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For the crystals of barium titanate ( 3BaTiO ) and strontium-barium niobate 

( 620,250,75 ONbBaSr ), having a symmetry group 4mm, the electro-optical tensor is determined 
in the form: 


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



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r
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r
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r

r ,        (9) 

where values of electro-optical coefficients for crystal 3BaTiO  at optical wave length 
(mcm) 633,0=λ : )m/V( 108 12

13
−⋅=r , )m/V( 1028 12

33
−⋅=r ; at )mcm( 546,0=λ : 

)m/V( 10820 12
51

−⋅=r . For the crystal 620,250,75 ONbBaSr  - at optical wave length 

(mcm) 633,0=λ : )m/V( 1067 12
13

−⋅=r , )m/V( 101640 12
33

−⋅=r , )m/V( 1042 12
51

−⋅=r . 
In this case, by analogy, expressions (5) for allowances to the impermeability tensor 

will become: 
 

ст
13 zxx Er=∆η ;  0=∆=∆ yxxy ηη ;  ст

51 xzxxz Er=∆=∆ ηη ; 
(10) 

ст
13 zyy Er=∆η ;  ст

51 yzyyz Er=∆=∆ ηη ;  ст
33 zzz Er=∆η , 

and expressions (3) for the crystals 3BaTiO  or 620,250,75 ONbBaSr , in turn, we will write 
down as follows: 
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4. The Maxwell equations for optical plane waves propagating in the crystals, 

taking into account the Pockels electro-optical effect 
 
 Now we will be turned to system of the homogeneous Maxwell equations, which 
completely describe an electromagnetic field of optical wave propagating in a crystal. Two 
first Maxwell equations: 

t
DH
∂
∂

=
r

r
rot ,      (12) 
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t
HE
∂
∂

−=
r

r
0rot µµ ,                  (13) 

we will write down in the scalar form in the Cartesian coordinates system. Then the first 
Maxwell equation (12) becomes:  

t
D

z
H

y
H xyz

∂
∂

=
∂
∂

−
∂
∂ ,  

t
D

x
H

z
H yzx

∂
∂

=
∂
∂

−
∂
∂ ,   

t
D

y
H

x
H zxy

∂
∂

=
∂
∂

−
∂
∂

,             (14) 

and accordingly the second equation (13) becomes: 
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E
x

E zxy
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∂

−=
∂
∂

−
∂
∂

0µµ ,

 (15) 
where H

r
 - magnetic intensity of optical plane wave, propagating in a crystal, µ  - magnetic 

permeability of medium, 0µ  - permeability of vacuum.   
 Obtained above expression (8) for the components of an electric intensity of the 
wave propagating in crystal 3LiNbO , taking into account the Pockels electro-optical effect, 
we will substitute in the equations (15). In this case the equations (15) become: 
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5. Conclusions 

 
Thus, have gained six scalar Maxwell equations ((14) and (16) - (18)), which are 

written down concerning required the components of the electric inductance xD , yD , zD  
and magnetic intensity xH , yH , zH  of the optical plane wave, taking into account the 
Pockels electro-optical effect, for lithium niobate. For other crystals ( 3BaTiO , 

620,250,75 ONbBaSr ), which considered here, the similar equations are obtained by analogy by 
substitution of corresponding expressions - (11) - for the components of electric intensity, 
into the second Maxwell equation (15) in the coordinate form. 

Then at the given statement of a problem about the Pockels electro-optical effect  in  
form of the Maxwell equations, it is possible to transfer to the wave equations, having 
excluded  xH , yH , zH  (having substituted (16) - (18) into (14)) and to find their solutions, 
for example, for the optical plane waves, propagating in considered crystals, taking into 



 

 31

account the Pockels electro-optical effect. Moreover, using a method of transformation of 
coordinates, it is possible to gain the expressions determining phase velocities of the optical 
waves propagating in electro-optical crystals in any direction. 
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   Abstract – Cutoff wavelengths of some high-order modes propagating in complex cross 

section shaped waveguides are simulated using approximate analytical models taken from the 
literature. Obtained results are compared with numerical data.     

 

1. Introduction 
 

     Complex cross section shaped waveguides (CCSW) find application in modern 
microwave engineering as basic units of directional couplers, transitions, ferrite circulators, 
polarizers and etc. Most of such waveguides belong to one of two groups: so-called 
waveguides with capacitance gap (WCG) and waveguides without metal septa. Rectangular 
T-septum waveguide (RTSW) and horseshoe shaped waveguide (HSW) are the examples of 
WCG (fig.1,a,b). Crossed rectangular waveguide (CRW) can be included in the second 
group (fig.1,c).    

     Different numerical approaches: partial domains method (PDM), method of 
integral equations, finite-difference method and finite element method (FEM) are used for 
computation of CCSW. Along with numerical techniques several analytical approximations 
sometimes are applied for the same purpose. Homogeneous and inhomogeneous CCSW can 
be simulated using transverse resonance method, perturbation method, equivalent networks 
method (ENM).  

 

 

 

 

 

 

                a                                                 b                                          c 

 

Fig. 1. Rectangular T-septum waveguide (a); horseshoe shaped waveguide (b) and 
crossed waveguide (c) 

 

2. Computational models for waveguides with capacitance gap 
 

It is well known that the dominant quasi-H10 mode of any WCG can be analyzed by 
means of ENM [1].  One of the restrictions of given method is impossibility of modeling 
high-order modes. We propose Oliner model, which is utilized presently for simulation of 
high-order modes in microsrtip lines [2] for calculation of the first high-order mode in 
RTSW: 
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ελ ′= 02 2tС ;       2 ≤ ε΄ ≤  8 ,                                    (1) 

 *2 02 ελ tC = ;   9 ≤ ε΄ ≤ 81 ,                                  (2) 

 )12(ln(0 ++=
l
dltt

π
 ,                                               (3) 

l
d101

)1(5.0)1(5.0*
+

−′
++′=

εεε  ,                                      (4) 

where ε΄ is the dielectric permittivity of the capacitance gap filling; t,d,l are the sizes of 
RTSW (fig.1,a).  

The first high-order mode in HSW can be approximately determined with the help 
of the expression for H11-mode in coaxial line [3]: 

])
2

(058333.0)
2

(16666.01[2 42
2

m

m

m

m
mС r

u
r

u
r −+= πλ ,             (5) 

where rm =  rк + Rк и um = 2(Rк-rк); here Rк  и  rк are the radiuses of the internal and 
external conductors of coaxial line. Sizes of coaxial line and HSW (fig.1,b): 
 

2Rк = t + 2d;  2rк = t; rm = t + d; um = 2d .                          (6) 
 

 When capacitance gap of HSW is filled with dielectric the cutoff wavelength of the first 

high-order mode HE2 is defined as: 

               ])(058333.0)(16666.01)[( 42
2 dt

d
dt

ddtkС +
−

+
++= επλ λ .           (7) 

 

Results of analytical and numerical modeling of the first high order mode in RTSW 

and HSW with dielectric in capacitance gap are represented in fig.2 and 3 respectively.  

Empirical coefficient kλ = 0.85 was used in expression (7) for calculations of  HSW. 

Computational  error  for  RTSW  with  sizes 0.3 ≤ t/a ≤ 0.9 does not exceed ∆ ≤ 4.5% but 

when 0.1 ≤ t/a ≤ 0.3 it rises up to ∆%  =  5 ÷ 12.  Approximate  analytical  model  for  

HSW  shows  ∆  =  6%   when  t/a < 0.25  and  ∆ = 8 %  when  0.25 ≤ t/a ≤ 0.4 relatively 

FEM.  Oliner model was compared with the Ritz-Galerkin method employed in [4] for 

simulation of inhomogeneous RTSW.  

 

3. Computational model for the lowest E-mode in crossed waveguide 
 

Wave numbers of the lowest E-mode in CCSW of the second group can be obtained 

with the help of approximate model, which takes into account  some  geometrical 

parameters of a waveguide cross section [5]: 
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π

   ,                                   (8) 

 

where ν = 2.4049 is the first root of Bessel function; L is the waveguide perimeter; S is the 

waveguide cross section square;  q is the radius of inscribed circle.   

 

 

 
 

 

Fig. 2. Cutoff wavelength of the HE2 mode in RTSW partially loaded 

with dielectric: b/a= 0.45; l/b = 0.05; ε΄ = 3 

 

 

Expression (8) has been tested in [5] on an examples of elliptical, sector, triangle 
and some other waveguides.   We employed this model for calculation of cutoff 
wavelengths of E11 mode propagating in symmetrical CRW with L = 8a; S = 8ad – 4d2. 
Comparison with theoretical data obtained by means of PDM [6] and FEM [7] shows a 
good agreement between all three approaches (fig.4).   
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Fig. 3. Cutoff wavelength of the HE2 mode in HSW partially loaded 

with dielectric: b/a= 0.5; d/a = 0.15 
 

 

          

 
Fig. 4. Cutoff wavelengths of E11 mode in CRW 
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4. Conclusion 
 
     So described analytical models can be successfully adapted for approximate calculation 
of some high-order H-, E-  and HE-modes in different type CCSW.    
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VECTOR ELECTRIC AND MAGNETIC POTENTIALS 
IN ELECTRODYNAMICS OF CONTINUOUS MEDIA 
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    Abstract – The possible approaches for introduction of vector-potentials in inhomogeneous 
anisotropic and bianisotropic media have been considered, and the new differential and 
integrodifferential equations for these potentials have been formulated. It has been shown that the 
potential boundary problem formulations have the advantages instead of field formulations. The 
iteration algorithms and finite elements have been proposed for solutions of potential boundary 
problems. The numerical simulations have been performed for investigation of δ01H  oscillations of 
homogeneous and inhomogeneous dielectric resonators. 

 

Introduction 
 

 In classical electrodynamics the final relations and equations, as a rule, are set in 
form of fields, and the potentials are usually introduced for simplification of problem 
solutions and for more simple expressions [1-25]. And at that one may do not use any 
potentials. In classical microscopic electromagnetics (electrodynamics of vacuum) the 
electrical vector-potential A

r
 and the scalar one φ  are connected with the fields by the 

relations [1] 
φgradtAE −∂−∂= /

rr
,    ArotHB

rrr
== 0µ  ,                                       (1) 

at that we consider the movement of point (elementary) charges or charged particles under 
the influence of field and also its excitation by accelerated moving charges. It is well 
known that the fields completely do not describe the quantum system, and the introduction 
of potentials is the necessity. In quantum electrodynamics they form the 4-potential and 
have the clear physical meaning. In macroscopic electromagnetics the vector and scalar 
potentials also are the measurable values [10,22,26,27], i.e. present the physical reality. The 
introduction only the electrical (one vector and one scalar) potentials is the consequence of 
the fact that predicted by Dirac elementary particles with magnetic charges (magnetic 
monopoles) have not discovered yet. 

The classical electrodynamics of continuous media ever operates with the material 
parameters introducing by averaging over the physical infinitesimal volume (i.e. by the 
homogenization) of electrical and magnetic polarization inputs under the movement of 
great number of matter particles in the field. The motion equations are replaced by 
equivalent in a certain sense material relations, and the field presentation by (1) is not quite 
convenient, as there are the electrical and magnetic polarization currents of matter. 
Therefore, in contrast to (1), it is convenient to use two symmetrical defined vector-
potentials: the electric one and the magnetic one [28], and also it is useful to introduce two 
densities of electrical e

inj
r

 and magnetic m
inj
r

 incident currents, which create the field. The 
last one is the auxiliary and having the property 0=m

injdiv
r

 i.e. may be consider (accurate 
within a factor) as the rotor of some real electric current density. We will consider several 
approaches to introduction of vector-potentials which describe stationary (harmonic in 
time) fields with the time dependence ( )tjωexp . All material parameters and field vectors 
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may depend on frequency (the time dispersion).  We will include the conductivity currents 
into media permittivity and permeability [28]: 

( )0/ˆ~ ωεσεε ej−=    ,     ( )0/ˆ~ ωµσµµ mj−=   .                                     (2) 
The tensors ε̂  and µ̂  will be complex for dispersive medium if even the free electric 
charges are absent [29]. The complex and frequency-dependent will be also (owing to 
Drude’s formula) the electrical conductivity ( )ecep

e j ωωεωσ += /0
2  caused by such charges 

(here epω  is plasma frequency, and ecω is the free charges collision frequency). The 
parameters in the relations (2) will be in general complex and inhomogeneous. The relation 

( ) 0~ =Hdiv
r

µ  is also fulfilled und the condition 0=m
injdiv
r

. It means the physical absence of 
volumetric magnetic charges. We will introduce below electric and magnetic polarization 
current densities. The availability of inhomogeneous magnetic medium leads to appearance 
of volumetric magnetic charges, as ( )( ) 0ˆ~ ≠−=− HdivHIdiv

rr
µ  (here Î  is the unit tensor). 

The fictitious surface magnetic charges may appear and on the media bedding interfaces 
[28]. In case of open magnetodielectric resonator it gives the input to magnetic-dipole 
radiation.  It is easy to see that the full magnetic charge of any magnetodielectric body at 
that is zero. We will further also introduce the general material relations for bianisotropic 
media (metamaterials), which are characterized by two additional cross-polarization tensors 
кросс-поляризаций. The material parameters for such artificial media are derived using the 
homogenization procedure [30,31] which is polysemantic in general case. In such media the 
material parameter tensors do not commute in general, that may fulfill in magnetic 
semiconductors in magnetic field. In particular, one can consider the metamaterials with 
magnetic and dielectric inclusions (including semiconductive ones) into background 
(matrix), which are placed in constant magnetic field and having two turned on arbitrary 
angles lattice and even having the different periods. The tensors are non-hermitian due to 
loss. Below it has been only proposed that they are non-singular. 

 
1. Potentials in inhomogeneous and anisotropic media 

 
By virtue of Helmholtz circulation theorem [32,33] the vector fields are the sum of 

their potential and solenoidal (vortical) parts and may be presented by several forms, for 
example, as 

( ) ( ) mee ArotAdivgradjAjE
rrrr

−•+−= −− 11
00

~~ εωεµωµ    ,                                  (3) 

( ) ( ) emm ArotAdivgradjAjH
rrrr

+•+−= −− 11
00

~~ µωµεωε   .                                  (4) 
Here the vector-potentials satisfy second order equations which are getting after the 
relations (3) and (4) substitutions into the Maxwell equations: 

( )[ ] ( )mme
in

eee ArotArotjjAkArotrotAdivgrad
rrrrrr

εεωεµεεε ~~~~~~
0

2
0

1 −+−=+•−• −  ,          (5) 

( )[ ] ( )eem
in

mmm ArotArotjjAkArotrotAdivgrad
rrrrrr

µµωµεµµµ ~~~~~~
0

2
0

1 −+−=+•−• − .          (6) 
The symbol •  here denotes the product of operators and it also be omitted, k 0

2 2
0 0=ω ε µ  is 

the wavenumber. Correspondingly in (5) and (6) the operators may be written in the forms: 
×∇×∇=• rotrot  и ⋅∇∇=∇⊗∇=• divgrad  Simple point means here the scalar 

product of two vectors, the symbol ×  denotes the vector product, and the symbol ⊗  
designates their tensor (dyadic) product. Accordingly, for any vector ar  one has 
( ) ( ) ( )aaadivgrad rrr

⋅∇∇=∇⊗∇=• . Further we will  use the different forms of operator 
notation. The operators in the square brackets in (5) and (6), generally speaking, are 
different. They will be identical for homogeneous anisotropic media if the matrixes ε~  and 
µ~  commute. Then we get the inhomogeneous general Helmholtz equation 
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[ ] ( ) ( )me
in

me jAk ,,2
0

2 ~~ rr
−=+∇ µε  .                                            (7) 

The equations (5) and (6) in general case have not separated. It is necessary for such 
separation the conversion to zero of second terms in its right parts. One may set up a 
correspondence for operator rot  the following matrix or operator 

















∂∂∂∂−
∂∂−∂∂
∂∂∂∂−

=
0//
/0/

//0

xy
xz

yz
rot . 

Under the commutation of operator rot  with the matrix ε~  and µ~  on the vector-potential 
functions equations are separable. Particularly, for the scalar permittivity and permeability 
the expressions in the parenthesis in (5), (6) have correspondingly the shape  mA

r
×∇− ε~  и 

eA
r

×∇µ~ , therefore the  separation takes place if the vectors µ~∇ , eA
r

 and  ε~∇ , mA
r

 are 
mutually collinear. For isotropic media (described by scalar parameters) it is possible also 
the representation in form 

( ) mee ArotAdivgradjAjE
rrrr

−+−= −− 11
00

~~ εωεµωµ    ,                                     (8) 

( ) emm ArotAdivgradjAjH
rrrr

++−= −− 11
00

~~ µωµεωε   ,                                     (9) 
where the new vector-potentials satisfy the equations 

[ ] me
in

e AjjAkrotrotdivgrad
rrr

×∇−−=+•−− εωεµεεε ~~~~~
0

2
0

1  ,                      (10) 

[ ] em
in

m AjjAkrotrotdivgrad
rrr

×∇+−=+•−− µωµεµµµ ~~~~~
0

2
0

1 .                      (11) 

The separation here takes place at 0~ =×∇ mA
r

ε , 0~ =×∇ eA
r

µ , and the equations get the 

sufficiently simple forms, for example [ ] ( ) e
in

ee jAAk
rrr

−=⋅∇∇++∇ −12
0

2 ~~~~ εεµε . At last, the 
fields may be presented  in the following way: 

( ) mee ArotAdivgradjAjE
rrrr ~~~ 1

00 −•+−= −ωεωµ    ,                                     (12) 

( ) emm ArotAdivgradjAjH
rrrr ~~~ 1

00 +•+−= −ωµωε   .                                     (13) 
And in this case the equations for introduces in (12), (13) potentials become so: 

( ) ( ) 



 ×∇−×∇×∇−+−=∇+ −− mee

in
e AjAIjAk

rrrr ~~ˆ~~~
0

1122
0 ωεεε  ,                   (14) 

( ) ( ) 



 ×∇+×∇×∇−+−=∇+ −− emm

in
m AjAIjAk

rrrr ~~ˆ~~~
0

1122
0 ωµµµ  .                   (15) 

They may be written in this way: 

( ) ( ) 



 ×∇−⋅∇∇+−−−=∇+ meee

in
e AjAAkIjAk

rrrrr ~~~ˆ~~
0

2
0

22
0 ωεε , 

( ) ( ) 



 ×∇+⋅∇∇+−−−=∇+ emmm

in
m AjAAkIjAk

rrrrr ~~~ˆ~~
0

2
0

22
0 ωµµ . 

These equations also are non-separable разделяются. The partial separation takes place 
either for nonmagnetic ( Î~ =µ ), or for nonelectric ( Î~ =ε ) media. Inn the first case the 

magnetic vector-potential  satisfy Helmholtz equation ( ) m
in

m jAk
rr

−=+∇
~2

0
2 , which has the 

standard solution. Using this  solution in the right part of (14), one may get the solution for 
eA
r~ . If one considers the potential vectors ( )meA ,~r , that this case leads to potential fields, that 

is the trivial, and the case Î~~ == µε  is also trivial. besides  the mentioned vector-potentials 

one may use some others vector-potential functions, for example, ee AA
rr ~~ 1−=′ µ , 
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mm AA
rr ~~ 1−=′ ε . This becomes clear by ambiguity of potentials in the electrodynamics of 

continuum [10]. 
In the simplest case coordinate-independent scalar material parameters the equations 

(3) and (4) are simplified [28]: 
me ArotA

j
kE

rrr
−

+∇⊗∇
=

εωε
µε

~
~~

0

2
0    ,                                             (16) 

em ArotA
j

kH
rrr

+
+∇⊗∇

=
µωµ

µε
~

~~

0

2
0    ,                                             (17) 

in which connection the vector-potentials satisfy the equations (7). To get their solution one 
can with the help  of scalar  Green’s function (GF) [28] ( ) ( ) ( )rjkrrkG rrr

−= − exp4, 1π , 

where µε ~~
0kk = . The explotable here electric vector-potential differs from respective 

potential in the equation (1) by factor µµ ~
0 . This is connected with the tradition to use the 

magnetic filed but not the induction in applied electromagnetic, and also with the 
conveniences (though the power magnetic vector is the vector B

r
 [1]). Mark that the fields 

satisfy the same wave equations but with others more complicated right parts even in for 
homogeneous and isotropic media [28]: 

( ) m
in

e
ine

in j
j

jjjEk
r

r
rr

×∇−
⋅∇∇

+−=+∇
εωε

µωµ ~
~

0
0

2
0

2  ,    ( ) e
in

m
inm

in j
j

jjjHk
r

r
rr

×∇+
⋅∇∇

+−=+∇
µωµ

εωε ~
~

0
0

2
0

2  .  

(18) 
This just explains the advantage of usage the vector-potentials. But durante absentia of any 
separation this advantage is insubstantial. Note also that here owing to Loorentz calibration 
there is the bond of vector and scalar potentials  

0~
0 =+ ee jAdiv φεωε

r
  , 0~

0 =+ mm jAdiv φµωµ
r

,   
and the last ones are also satisfy the wave equations 

( ) ( ) e
in

ek ρεεφµε 1
0

2
0

2 ~~~ −−=+∇   , ( ) ( ) m
in

mk ρµµφµε 1
0

2
0

2 ~~~ −−=+∇    .           (19) 
In general case the fields satisfy following inhomogeneous equations: 

[ ] m
in

e
in jrotjjEkrotrot

rrr
1

0
2
0

1 ~~~ −− −−=+− µωµεµ ,  

[ ] e
in

m
in jrotjjHkrotrot

rrr
1

0
2
0

1 ~~~ −− +−=+− εωεµε . 
 For solving of different problems it is convenient to use also others potentials. These 
are the Hertz vectors, Borgnis functions, Debye potentials [2]. At that time often the 
direction of mensionad vector-potentials is fixed (for example, along some coordinate axis 
which does not change it), or they are directed along ort-vector which changes its direction 
(for the Debye potentials). Let consider the different Hertz vectors modifications. They are 
defined standardly so: ee jA Π=

rr
εωε ~

0 ,  mm jA Π=
rr

µωµ ~
0 , and the fields are expressed 

through it as 
( ) ( )me jkE Π×∇−Π+∇⊗∇=

rrr
µωµεµ ~~~

0
2
0    ,                                  (20) 

( ) ( )em jkH Π×∇+Π+∇⊗∇=
rrr

εωεµε ~~~
0

2
0    .                                  (21) 

In the case of nonstationary fields the multiplication on ( ) 1−ωj  corresponds to integration 
over the time, and the bond of fields with the potentials becomes integral, and so the Hertz 
vectors is more preferable at that time. The hertz vectors satisfy the following 
inhomogeneous wave equations: 

[ ] ( ) ( )[ ]mm
e
ine j

j
jk Π×∇−Π×∇−−=Π×∇×∇−∇⊗∇+ −

−
−−

rr
r

r
µµεεωµ

ωε
εεεεµ ~~~~~~~~~ 1

0
0

1
112

0 ,      (22) 
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[ ] ( ) ( )[ ]ee
m

inm j
j

jk Π×∇−Π×∇+−=Π×∇×∇−∇⊗∇+ −
−

−−
rr

r
r

εεµµωε
ωµ

µµµµε ~~~~~~~~~ 1
0

0

1
112

0 .      (23) 

For nonmagnetic media the equation (23) gets the view of Helmholtz equation with the 
right part ( ) m

injj
r1

0
−− ωµ . Then for anisotropic case the separation in the (22) occurs if  

mm rotrot Π=Π
rr

ε~ , and for isotropic case – if 0~ =Π×∇ m
r

ε , i.e. the ε~∇  and mΠ
r

 are 
collinear. In general case nonhomogeneous and nonmagnetic media we have the equation 

( ) ( )( )[ ] ( )[ ]m
e
ineee j

j
jk Π×∇−−=ΠΠ×∇×∇−Π⋅∇∇−∇+∇+ −

−
−

r
r

rrr
εεωµ

ωε
εεεεεεµ ~~~~~~~~~ 1

0
0

1
2122

0 , 

which is simplified and separable at 0~ =Π×∇ m
r

ε . The case Î~ =ε  is considered 
analogously. Notice that instead of Hertz vectors introduction one may use with such 
success the vector-functions eΠ

r
ε~  and mΠ

r
µ~ . Moreover, we can confront the above 

introduced potentials with corresponding Hertz vectors. Here we introduce yet the 
following vector-potentials:  

( ) me jkE Π×∇−Π+∇⊗∇=
r
&&&

r
&&&

r
0

2
0 ωµ    ,                                        (24) 

( ) em jkH Π×∇+Π+∇⊗∇=
r
&&&

r
&&&

r
0

2
0 ωε    ,                                      (25) 

[ ] ( ) m
e
ine Ij

j
jk Π×∇−−−=Π×∇×∇−∇⊗∇+ −

−
−

r
&&&

rr
&&& ˆ~~~ 1

0
0

1
12

0 εωµ
ωε

εε  ,                    (26) 

[ ] ( ) e
m

inm Ij
j

jk Π×∇−+−=Π×∇×∇−∇⊗∇+ −
−

−
r
&&&

rr
&&& ˆ~~~ 1

0
0

1
12

0 µωε
ωµ

µµ .                    (27) 

 Depending on specific problem the choice of different potentials may be useful and 
convenient. In the view of equations separation the mentioned choice less substantial that as 
for receiving of solutions separated equations. These equations have different forms for 
different potentials, and some of them may be more founded and preferable. The general 
approach to problem solution for the separable equations should be concluded in there 
Green’s functions determination. These GFs must in general case be tensors as define the 
vector values (potentials) by vector current densities (which may be multiplied on a certain 
matrix). The mentioned GFs at the presence of boundaries even for homogeneous and 
isotropic medium, as their components must satisfy different boundary conditions [34]. 
When the potentials are substituting into the field expressions, one can get the others GFs 
which are directly connecting the fields with its sources – the current densities. Let 
examine, for example, nonmagnetic case of potentials (8), (9). Then, if the magnetic vector-
potential is collinear to the gradient of permittivity, it is n necessary to find the GF satisfied 
the equation 

[ ] ( ) ( ) ( )( ) ( )rrIrrGrrGk ee ′−=′⋅∇⊗∇+′+∇ − rrrrrr δεεε ˆ,ˆ~~,ˆ~ 12
0

2 .                    (28) 

Let one has the particular case ( ) ( )xr εε ~~ =
r , ( ) ( )rJxrj e

in
rrrr

0= , ( ) ( )rxrA e rrrr
Φ= 0 . Then the 

problem is simplified: it is necessary to solve the equation 

[ ] ( ) ( )( ) ( ) ( )
( ) ( ) ( )rJr

xdx
xd

x
rxkrk rrrr

−=Φ
∂
∂

−Φ−+Φ+∇
ε

ε
ε

~
~

11~2
0

2
0

2 .                (29) 

Expressing the introduced functions via their spatial spectra 

( )
( )

( ) ( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−

−Φ=Φ kdrkjkr 3
3 exp

2
1 rrrr

π
, 

( ) ( ) ( ) ( )∫
∞

∞−

−=−= xxx dkxjkkxx exp
2
11~ δε
π

εδε , 
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( ) ( )
( ) ( ) ( )∫

∞

∞−

−′==′ xxx dkxjkk
dx

xd
x

x exp
2
1~

~
1 ε

π
ε

ε
ε , 

one gets the integral equation (IE) for the desired spectral function  ( )k
r

Φ :  

( )[ ] ( ) ( ) ( ) ( ) ( )[ ] ( )kJkdkkkkkkkjkkkkkkkkk xzyxxxxxzyxxx

rrr
=′′−Φ′′−+′−Φ−−Φ ∫

∞

∞−

,,,,
2
1 2

0
2
0

2 εδε
π

. 

(30) 
It is not very convenient to solve the equations like (30) in spectral region, in which 
connection then these solutions would be Fourier transformed and differentiated in order to 
get the fields. Besides the  similar equations are not general. It is easy to find the solution of 
equation (10) with operator in the left part which corresponds to equation (28). We use for 
this the scalar GF and turn into integrodifferential equation (IDE) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )[ ]∫ ′′⋅∇′′∇′′−′−′+′′−= −

V

eee
in

e rdrArrrArkrjrrkGrA 312
00

~~1~, rrrrrrrrrrrrr
εεε  .       (31) 

To solve this, we calculate the fields under the relations (8), (9). The operator В (31) 
оператор «nabla» or inverted delta ∇′  operates on primed coordinates. One may also 
consider the coupled IDE for the equations (10), (11). It is more convenient to get the 
solutions of equations (14), (15). The corresponding to them coupled IDE we write in the 
form: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫ ′












 ′×∇′−′×∇′×∇′−′+′′′−= −

V

mee
in

e rdrAjrAIrrjrrrkGrA 3
0

1
0

~~ˆ~~,~ rrrrrrrrrrrr
ωεεε ,   

(32) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫ ′












 ′×∇′+′×∇′×∇′−′+′′′−= −

V

emm
in

m rdrAjrAIrrjrrrkGrA 3
0

1
0

~~ˆ~~,~ rrrrrrrrrrrr
ωµµµ .  

(33) 
The integration in (31) and (33) must carry out over all volume where the integrands differ 
from zero. Usually the incident currents are located in finite region, and the matrixes ε~ , µ~  
outside the finite structures take one's stand unite. Solving the coupled IDE (32) and (33), 
we define the fields using the formulas (12), (13). One may write the similar coupled IDEs 
so many how many different potentials have been introduced. One of the such forms has 
been got in [18,19]. Particularly,  for the equations (5) and (6) we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )[ ]{
( ) ( )( ) ( ) ( ) ( )( ) ( )} ,~~ˆ~~

~~,

3
0

2
0

1
0

rdrArrjrAIrrk

rArArrrjrrkGrA

me

V

eee
in

e

′′×∇′′−′×∇′+′−′′+

+′⋅∇′∇′−′′⋅∇′∇′′+′′−= ∫ −

rrrrrrrr

rrrrrrrrrrrr

εεωεµε

εε
                 (34) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )[ ]{
( ) ( )( ) ( ) ( ) ( )( ) ( )} .~~ˆ~~

~~,

3
0

2
0

1
0

rdrArrjrAIrrk

rArArrrjrrkGrA

em

V

mmm
in

m

′′×∇′′−′×∇′+′−′′+

+′⋅∇′∇′−′′⋅∇′∇′′+′′−= ∫ −

rrrrrrrr

rrrrrrrrrrrr

µµωµεµ

µµ
         (35) 

Note that the volume IEs are traditionally introduced using the GF of free space ( )rkG r,0  

for presentation of vector-potentials ( )meA ,
0

r
 by the medium polarization current densities 

( ) ( )( ) ( )rEIrjrJ e
p

rrrrr ˆ~
0 −= εωε , ( ) ( )( ) ( )rHIrjrJ m

p
rrrrr ˆ~

0 −= µωµ : 
( ) ( ) ( ) ( )( ) ( ) ( )[ ]∫ ′′+′′−=

V

me
p

me
in

me rdrJrjrrkGrA 3,,
0

,
0 , rrrrrrrr

,                                   (36) 

that corresponds to formal extraction of mentioned densities in Maxwell equations and they 
addition to incident current densities. The potentials (36) satisfy the equations (7) under the 
unit permittivity and permeability and with the right parts as  ( ) ( )me

p
me Jj ,,

rr
−− . The 

differentiation of (36) according to formulas (16), (17) with unit material  parameters leads 
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to volume IEs for the fields. These IEs contain the hypersingular singularities, and the 
corresponding operators also are named pseudo-differential [35,36]. There are several 
various equivalent forms of IEs and IDEs for the field, which may be obtained both using 
the representation (36), or by other ways. They, in particular, may contain the terms with 
the surface integrals. 

The usability of IDEs for potentials is concluded in absence of surface integral 
terms and hypersingularities. They contain also one kind of integrable singularity 1−′− rr rr , 
and in this time there is the necessity of its differentiation in order to get the fields. The 
solutions of equations (31), (32)–(33), (34) – (35) and similar to them we will base on the 
potential decompositions over full systems of vector-basis functions. As the example let 
consider the problem (34), (35) and the decomposition 

( ) ( ) ( ) ( ) ( )rurA me
n

N

n

me
n

me rrrr
,

1

,, ∑
=

≈ α .                                                     (37) 

By virtue of used relations the vector-functions ( )( )ru me
n

rr ,  must be, at least, twice 
continuously differentiable functions. We will consider their second derivatives as 
Lipschitz-continuous. It is important to propose so continuously differentiability and 
boundness of tensor permittivity and permeability and the existence of their inverse values. 
The case of discontinuous permittivity and permeability must be separately considered 
matching thee solutions on the boundaries of breaks. In general consideration the breaks 
lead to the delta-functions extractions and their derivatives, i.e. to appearance of surface 
integrals. Note that the singularity 1−′− rr rr  in the first surface integral more  strong as the 

similar in the volume one. If one considers the for the functions of class ∞C , i.e. the 
indefinitely differentiable ones, that on account of compactness of integral operator [37] и 
and boundness (or continuity) of differential operator we have that the integrodifferential 
operators are compact (or with the Fredholm property), i.e. the customary solvability 
conditions fulfill. The relations (34) and (35) at that are infinitely differentiable. Note that 
appropriate media have the smooth boundary bedding interface, i.e. have not the steps and 
the steps of derivatives. On can prove the differentiability of relations (34), (35) directly by 
transfer of operators ⋅∇ , ∇  and ×∇  on primed coordinates (or source point) using the 
corresponding integral theorems about the divergence, gradient  and rotor, and also the 
property ( ) ( )rrGrrG ′−∇′−=′−∇

rrrr . The mentioned theorems proved for continuously 
differentiable functions are spreadable on GF ( )rrG ′−

rr  by the way of observations point 
δ – neighborhood separation and then proceeding to limit 0→δ . 

It was proposed in getting of (31), (35) that the souses are located inside the region 
where the permittivity and permeability  differ from unity and have the same extent of 
smoothness that the potentials. We can hold their as Lipschitz-continuous functions, and if 
they are located at infinity – to introduce into the equations corresponding free (or the 
outside the integral) terms respective to plane waves. The solutions of IDEs when the 
second derivatives of potentials are Lipschitz-continuous are twice differentiable and they 
define the fields by differentiation. Actually, let introduce the vector-functions ( )me uuu rr ,= : 

222 me uuu rr
+=  norm, where 

( ) ( )( ) ( ) ( ) ( ) ( )[ ] ( )∫ ×∇+×∇+⋅∇∇+⋅∇∇++= −

V

ee rdrurrrrrrIu 3212 ~~~~~~ˆ rrrrrrrrr µµεεµε , 

( ) ( )( ) ( ) ( ) ( ) ( )[ ] ( )∫ ×∇+×∇+⋅∇∇+⋅∇∇++= −

V

mm rdrurrrrrrIu 3212 ~~~~~~ˆ rrrrrrrrr εεµµεµ . 

The problem (34), (35) in this Hilbert space presents itself the coupled integrodifferential 
Fredholm second kind equations with the kernel G . This problem is solvable in terms of 
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average convergence. Let show the differentiability of solutions. They constitute the 
expressions like 

( ) ( ) ( )∫ ′′′−=
V

rdrarrGrA 3rrrrrr , 

where ( )ra rr  is the Lipschitz-continuous vector. Directly one see the continuity and 
boundedness of derivatives like rotor and divergence from the vectors ( )meA ,

r
 and also from 

these vectors  multiplied на on continuously differentiable material matrixes. Let consider 
the ( )rA rr

⋅∇∇  and break up the volum to δ – neighborhood of point rr  and remaining 
region in which all derivatives are continuous  and bounded. We write for δ – 
neighborhood the GF as ( ) ( ) ( ) ( )[ ]rGrkGrGrkG ssss ,0,,0, 00 −+= , where the function 

( ) ( ) ( )[ ]rGrkGrkG sss ,0,, 00 −=∆  is regular. The derivatives from respective integrals exist 
and are bounded. The module of integral with the function ( )rkG s,0∆  may be done less than 
any established ε  by choice of δ . Then we have the evaluation 

( ) ( )( ) ( ) ( ) ( ) ≤′′−∇⋅′∇=′′−∇∇⋅′−⋅∇∇ ∫∫
− δδ

rdrrkGrardrrkGrarA
V

3
0

3
0 ,, rrrrrrrrrr  

( ) ( ) ( ) ( ) ( )
≤′

′−

′−⋅
∇+′′−∇−′∇+≤ ∫∫

δδ π
ε rd

rr
rrrardrrGrara 3
3

3

4
,0 rr

rrrr
rrrrrr  

( ) ( ) ( ) ( ) ( ).sincos
2 0

2 rCdrarC rrrr
∇+=∇+∇+≤ ∫ δεθθθ

π
δδε

π

 

We have used the condition ( ) ( ) ( ) rrrCrara rrrrrrr
−′<−′  in the receiving it, and the the 

integrals have been calculated in spherical coordinate system with the center in the point rr  
and with the z-axis directed along the vector ar . Correspondingly the integrals in the 
expressions (3), (4) must be understood from the viewpoint of principal values. As 

( ) ( ) ( )rAkrarA rrrrrr 2
0

2 +−=∇ , that the solution is also differentiable with usage of operator 
rotrot • .  

 When the permittivity and/or permeability are the step changed then the more 
convenient the IDEs (32), (33) as they do not contain the derivatives, therefore there are not 
any surface integrals. But for the fields such integrals may appear. Let S  is closed surface 
bounded the volume V , and there are the steps on it: Î~ =+ε , Î~ ≠−ε ,  Î~ =+µ , Î~ ≠−µ . 
Let also the sources only are inside the volume and are described by smooth functions. 
Then the electric field may be presentable as me

in EEEE
rrrr

++= , where 
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In order that the delta-functions do not arise in the volume integrals and do not produce the 
surface integral terms the potentials must have the derivatives of forth order. Getting the 
approximate solutions of IDEs by the method of volumetric finite elements (FE) in 
form(37), it is necessary subject these elements to such conditions of smoothness. 

 
2. Potentials in bianisotropic media 

 
The potentials in homogeneous biisotropic media were considered in the paper [9], 

and for bianisotropic ones – in [17]. In general case of inhomogeneous bianisotropic media 
the following material conditions take place [38] 
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Introducing the vector-potentials by usual way by the electric and magnetic inductions 
(these potentials coincide with (3) and (4))  
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taking into account the relation (38), one may expresses the field, for example 
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In a similar  expressing the magnetic field and substituting the fields into Maxwell 
equations, we get the equations for potentials. They have not presented there from behind 
of cumbersome form. The relations (39) present the inductions as the sums of solenoidal 
and potential field. However one may offer the fields themselves by one of the ways (3)–
(4), (8)–(9), (12)–(13) in form of such sums. Each of presentation leads to their wave 
equations for potentials, that is connected with its ambiguity. As there are the four material 
tensors, it is more suitable to use the presentations (12), (13) independent from them. Then 
we obtain the equations 
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 Other important problem at the boundary problem solution besides the potentials 
choose is the usage of minimal number of independent components (scalar functions) and 
its foundation. The maximal number such components is six as the number of field 
components. But not always they are independent. It is sufficient for electric ot magnetic 
dipole in free space one scalar function. In case of simultaneously electrical and magnetic 
excitations there are two ones [1-9,11-25]. If there are the inhomogeneous and anisotropic 
dielectric media it is necessary four scalar components or potentials (as for only magnetic 
media). If there are the boundary bedding interface and the screens (or region boundaries) 
then the potentials in subregions are used. The fields at the boundaries must be matched by 
conjugation relations or boundary conditions. The planar parallel surfaces and boundaries 
are more considerable in literature. For these, if the filling is homogeneous, also it is 
sufficient of two scalar components. It already is not implemented for inhomogeneous 
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media. The particular case with two potentials in inhomogeneous dielectric is given in [13]. 
If the partial region is the generalized parallelepiped in orthogonal curvilinear coordinates, 
then it is necessary to use the six such components [39]. particularly, two GFs of 
rectangular waveguide connected the electric and magnetic vector-potentials with the 
currents are the diagonal tensors, Its components describe the reactions of potentials on the 
currents of corresponding dipoles (electric and magnetic), which are oriented along  each of 
the axis [39]. This also corresponds to inhomogeneous and anisotropic media. In general 
case it need to introduce two scalar potential components e

xI
Φ  and m

xI
Φ  for each boundary 

or aggregate boundaries in each partial subregion, which are determined by the equation 
constxI =  in generalized coordinates.  

 
3. Numerical results 

 
Let consider the open isotropic cylindrical dielectric ( Î~ =µ ) resonator (CDR) with 

scalar permittivity having the distribution ( ) 1~ =rrε , if 0ρρ > , 2/hz >  and 
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where the z,,ϕρ  are the cylindrical coordinates. Here  0ρ  is the radius of resonator, h  is 
its height, nm,  are the integer numbers. In order that the function (40) should be twice 
continuously differentiable it is necessary to take 3, ≥nm , i.e. to consider the body with 
smooth boundary. We will analyze the characteristic oscillation. Then it is follow from 

(32), (33) that ( ) 0~
=rAm rr

, 

( ) ( ) ( )( ) ( )∫ ′′×∇′×∇′′−′−= −

V

ee rdrArIrrkGrA 31
0

~~ˆ,~ rrrrrrr
ε .                      (41) 

The potential of azimuthally symmetric oscillations is the function of ρ and z. In general 
case we have the three potential components ρA , ϕA , zA . However, if 0=ϕA  then the 
magnetic field has unique component ( )zH ,ρϕ , and the equation (41) for two independent 
components ρA , zA  obtains the form of coupled scalar IDEs: 

( ) ( ) ( )( ) ( ) ( )
∫ ∫
−

− ′′′′











′∂

′′∂
−

′∂′∂
′′∂′′−′′=

0

0

2/

2/
2

22
1

0

,,,~1,|,;,
ρ

ρ
ρ ϕρρ

ρ
ρ
ρρερρρ

h

h

z zddd
z

zA
z

zAzzzkgzA ,       

(42) 

( ) ( ) ( )( )

( ) ( ) .,
,

1

,~1,|,;,

2

2

0

2/

2/

1
0

0

zdddzA
z

zA

zzzkgzA

z

h

h
z

′′′







′′








′∂

∂′+
′∂

∂
−

′∂

′′∂








′∂

∂′+⋅

⋅′′−′′= ∫ ∫
−

−

ϕρρ
ρ

ρ
ρ

ρ
ρ

ρ

ρερρρ

ρ

ρ

                (43) 

Here the kernel has the following presentations [28,40]: 
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Here 22
0 γκ −= k , ( ) 0Im ≤κ , the upper values of functions in figure brackets are taken at 

ρρ ′> , and the lower ones – at ρρ ′< . If we have one potential component ( )zA ,ρϕ  then 
there are the oscillations with one electric field component ϕE . The potential in this case 
satisfy the equation 
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which still may be presentable in two forms: 

( ) ( ) ( )( ) ( )∫ ∫
−

′′′′′−′′′′=
0

0

2/

2/
0

2
0 ,1,~,|,;,
ρ

ϕϕ ρρρρερρρ
h

h

zddzAzzzkgkzA  ,                   (45) 

( ) ( ) ( ) ( )∫ ∫
∞ ∞

∞−

′′′′′′′′′=
0

2
0 ,,|,;0,~, zddzAzzgzkzA ρρρρρρερ ϕϕ  .                       (46) 

The equation (45) coincides with the IE for ϕE , which is describing the δmH 0 - modes of 
CDR [40], because ϕϕ ωµ AjE 0−= . The equation (46) is considering in infinite region with 

the solution behavior in far zone as ( ) ( ) ( ) 2222
000 /exp,, zzjkAzAzA ++−=≈ ρρρρ ϕϕ . 

The values ϕA  and 0k  are complex and ( ) 0Im 0 >k  that means the potential increase with 
the growth of distance from DR. The constant 0A  may be defined using the known 
potential distribution inside the DR. Since there are not the material parameter derivatives 
in considered IDEs we may use also the discontinuous distributions. The spectral parameter 

2
0/1 k=λ  comes into the IE (46) nonlinearly. 

Let consider the iteration methods of equations (42)–(45) solution writing they in 
operator form ( )AkLA 0

ˆ= . Here  L̂ is the linear integrodifferential or integral operator, and 
A  defines the totality of components, for example ( )zAAA ,ρ=  for (42), (43). Here we use 
the vector-function components decompositions (37) by one-dimensional (1-D) FEs ( )xun : 
( ) ( )xnxuxun ∆−= 0 ,  ,...2,1,0 ±±=n , determined on three nodes  where 
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                                                (47) 

These FEs are set on the nodes of uniform 1-D grid with the step z∆ . When 0=l  we have 
the piecewise constant FEs. When 1=l  the FEs are continuous and differentiable inside the 
region of definition: ( ) ( )xnxxxuw nn ∆−∆−=′= −22 . The derivative has the jumps at the 
boundary from zero up  to  x∆/2  at the left and from x∆− /2  to zero from the right. The 
second derivative in the region of bearer is constant and equal 2/2 x∆− , and outside the 
region it is equal to zero, i.e. is the piecewise constant. If 2=l  then the first derivative is 
continuous, and if 3=l  then the second one is continuous. These FEs are biorthogonal. But 
if 2≥l  then the first derivative in the nodes is equal to zero that describes its 
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decomposition not very satisfactorily. It is more useful to extend the bearer in (47), for 
example up to five nodes.  

We will consider the even and odd regarding to z oscillations dividing the regions 
области ( )0,0 ρ  and ( )2/,0 h  correspondingly on M+1 and on N+1 nodes by the intervals 

M/0ρρ =∆ , ( )Nhz 2/=∆  and presenting the potentials as 
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0 0
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α .                                       (48) 

here α  denotes the ρ , z or ϕ . We get  the matrix equations by usage the projection 
approach with the same weight functions and with the weight ρ  for coordinate ρ . Let 
consider the minimal discrepancy method (ММН) [41] which write in operator form. The 
discrepancies of spectral parameter 0k  and equation at the iteration k are: 
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The Dirac brackets here mean the scalar product and the approaches ( )0
0k  and  ( )0A  are set. 

We will get the approach 1+k  using the approach k  by the formulas: 
( ) ( ) ( ) ( )kkkk kkk 00

1
0 ∆−=+ τ ,   ( ) ( ) ( ) ( )kkkk AAA ∆−=+ η1 , ,...2,1,0=k                      (50) 

(with the posterior normalization). Here ( )kτ , ( )kη  are the complex iteration parameters. 
These parameters are defined on each iteration step from the minimum of discrepancies 
(49): 
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We have from (51) the equations ( ) ( ) ( ) ( )( ) ( ) 0ˆ, 00 =∆−′ kkkkk AkkLA τ  and 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )kkkkkkk AAAkkLA ,ˆ, 00 =∆−τ , in which the parameter ( )kτ  comes nonlinearly. 

In order to get the global minimum it is necessary the second condition. We have from (52) 
the value 
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where  Ê  is the unite operator. If the discrepancies are small one can get after the 
linearization of (51) the expression 
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The stroke means the operator derivative on the parameter. The resulted operator does not 
contain the singularities. The expression (54) may be defined more precisely by usage of 
high order decompositions on discrepancy ( )kk0∆ . If the parameters η , τ  are constant at 
each iteration step, that the algorithm of direct iteration is realized corresponding at 

1==τη  to serial approach method (SAM). On account of not self-conjugate operator the 
eigenvalues of wave number 0k  are complex, therefore the resonator excitation problem is 
unambiguously solvable. The more laborious process is the search of complex roots of 
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characteristic equation for 0k .The IE (46) is also formulated difference potential 

ϕϕϕ 0AAA −=′  in the finite regions covered the DR by introduction of discrepancies 
( ) ( ) ( ) ( ) ( ) ( )kkkkkk AAALA ′′′′−=∆ ,/~,λλ ,        ( ) ( ) ( ) ( )kkkk ALAA ′−′=′∆ ~λ . 

Here the operator L~  doe not depend on spectral parameter 2
0/1 k=λ , and the iterations 

have the form  
( ) ( ) ( ) ( )kkkk λτλλ ∆−=+1  ,     ( ) ( ) ( ) ( ) ( ) ( )[ ] ( )kkkkkkk AAALA λλτ ∆′′′′−= /,/~, .   

This approach demands to define the constant ( )kA0  at any step that is not inconveniently. 
The problem (49)-(52) is also may be reformulated for eigen values of parameter λ . One 
may  “freeze” the operator dependence from this parameter in MDM (i.e. using the 
linearized process), and take it into account in the discrepancy calculation. Other algorithm 
may be founded on IE (45) kernel decomposition on parameter 0k  accurate within three 

terms: ALkALjkALkA 2
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If  1~ >>ε  then the equation (55) defines the real eigenfrequencies. In order to fine the 
radiation quality factor it si necessary to take into account the next terms of decomposition 
[40]. We can use also the iteration on λ  with the parameter ( ) ( )( ) ( )k

k
kk λδλτ ∆−= /  defined 

by discrepancy minimization. The processes like (50) may alternate (as it is recorded), or 
fulfill each several times up to good convergence at established k. 
 

Eigenfrequencies f (GHz) and quality factor  Q at different sizes of  CDR and mode δ01H  
SAM, 
0=m , 0=n  

MDM, 
1=m , 0=n  

MDM, 
1=m , 1=n  

DR configuration, 
mm 

f Q f Q f Q 

Results of 
[40], f 

0== nm  

0.7=h , 0.50 =ρ  4.545879 45.46 6.530581 27.85 6.007415 36.09 4.645 
4.8=h , 5.70 =ρ  3.186053 44.27 4.550707 28.01 4.225319 34.62 3.251 
0.7=h , 5.70 =ρ  3.333408 42.47 4.737466 27.65 4.431561 32.94 3.383 
0.4=h , 0.50 =ρ  5.210738 40.44 7.373461 27.02 6.939240 31.23 5.289 

 
The resonance frequencies of δ01H  oscillations are presented in the table. They have 

been obtained using the IE (45) by SAM and MDM applications. Also here are the results 
from [40]. We have used the 36 basis functions like (47) (six nodes for each coordinate) in 
the region 0>z  with parameter 1=l . It is equivalent in accuracy to ten piecewise constant 
fragmentations. The matrix elements have been calculated numerically with the extraction 
of singularities. The function (40) at 371 =κ , 02 =κ  with the number 0=m  
(homogeneous dielectric) and 1=m  (inhomogeneously dependent on ρ  dielectric), and 
also at 1644.621 == κκ , 1== nm  (inhomogeneous dielectric with respect to ρ  and z) has 
been used as permittivity. The potential initial approximation was set from the physical 
reasons as the sine and cosine product. It must comment that the results for resonant 
frequencies have been obtained with small (about 0.5%) lack, as they some increase with 
the increasing of basis functions number. Thus, the calculation in the first column of fourth 
line in the table at the number 1616×  of piecewise constant fragmentations leads to the 
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value 5.216752=f  GHz. The adjustment  by the Eitken process gives 5.231598=f  GHz. 
On the other hand, the results [40] have been obtained, apparently, with excess, i.e. the 
eigen problem for static matrix have been solved, and then the asymptotic perturbation 
method has been applied. The iterations for such linear eigenvalue problem give the vary 
closed to [40] results. The convergent was achieved over several (5–7) iterations. The GF 
calculation was implemented over the angles by the mean-value method with usage of 60 
points in the region ( )π,0 . 
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 Fig. 1.  The convergence  of results for CDR eigenfrequencies f (GHz) from the number N  of 
basis functions at the piecewise constant (1,2) and quadratic polynomial (3) approximations and 

38=ε , 50 =r mm: 7=h mm (1); 4=h mm (2,3) 
  
  
  
 The fig.1-5 present the results of eigenproblem solutions for CDR which are based 
on field IE. These results coincide with the similar one obtained by IEs vector-potentials. 
Also the cubic DR with homogeneous and inhomogeneous dielectric has been investigated 
using the proposed equations and methods. The methods are very effective and precise 
numerically as compared with the finite difference, traditional finite element approaches. 
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 Fig. 2. The resonant frequency f (GHz) and the quality factor Q dependences for 

homogeneous CDR 50 =r , 7=h  mm versus the permittivity: 1 – mode δ01H , 2 – mode 

011H  
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 Fig. 3.  The resonant frequency f (GHz) Q dependence on CDR shape for homogeneous 

(1,2) dielectric with 50=ε  and for inhomogeneous along z-axis dielectric (3,4) for 5=h  mm: 
1 – mode δ01H ; 2,3,4  – mode 011H  
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 Fig. 4.  The  dependences  ( )ϕERe   (solid curves)  and  ( )ϕEIm   (dashed curves) versus the 

coordinate ρ  (cm) for CDR 100=ε , 50 == hr mm: 1 – mode δ01H  at 09.0=z ; 2 – mode 

011H  at 41.2=z ;  3 – mode 011H  at  09.0=z  
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 Fig. 5.  The  dependences  ( )ϕERe   (solid curves) and ( )ϕEIm  (dashed curves) versus z  

(mm) for CDR 100=ε , 50 == hr mm: 1,2  – mode δ01H  at 4.3=ρ  and 66.1=ρ  mm;  
 2 – mode 011H  at 46.4=ρ  mm 
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Conclusions 
 

 Several possible approaches of vector electric and magnetic paired potentials 
introductions have been considered and obtained for anisotropic and bianisotropic media. 
The new general differential and integrodifferential equations have been formulated for 
them. The method is based on the secondary source concept [28], which means the 
equivalence of Maxwell equations with medium polarization currents as initial sources in 
vacuum to corresponding equations in medium. Conformably the all introduces fields 
satisfy Maxwell equations in medium. All fields and potentials as the solutions of IDEs also 
satisfy the boundary conditions [42,43]. For open exterior problem they satisfy radiation 
conditions. For closed or interior problems (for example, waveguides, cavity resonator with 
medium) it is necessary instead of scalar GF to use the tensor GFs which determine the 
potentials by way of sources. In this time thee fields are expressed trough four others tensor 
GFs [44]. The mentioned potential GRs for hollow rectangular waveguide and resonator ate 
the diagonal tensors [34] and characterize the excitation of hollow structures by dipoles 
oriented correspondingly along the x , or y , or z  axis. The GFs for fields in this case are 
non-diagonal by now. The formulation volume-surface IDEs for impedance surfaces 
presents no difficulties. The impedance conditions applying for relations like (3) and (4) 
give additional equation for surface current density. It must be notice that the surface 
current is the low frequency idealizations. More definitely one must describe the metallic 
bodies as collision plasma, and in that sense the volume formulations have the general 
character. The efficiency of potential boundary problem formulations in comparison with 
field formulations has been shown. Namely, the IDEs have the weekly-singular kernels, 
and the potentials  themselves are continuous on the media bedding interface (in contrast to 
fields). Furthermore,  one usually seeks not the fields, but some characteristics expressed 
from them (the resonance frequencies, reflection and transmission coefficients, radiation 
patterns etc.), which can be defined by the potentials omitting the fields. The FEs and 
iteration algorithms have been proposed for IDEs and IEs solutions. The modes δ01H  are 
investigated numerically for homogeneous and nonhomogeneous CDRs. The potential 
homogeneous CDR problem here coincides with the field formulation. The radiation 
character here in homogeneous case is the magneto-quadrupole [40], and for the 
inhomogeneous filling there is the electrical dipole term yet. It must be notice that one can 
use the GFs of filled by medium structure. Such approach is not constructive as it not leads 
to the closed form of GF definition.  
Let once more stress that the potential introduction in electrodynamic of continuous media 
is ambiguously determined. In particular, there are the works [45], [46] where such 
introduction is based on the relations like (1) with the additional conditions (the superfluous 
potentials method). The present approach in our case of arbitrary bianisotropic media has 
the greater generality. 
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   Abstract – The general nonstationary balance equations for energy and momentum densities of 
field-matter system based on rigorous nonstationary approach for their definitions with dependence 
from the field creation prehistory have been obtained. Also the transport velocities of these densities 
have been derived. The concrete examination and detailed consideration have been performed for 
simplest dispersion law which is defined by the conductivity connected with the dissipation. There 
are following parameters which have been found for plane monochromatic wave under this law: the 
energy density, the phase velocity, the group velocity, and the transport velocities of energy and 
momentum. It has been shown that the energy density has the static form in which the dielectric 
permittivity must be replaced by its real part, and the energy transport velocity coincides with the 
phase velocity. The group velocity in this case may exceed the light velocity in the vacuum. It has 
been also shown that correct form of momentum density is the Minkowski one, and the momentum 
transport velocity in this case also coincides with phase velocity. The energy and momentum 
conservation have been shown for plane electromagnetic wave in the conducting medium and for 
plane wave diffraction on the conducting plate. 
 

1. Introduction 
 

 Up to present day there is paradoxical state in the electrodynamics of continuum, 
when more than hundred years the energy-momentum tensor (EMT) has not got the 
distinctness in correct definition [1–13]. There are two principal definitions: the Minkowski 
[1] and the Abraham [2] correspondingly. Also there are many publications as pro 
Minkowski and con Abraham, for example, [13], so on the contrary for the Abraham and 
against the Minkowski (see, for example, publications [3–6], the latest surveys [11,12], the 
paper [13] and the literature there). Besides there are the papers which confirm that two 
stated are equivalent (for example, [3,12]), but, nevertheless the Abraham tensor is more 
preferable or correct. But the Minkowski tensor also may be used and it often is more 
convenient and more corresponding to continuum (media) [3]. The Minkowski tensor is 
considered as more faithful in some other publications. There are series of publications 
which contain the experimental confirmations or refutations of both definitions [12]. In 
particular, there are the publications on measurements of Abraham force Af

r
 – the value, 

which is the makeweight to time derivative of Abraham momentum density: A
t g
r

∂ . As the 
result of this one can get the derivative M

t g
r

∂  of Minkowski momentum density [3]. 
Notice, that all mentioned experiments have been created for quasi-stationary or 
nonstationary (pulse) processes, and the volumetric Abraham force is not equivalent to the 
sum of Lorentz forces which are acting on polarization currents [5]. Further (in order to 
avoid misunderstanding) we will understand that the electromagnetic pulse, or tandem, or 
wave train is the nonstationary wave, and the field impulse or momentum G

r
 is the volume 

integral of linear momentum field-matter density gr . 
The mention ambiguity has caused the series of attempts to define and introduce the 

EMT otherwise, for example, using the microscopic electrodynamics [7,8], or by solving 
the matter equation of motion, or by using the Lagrange approach with Noether theorem 
[13]. It is believed that the EMT may be unambiguously defined only for the field-matter 
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system, and separately the indicated values are not ambiguously determined. Meanwhile, 
the ambiguity in momentum field density determination leads to uncertainty of momentum 
transfer velocity of field ( )EM

ivr  and matter ( )Mvr , and so to uncertainty for full momentum 
transfer velocity of system field-matter ivr . Also it leads to ambiguity of electromagnetic 
pressure force on matter. 

In present paper we introduce new nonstationary balance equations for energy and 
momentum and the nonstationary definitions of their densities which depend on field 
creation process prehistory. On this basis we give the expressions for energy and 
momentum transfer velocities of system field-matter, and also the separately expressions 
for field and matter. To simplify the consideration the general results are concretized by the 
consideration of one-dimensional problems: а) for electromagnetic plane-wave in the 
medium with the dispersion caused by conductivity; б) for electromagnetic plane-wave 
diffraction on parallel-sided plate. The mentioned relations for monochromatic process 
allows one to construct the EMT and to defined the energy and momentum transfer 
velocities of field-matter which for stated dispersion law are coincided with the phase 
velocity. 

 
2. The balance equation for energy and momentum 

 
 Always when any paradox arises, it is necessary to seek where the substitution of 
conceptions took place or some conceptions have been unlawfully applied to considered 
phenomena [14]. In case of EMT and energy-momentum densities in media it is concluded 
in incompetent nonstationary concepts substitution by stationary ones. In particular, the 
field energy density in continuum is defined in such a way: 
( ) ( ) ( ) ( ) ( )[ ] 2/,,,,, trHtrBtrEtrDtru rrrrrrrrr

+= , i.e. as in the statics, that is not true [14–16]. 
Similarly the Abraham momentum density is defined as 2/ cSg A

rr
= , and the Minkowski 

one as ( ) ( ) ( ) AM gnctrSntrBtrDg rrrrrrrr 222 /,,, ==×= , where ( ) ( ) ( )trHtrEtrS ,,, rrrrrr
×=  is the 

Pointing vector, and εµ=n  is the refractive index (or retardation ratio). Correspondingly 
in overwhelming number of dedicated to EMT works it has been supposed that the material 
conditions have the form ( ) ( ) ( )trErtrD ,, 0

rrrrr
εε= , ( ) ( ) ( )trHrtrB ,, 0

rrrrr µµ= , i.e. as in the 
supposition of time (frequency) dispersion absence. That is also takes place only in static 
case. The presented notation corresponds to inhomogeneous media. The parameters ε  and 
µ  simply are the constants in majority numbers of works. We will consider the material 
conditions in Landau-Lifshitz form [17]: 

( ) ( ) ( )( )trEttrrtrD rt ′′′−′∂∂= −− ,,,ˆ, 11
0

rrrrrr
r εε  ,        ( ) ( ) ( )( )trHttrrtrB rt ′′′−′∂∂= −− ,,,ˆ, 11

0
rrrrrr

r µµ .     (1) 
although there are others forms (for example, the Casimir one) [18]. Here we had introduce 
the following integral operators: 

( )( ) ( ) ( )∫ ′′==′∂−
t

t tdtftFtf
0

1  ,        ( )( ) ( ) ( )∫ ′′=Φ=′∂−

V
r rdrrrrr 31 ,, rrrrr
r ϕϕ ,                  (2)   

where the scalar or vector functions may be under the integral, and Vdrd ′=′3  is the 
volume element for source point. The lower limit in the first integral may be putted to 
infinity ∞− , and then the function must satisfy ( ) 0→tf  under −∞→t . We consider the 
homogeneous in time processes for simplicity, thereby the kernels in (1) depend on time 
difference tt ′− , i.e. the causality principle is implemented: ( ) =′−′ ttrr ,,ˆ rrε ( ) 0,,ˆ =′−′ ttrr rrµ  
under tt >′ . In the second integral the causality principle is again implemented because the 
volume is chosen from the condition ttcrr ′−≤′− /rr . This principle means that the 
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contribution to the electric displacement and to magnetic induction are carried by the fields 
in the points which are located at the distance less than the light way ( )ttc ′− . It is 
corresponds to taking into account the spatial dispersion (here always tt ′≥ ). Usually the 
spatial dispersion occupies lot smaller region, than above specified. The kernels in (1) in 
general case are the tensor and nonhomogeneous coordinate functions that corresponds to 
anisotropic inhomogeneous media. Let write the Maxwell equations in general form  

( ) ( ) ( )trJtrDtrH e
t ,,, rrrrrr

+∂=×∇  ,     ( ) ( ) ( )trJtrBtrE m
t ,,, rrrrrr

+∂=×∇−  .                    (3) 
Here as usual rr∂≡∇  means the vector-differential operator. The meaning of Maxwell 
equations (3) is sufficiently easy: it is the full balance of currents, at that in the left their 
parts there are the full current densities (the electrical in the first equation and the magnetic 
in the second one), and in the right their parts stand the sums of corresponding initial and 
displacement current densities. The equations (3) are most general, as the all medium 
influence (in particularly, the conductivity current) have been taken into account in material 
conditions. The taking into account of electrical conductivity in form ( ) ( ) ( )trErtrJ ee ,, rrrrr

σσ =  
(i.e. as for direct current) is possible using the following kernel representation 

( ) ( ) ( ) ( )( )[ ] ( )ttrrrrrttttrr e
t

e ′−′+∂+′′−=′−′ − ,,ˆ/,ˆ,,ˆ 1
0

rrrrrrr κεσεδε , 
where ( )ttrre ′−′,,ˆ rrκ  is the kernel of electrical receptivity operator, Itt =∂∂ −1  is the unit or 
identical operator. In simple case of only frequency dispersion such taking into account of 
conductivity corresponds to pole in the spectral function of dielectric permittivity at zero 
frequency [17]. In general case it is necessary to use the Drude’s formula for frequency 
dependence of conductivity, which corresponds to integral operator kernel ε̂  as for plasma. 
There is the incident magnetic current in the second equation (3). Although the unit 
magnetic charge (Dirac monopole) is not discovered yet, the introduction of ( )trJ m ,r

r
 is 

highly useful for symmetry since the incident magnetic currents may be equivalent to 
definite configurations of incident electrical currents. We will consider that the filed is 
absent before the time moments 0<t . Correspondingly the energy and momentum densities 
of field and matter (accurate within the self-energy) before 0<t  are equal to zero. The 
incident sources arise at the time 00 =t  and execute the work for the creation of field and 
change the energy and momentum of field and matter. Usually it is considered that the 
source energy is of nonelectromagnetic character that is convenient mathematically, though 
physically this energy often nevertheless is of electromagnetic character, but it operates 
outside the filed consideration volume. The part of produced energy is dissipating into the 
heat ( )trq ,r . The pointed part is not electromagnetic and is not in the balance. In general 
case the warming-up of matter leads to nonequilibrium process, at that the heated up matter 
radiates in all spectrum, the process is not stationary and equilibrium and demands to solve 
the kinetic equation. Further we will consider this process as quasistationary and occurs 
under the constant temperature, i.e. we will consider the intensities of fields sufficiently 
small and the matter thermal capacity sufficiently great (infinitely large). 
 The momentum balance equation is conventionally received by each equations from 
(1) scalar multiplying on another field vector and by its summation using the identity 
( ) ( ) ( )baabba

rrrrrr
×⋅−∇=×∇−×∇ . Here the point means the scalar product, and the symbol 

“×” means the crossproduct. Frequently we will omit the mentioned point (if there are not 
misunderstandings). As the result we have 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]trJtrHtrJtrEtrBtrHtrDtrEtrS me
tt ,,,,,,,,, rrrrrrrrrrrrrrrrrr

+−=∂+∂+⋅∇  .         (4) 
The right-hand part of (4) is the power density which is spending by sources on field 
creation. This equation has the form 

( ) ( ) ( ) ( ) ( ) ( )[ ]trJtrHtrJtrEtrwtrS me
t ,,,,,, rrrrrrrrrrr

+−=∂+⋅∇ , which is typical for balance [19]. 
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The first term is the flow out power density of field, and the value ( )trwt ,r∂  is the 
accumulate power density of field and matter. In order to calculate the spend work the 
pointed value must be integrated: 

( ) ( ) ( ) ( ) ( )[ ]trBtrHtrDtrEtrw ttt ′∂′+′∂′∂= − ,,,,, 1 rrrrrrrrr .                                    (5) 

Exactly this value, but not the term ( ) ( ) ( ) ( )[ ] 2/,,,, trBtrHtrDtrE rrrrrrrr
+  (as usually accepted) 

must be associated with ( )trw ,r  [16]. The energy (5) which spent on field and matter 
depends on all process prehistory, that is naturally for electrodynamics of continuum, 
whereas for vacuum electrodynamics it is not required [20]. Solving the equation (3) jointly 
with (1) one can determine all fields in the time interval ( )t,0 . It allows one to calculate the 
energy dissipation density ( )trq ,r  (the emitted heat of unite volume). Note that the 
dissipation is connected not only with conductivity, but with delayed polarization (i.e. with 
the delay of electrical displacement and magnetic induction responses on field influences). 
Finally for field-matter energy density we have ( ) ( ) ( )trqtrwtre ,,, rrr

−= . The energy 
transport velocity according to N. Umov concept [21] is the value ( ) ( ) ( )tretrStrve ,/,, rrrrr

= . It 
is determined in each point for each time. 
 It is convenient to present the Maxwell equations (3) now in the form 

( ) ( ) ( ) ( )trJtrJtrEtrH e
P

e
t ,,,, 0

rrrrrrrr
++∂=×∇ ε  ,    

( ) ( ) ( ) ( )trJtrJtrHtrE m
P

m
t ,,,, 0

rrrrrrrr
++∂=×∇− µ , 

and then the balance equations may be written as 
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]trJtrJtrHtrJtrJtrEtrwtrS m

P
me

P
e

EMt ,,,,,,,, rrrrrrrrrrrrrrr
+++−=∂+⋅∇ ,           (6) 

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ] 2/,,,,,,, 2
0

2
000

1 trHtrEtrHtrHtrEtrEtrw tttEM
rrrrrrrrrrrrr µεµε +=′∂′+′∂′∂= − .     (7) 

Since S
r

 is the field-matter power flow density, and the equation (6) is the same as for field 
excitation in vacuum by the sources as the sum of incident and polarization currents, that 
the sense of expression (7) is as field self-energy density. The quantity ( )EMw  in (6) is 
defined accurate within a constant. As the full field energy at 0=t  is zero, the mentioned 
constant is zero only. The Pointing vector S

r
 is only defined within a arbitrary solenoidal 

vector 0S
r

, i.e. the vector which satisfy equation ( ) 0,0 =⋅∇ trS rr
 [19]. The flow of such 

vector over any closed surface is zero therefore its influence on common energy flow is 
absent. However it is easy to show that there is not any energy circulation over the closed 
paths (loops). As long as the field at 0=t  was absent, the cited equation must be solved 
under the condition ( ) 00,0 =rS rr

, wherefrom one has ( ) 0,0 =trS rr
. In order to find the field 

self-energy transfer velocity, i.e. the energy connected only with photons (quasi-photons) 
[3], it is necessary to find the energy flow density of matter. If the problem of motion for 
matter particles in field is solved, then the average its velocity ( )trv ,rr  in physical 
infinitesimal volume may be determined. Then, if we choose any volume V∆  bounded by 
surface S∆  surrounding the point rr , we can defined in nonrelativistic limit the flow 
density in such a way: 

( )( ) ( ) ( ) ( ) ( )∫
∆

→∆ ′′⋅′′′
∆

=⋅∇
S

VM rdtrvrtrvtr
V

trS 22
0 ,,,

2
1lim, rrrrrrrrr

νρ . 

Here the limit must be realized in terms of conversion to infinitesimal volume. This implies 

( )( ) ( ) ( ) ( )[ ] ( )trtrvtrtrS M ,,,2/1, 2 rrrrrrr
νρ= , where ( )trv ,rr  is the velocity of matter and ( )tr ,rρ  is its 

density. Correspondingly we have ( ) ( )( ) ( )( )trStrStrS EMM ,,, rrrrrr
+= . In relativistic case there 

are well-known relation between the energy and momentum [22,23] which must use. But 
this way is not very constructive as it demands to solve self-congruent dynamic and 
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excitation equations. On the microscopic level it is necessary to solve the excitation by 
incident sources and by polarization currents and also the equations for electrical and 
magnetic polarization vectors. Apparently, using only the balance equations, it is 
impossible to disjoint the energy or momentum balances on constituent parts for field and 
matter. For examination of this, let transform the equation (6) to the forms 

( )( ) ( )( ) ( ) ( ) ( ) ( )[ ]trJtrHtrJtrEtrwtrS me
EMtEM ,,,,,, rrrrrrrrrrr

+−=∂+⋅∇ ,                        (8) 

( )( ) ( ) ( ) ( ) ( ) ( )trJtrHtrJtrEtrStrS m
P

e
PEM ,,,,,, rrrrrrrrrrrr

++⋅∇=⋅∇ .                           (9) 

The equation (8) is the same as in the vacuum. The question is thus: could the vector ( )EMS
r

 
be unambiguously defined from equation (9)? According to Helmholtz theorem the vector 
field ( )MS

r
 is representable as sum of its potential and solenoidal parts:  

( )( ) ( ) ( )( ) ( ) ( )trCtrtrStrStrS EMM ,,,,, rrrrrrrrr
×∇+Φ∇=−= .                                  (10) 

From here one has the Poisson equation for the value (10) determination: 
( ) ( ) ( ) ( ) ( ) 0,,,,,2 =++Φ∇ trJtrHtrJtrEtr m

P
e
P

rrrrrrrrr  .                                (11) 
Notice, that this value of power flow density is defined accurate within the curl (rotor) of 
vector ( )trC ,r

r
. Also this rotor is the solenoidal vector and does not create the flow thus its 

flow over any closed surface is zero, however in general case ( ) 0, ≠trC rr . Moreover, it may 
be that ( ) 00, ≠rC rr , i.e. the flows in the matter may circulate at the time moment of field 
creation. Consequently, the vector (10) is ambiguously determined. In order to solve the 
equation (11) it is necessary to assume that the matter is located in some bounded volume V 
(that is the natural demand for stationary case). In this case if the ( )trE ,r

r
 and ( )trH ,r

r
 are 

known, the solution may be obtained, for example, by Green’s function method 
( ) ( ) 14, −′−=′Γ rrrr rrrr π  for Poisson equation. Then the field self-energy is transferring with 

the velocity ( )( ) ( )( ) ( )( )trwtrStrv EMEM
EM

e ,/,, rrrrr
= . Evidently, this approach couldn’t be spread 

on infinite medium. Furthermore, the velocity ( )( )trv EM
e ,rr , as distinct from the velocity 

( )trve ,rr , has not certain physical meaning. Let consider, for example, the plan 
monochromatic wave in the infinite medium. The amplitudes 0E  of electrical and 0H  of 

magnetic fields here are connected by the relation 0000 EZH ρ= , where 000 /εµ=Z , and 

0ρ  is the real normalized impedance. In general loss case the fields in such wave are 

shifted on phase angleϕ . The conditions ( ) ( ) 0,, ≈trJtrE e
P
rrrr  and ( ) ( ) 0,, ≈trJtrH m

P
rrrr

 may 

be fulfilled for monochromatic wave. Here the Dirac brackets mean the averaging over the 
period, i.e. the field on average does not exchange the energy with the matter. These 
equations are fulfilled religiously in the dispersionless medium, i.e. for ideal material 
conditions ED

rr
εε0= , HB

rr
µµ0= . Then one may neglect the value (10) on average and 

calculate the terms S
r

 and ( )EMw . Let the plane wave propagates along z-axis with unite 

vector 0zr . Then we would obtain the expression 
( ) ( ) cczv EM
e ≤

+
≈

00
0 /1

cos2
ρρ
ϕrr                                                      (12) 

for the transfer velocity of pure electromagnetic energy. In the case of considered material 
conditions we have: 0=ϕ , εµρ /0 = , ( ) EJ t

e
P

rr
∂−= 10 εε , ( ) HJ t

m
P

rr
∂−= 10 µµ . In the case 

when 10 =ρ , i.e. at µε = , the equation (12) gives the velocity of light, whereas 
ε// cncve == . If one considers the balance relation (8), then it is clear that the second 
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term in the right part of (9) is normally adding to ( )EMw  and the full energy density 

( )EMnwuw ==  is obtained, whereas ( ) SS EM

rr
= , ( ) 0=MS

r
. 

Now let consider the momentum balance. We multiply vectorially the first equation 
in (3) at the left on the value ( )trB ,r

r
 and the second one on the value ( )trD ,r

r
 and subtract 

one from another: 
( ) ( ) ( ) ( )[ ] ( ) ( )( )

( ) ( ) ( ) ( )[ ] ( ).,,,,,

,,,,,,

trftrJtrDtrBtrJ

trBtrDtrEtrDtrHtrB
Lme

t
rrrrrrrrrr

rrrrrrrrrrrr

−=×+×−=

=×∂+×∇×+×∇×
                (13)      

The Lorentz force with inverse sign operating on incident currents stays in the right part of 
(13). I.e. this is the force spending by incident sources for full filed and matter momentum. 
The second term at the left in (13) is the time derivative of field-matter momentum density. 
Accordingly the same such density accurate within constant vector ( )rg M rr

0  is 

( ) ( ) ( )trBtrDtrg M ,,, rrrrrr
×= , i.e. it must be taken in Minkowski form. The first term in (13) 

we rewrite in form 
( ) ( ) ( ) ( ) ( ) ( )[ ]trEtrDtrHtrBtrtr ,,,,,ˆ,ˆ rrrrrrrrrr

×∇×+×∇×=Σ∂=Σ⋅∇ ′
ν
νν .                 (14) 

Here zyx ,,=ν . The value ( )tr ,ˆ r
Σ  is the second rank tensor in the tridimensional space. 

Therefore its divergence (or the furl over one index) is the vector staying in the right part of 
(14). The indicated tensor is also defined accurate within arbitrary tensor which satisfies 
equation ( ) 0,ˆ

0 =Σ⋅∇ trr . Because the field was absent at the time 00 == tt , it is necessary to 

impose the initial conditions so ( ) 00 =rg M rr , ( ) 00,ˆ
0 =Σ rr . The values ( )trg M ,rr  and ( )tr ,ˆ r

Σ  
under this conditions are unambiguously determined by way of solutions of excitation 
problem in any time, i.e. through the fields ( )trE ,r

r
 and ( )trH ,r

r
. At that in order to 

determine the ( )trg M ,rr  one must calculate the integrals (1), and for the determination of 
( )tr ,ˆ r

Σ  it is necessary to solve the differential equation (14) yet. For this solution one can 
use the Helmholtz theorem and solve the Poisson equation. Thus, the momentum balance 
equation is: 

( ) L
tt

LM
t ffgtr ννν

ν
νν ′

−
′′′ ∂−∂=−=∂+Σ∂ 1,ˆ r ,   zyx ,,=′ν .                                 (15) 

Here the first term is the full momentum component ν ′  flow. It is follows from this 
equation that the transfer velocity of filed-matter momentum ν ′ - component is [19] 

( ) M
i gtrv ν

ν
ννν ′′′ Σ∂= /,ˆ r ,                                                       (16) 

and Mgν ′  is the full created momentum. If we consider the full infinite space and the volume 
confined by the sphere surface with the radius ctr =  there, then the full momentum of 
field, matter and source is conserved: ( ) 0111 =∂+∂=∂= ′

−
′

−
′

−
′

L
t

M
rr fggG νννν rr , as the flow over 

the sphere is zero. Let consider the transmitted to matter momentum. It is obvious that such 
transmission is carrying out by polarization currents: ( ) e

t
e
pt

e
P pNEEDJ rrrrr

∂+=−∂= σε0  and 

( ) m
t

m
pt

m
P pNHBJ rrrr

∂=−∂= 0µ . As stated above yet, the conductivity current NveE rr
=σ  is 

taken into account. Here the N is the number of charges in unit volume. Correspondingly 
e
pN  and e

pN  are the numbers of electric and magnetic dipoles with dipole moments epr  and 
mpr . The specific momentum transferred to the matter is 

( ) ( )MtM gG rr
1−∂= ,     ( )( ) ( ) ( ) ( ) ( )trJtrDtrBtrJtrg m

P
e
PM ,,,,, rrrrrrrrrr

×+×= .                   (17) 
It remains to find the matter flow density. For this we rewrite the equations (3) as 
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( ) ( ) ( ) ( )trJtrJtrEtrH ee
Pt ,,,, 0

rrrrrrrr
++∂=×∇ ε  ,  ( ) ( ) ( ) ( )trJtrJtrHtrE mm

Pt ,,,, 0
rrrrrrrr

++∂=×∇− µ  
(18) 

and present the momentum balance for this Maxwell equations form. Multiplying the first 
equation in (18) at the left on the value ( )trH ,0

rr
µ , the second one on the value ( )trE ,0

rrε  and 
subtracting one from another we have: 

( )( ) ( ) ( )trftrgtr LA
tEM ,,,ˆ rrrrr

−=∂+Σ⋅∇  .                                      (19) 
Here the Lorentz force 

( )( ) ( ) ( ) ( ) ( )trJtrDtrBtrJtrf m
P

e
P

L
M ,,,,, rrrrrrrrrr

×+×=  
acted on the matter is transferred into the left part of (19) and is presented by any flow 
density ( )EMΣ̂ . This density satisfies the differential equation: 

( )( ) ( ) ( ) ( ) ( )[ ] ( )( )
( ) ( )( ) ( )[ ] ( ) ( )( ) ( )[ ] ( )( ).,,,2/,,,2/,

,,,,,,ˆ

2
0

2
0

00

trftrEtrEtrEtrHtrHtrH

trftrEtrEtrHtrHtr
L
M

L
MEM

rrrrrrrrrrrrrr

rrrrrrrrrrr

+∇⋅−∇+∇⋅−∇=

=+×∇×+×∇×=Σ⋅∇

εµ

εµ
    

(20) 
Let consider the means of balance (19). The Abraham density ( )trg A ,rr  is the self 
electromagnetic filed momentum density. It is creating by primary or initial sources and by 
secondary sources (or polarization currents) which define the density ( )( )trEM ,ˆ r

Σ . When the 

sources are absent ( 0=Lf
r

), then the equation (19) is typical conservation law. So, the 
tensor value ( )( )trEM ,ˆ r

Σ  determines the self field momentum density flow. It is presented 

accurate within some divergentless or solenoidal tensor ( )
( ) ( )trEM ,ˆ 0 r

Σ  and under the initial 

condition ( )
( ) ( ) 00,ˆ 0 =Σ rEM

r . The matter momentum flow is determined by the 

tensor ( )( ) ( ) ( )( )trtrtr EMM ,ˆ,ˆ,ˆ rrr
Σ−Σ=Σ . Now we can obtain the transfer velocity filed and 

matter self momentum correspondingly: 
( )

( ) ( ) ( )trgtrv A
EM

em
i ,/,ˆ rr

ν
ν
ννν ′′′ Σ∂=  ,       ( )

( ) ( ) ( ) ( )trgtrv MM
M

i ,/,ˆ rr
ν

ν
ννν ′′′ Σ∂=  .                  (21) 

In order to transform the equation (20) we have used the vector identity 
( ) ( ) ( ) abbaabbaba rrrrrrrrrr

×∇×+×∇×+∇⋅+∇⋅=⋅∇ , which at ba
rr

=  takes the form 
( ) aaaaa rrrrr

×∇×+∇⋅=∇ 222 . Also in order to transform the introduced tensors, for 
example, the tensor ( )tr ,ˆ r

Σ , one may use the vector-tensor identity 
( ) ( ) ( )[ ] ( ) ( )abbaabbabaIabba rrrrrrrrrrrrrr

⋅∇+⋅∇+⊗−⊗−⋅∇=×∇×+×∇× ˆ . 
For the equal vectors it takes the form 

( ) [ ] ( )aaaaaIaa rrrrrrr
⋅∇+⊗−⋅∇=×∇× 22ˆ2 2 . 

The tensor ( )tr ,ˆ r
Σ  for vacuum is equal to Maxwell stress tensor ν

νσ ′ˆ  which is taken with 
inverse sign. It also may be transformed taking into consideration with regarding that 
according to (3) 

( ) ( )( ) ( )( ) ( )trtrtrJtrD ee
tt

e
t ,,,, 11 rrrrrr ρρ =′∂∂=′⋅∇−∂=⋅∇ ′

−− , 

( ) ( )( ) ( )( ) ( )trtrtrJtrB mm
tt

m
t ,,,, 11 rrrrrr ρρ =′∂∂=′⋅∇−∂=⋅∇ ′

−− . 
Since the incident sources satisfy the continuity equation (charge conservation law): 

( ) ( ) 0,, =∂+⋅∇ trtrJ e
t

e rrr
ρ , ( ) ( ) 0,, =∂+⋅∇ trtrJ m

t
m rrr

ρ . As the incident magnetic charges do 
not exist, i.e. ( ) 0, =trm rρ , that the density of incident magnetic current is solenoidal and 
presentable as the rotor of some electrical current density. 
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 Thus, if the momentum density is defined according to Minkowski, it in 
nondispersive medium is the density of the field-matter substance, and its transfer velocity 
is the phase velocity. Its generalization for the dispersive media leads to transfer velocity 
(16) which is the full momentum transfer velocity of field-matter. In this case it is 
necessary for the determination of all values to solve the nonstationary excitation problem, 
and all considered above magnitudes are depending on the process prehistory, i.e. they may 
be complicated dependent on time. It must be note that the obtained local (differential) 
balance relations may be rewritten as integral relations for any volume V . Then the 
integrals form u  and Mgr  over the mentioned volume present correspondingly the full 
energy U  and the full momentum MG

r
 of this volume. These values are conserved from the 

viewpoint of global conservation law. There may be two cases. 1) The sources of field are 
located in the volume. Then the full energy and momentum balances present itself the 
inhomogeneous balance relations with values in its right parts, which corresponding to 
production of energy and momentum in the volume. The negative energy production means 
the dissipation. 2) There were no any sources in the volume before the considered time t . In 
this case the sources are located outside the volume, and one can take as the time 0t  the 
instant of time when the field comes to the volume. In this case the energy and momentum 
are conserved from such viewpoint, that the value ( )QUt +∂  in each time is equal to the 
power flowing out the volume, and the change of full momentum is equal to flowing 
momentum. For the stationary (monochromatic) in time field or wave for some dispersion 
laws one may obtain concrete kinds of mentioned values. In this case, using the limit 
transfer from quasistationary process to stationary one, the averaged over the period 
densities “forget its initial senses”, i.e. do not depend on them. All received values for 
EMT, energy and momentum densities coincide with the Abraham forms. As it is easy to 
see, all received values are defined unambiguously. So, the solution of differential 
equations ( ) 0,ˆ

0 =Σ⋅∇ trr  with zero initial conditions gives zero of tensor 0Σ̂  components. 
 

3. Plane monochromatic wave in the conduction magnetodieleectric medium 
 

For more concrete and simple analysis we will consider the monochromatic plane 
wave falls down on the magnetodielectric layer with thickness d . Let the layer is located at 
the region dz ≤≤0  and has the constant real spectral permittivity ε ′  and permeabilityµ , 
at that time 1, ≥′ µε . This means the absence of frequency dispersion, that is justly in any 
frequency region min0 ωω <<< , where minω  is any minimal frequency from the set of self 
resonant mater frequencies, the frequency of normal skin-effect violation (if such takes 
place), and also the plasma frequency pω  of uncombined carriers of charge. As we consider 
such, we suppose the conducting medium, i.e. having the complex spectral permittivity 
with the pole at zero frequency [17]: 

( ) ( )ωεσεεεωε 0/jj −′=′′−′=  ,                                              (22) 
and constant permeability const=µ . For example, for the water we have such frequency 

τωω /1~min =c  which lays at 100 GHz, cω  is the collision frequency, and τ  determines 
the relaxation time in the Debye’s formula. For the metals the frequency minω  may lay in 
the diapason from infra-red to ultra-violet [24,25]. Further we will consider the plane quasi-
monochromatic wave (long wave train or wave packet), which is approached from the left 
at time 00 =t  to the layer boundary and is excited at infinity at the time −∞=t . Such plane 
wave may be excited in both sides formally mathematically by the current sheet with the 
density ( ) ( ) ( ) ( )lztItxtzyxJ x

e
inc ++= δτχ0,,, vr

, which is located at lz −=  and is started to act 
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at the time τ−=t  [26]. Here χ  is the Heaviside step function, and for monochromatic 
wave it is convenient to take ( ) ( )ttI x ωsin= . Later we will consider the wave train 
diffraction on the plate (layer). But at first let consider the plane quasi-monochromatic 
wave. For it we introduce the current density in such a way: 

 ( ) ( ) ( ) ( )[ ] ( )ttlzItxtzyxJ x
e
inc ωδδτχ sinexp1,,, 0 −−++=

rr
 ,                          (23) 

and consider the field at great time clt /+>>τ . As the special case we also will consider 
the excitation by the current density (23) in the infinite homogeneous conducting 
magnetodielectric medium. The introduced current densities create the plane wave with the 
components EEx =  and HH y = (further we often will omit the indexes x and y). The 
indicated wave satisfy the Maxwell equations in the form 

EEH tz σεε −∂′−=∂ 0  ,            HE tz ∂−=∂ µµ0  .                           (24) 
For vacuum we impose 1==′ µε , 0=σ .  

As is well known, two velocities, which defined the transfer of inherent wave 
physical substances or characteristic, may be introduced for plane monochromatic wave 
with complex dependence ( )( ) ( )( )zztj ωαωβω −−exp  moving along z-axis in dispersive 
medium. These are the energy transport velocity ev  and the momentum transport velocity 

iv  [27–29] (owing to one-dimensionality we omit the vector designations). Besides, for the 
dispersion law ( )ωβ  one may else introduce two velocities which determine the movement 
of mathematical (kinematic) wave characteristics. These are the phase velocity 
( ) ( )ωβωω /=pv  and the group velocity ( ) ( )( ) 1/ −∂∂= ωωβωgv . The first one characterizes 

the phase movement, and the second one defines the velocity of phase perturbation or 
interference pattern (beating) for two infinitely frequency closed waves with equal 
amplitudes (as it was introduces by Stokes). At the same time the positive derivative 
corresponds to positive dispersion or forward wave (in z-direction), and negative one – to 
negative dispersion or backward (inverse) wave. The coefficient ( ) ( )ωω pvcn /=′  
determines the wave retardation (deceleration) and the refraction on the boundary interface, 
and the coefficient ( )ωn ′′  corresponds with loss. The normal dispersion corresponds to 
relation ( ) 0/ >∂′∂ ωωn  and ( ) 0/ <∂∂ ωωpv , whereas the anomalous one occurs when 

( ) 0/ <∂′∂ ωωn  and ( ) 0/ >∂∂ ωωpv  [30]. Two last velocities are not in keeping with 
movement of any physical substances and are only opportune mathematical conception 
attached to wave descriptions [14–16,31–41], although frequently ( )ωgv  is frequently 
identified with ( )ωev , that is incorrectly for dissipative media [14–16,33–35,39–40]. As all 
real media are dissipative in some way, the relation ( ) ( )ωω eg vv =  is fulfilled only for 
several ideal models, for example, in the ideal collisionless plasma. The dispersion in 
ideally conducting waveguides, including the periodic waveguides or slow-wave systems, 
presents the quite another matter: for harmonic wave there are not the frequency spectral 
wave train, and the dispersion law arises owing to spectral series of partial waves, which 
are moving on-the-mitre θ  to the waveguide axis with the phase velocity equal to velocity 
of light. The mentioned wave series in general case depends on two angles, one of which 
defines the energy transfer velocity along the axis, and another may has the continuous 
spectrum of meanings [16]. Under this we have the geometric relations ( )θcos/cvp = , 

( )θcoscvg = , and 2cvv gp = . This case is trivial; it corresponds to electromagnetic 
structures, but not to media, and here is not considered. In a number of works, for example, 
in [41] it is asserted that always fulfills cvv еg ≤= , though this is not true [14–16,39,40]. 
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But ibidem for waves with negative energy may fulfill ∞→gv  [41]. Strictly speaking, one 
can introduce infinite number of values having the dimension of a quantity as velocity in 
the problem of electromagnetic wave train propagation. For example, we can consider 
following values: ( )( ) 11 / −− ∂∂= nnn

nv ωωβω . For mathematical description the appropriate 
complex velocities often have been used. In this case the value β  is replaced by complex 
propagation constant ( ) ( ) ( )ωαωβωγ j−=  [15,37] and correspondingly the complex 
refractive index ( ) ( ) ( )ωωω njnn ′′−′=  is introduced [17]. The complex phase velocity of 
signal may has the mathematical sense, as against to complex gv , which may be introduces 
only for complex signal. The group velocity 4-vector proposed in the paper [42], which has 
the meaning only for self-adjoint Hamiltonian when the Lagrangian is the quadratic 
function of generalized coordinates and impulses. In literature there is well-known the 
Leontovich-Lighthill theorem for conservative (nondissipative) systems [27–29, 31, 43–
45], according to which under the indicated Hamiltonian the relation eg vv =  takes place. In 
our case (and in general for dissipative media) the frameworks of this theorem are newer 
implemented. 

Traditionally the velocity gv  is introduced by way of phase constant ( )ωβ  
decomposition in Taylor's series about any frequency (for example, carrying one) in the 
spectral integral with the abandonment of zeroth-order and и first-order terms (the first 
approach of dispersion theory) [36–38]. Sometimes the inverse decomposition ( )βω  is 
used [35]. The taking into account of high-order terms just leads to arising of mentioned 
velocities. The second derivative 22 / ωβ ∂∂  in that case is as a first approximation which 
characterizes the velocity of wave train smearing as whole [33–37]. In dissipative media the 
analogous complex velocities may be considered when they are also the functions of 
attenuation constant ( )ωα . These decompositions are asymptotic [38,46], i.e. not obligatory 
convergent. From the beginning we will consider not wave train propagation, but the 
simple one-dimensional plane monochromatic wave case. In such wave there is no 
frequency wave group, and so no reason to introduce the group velocity (although formally 
for dispersion ( )ωβ  it may be defined, that we do). 

Often it is necessary to consider the conducting media at sufficiently low 
frequencies, when the non-connected with conductivity dispersion may be neglected. For 
example, these are the semi-conductors and metals at radio and microwave frequencies, the 
see water in radio-frequency band, ionospheric plasma (such as Heaviside layer) under the 
ultra low frequencies. The mentioned law, when the dispersion is determined only by 
frequency nondependent conductivity σ  (i.e. by direct current conductivity), has the form 
[35] 

( ) ( ) ( )[ ] ( ) cnc //112// 222
0

2 ωωωεεσµεωωβ ′=′++′=  ,                            (25) 

( ) ( ) ( )[ ] ( ) cnc //112// 222
0

2 ωωωεεσµεωωα ′′=′++−′=  .                          (26) 
Already the direct application of formula (22) demonstrates that the group velocity may 
exceed the value nc ~/ , where the µε′=n~  is the retardation coefficient or refractive index 
in the medium without conductivity. Moreover, it may exceed the velocity of light in 
vacuum c. Let us assume that 1=µ . Signifying ( )εεσω 0/~ = , one has 

( ) ( ) ( )
( ) ( ) ( ) ..0663.1

/~
~

...8535.0

/~1/~112

/~
1

~
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vd
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
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






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The mentioned excess comes at ...0663.1~ <n , that may be, for example, in weakly ionized 
air under the conditions pc ωω >>  and ωω ~>>c . The consideration of permittivity 
dispersion in a number of cases allows one to make this excess still more essential [16]. We 
refer to two works [39,40] which among the first register the fact that group velocity may 
exceed the velocity of light in the region with anomalous dispersion (see also [17]), and at 
the same time show that the signal at that time propagates with velocity cv < . 
Consequently, in conducting medium the value gv  certainly not characterizes the energy 
transportation velocity. On the contrary, the phase velocity in such medium with anomalous 
positive dispersion always letter than velocity of light: ( ) ( ) cncvp <′= ωω / . 

The main goal of this paper is the proof the relations pe vv =  and pi vv =  for 
considerable case. Let observe that in the paper [16] the relation pe vv =  has been proved 
for the media with anomalous positive dispersion which permittivity is described by 
Debye’s formula (i.e. for the polar dielectrics with hard dipoles). This has been proved 
using two independent methods. We will regard that the process of wave propagation is 
quasi-equilibrium, i.e. existent without a heating and under a constant temperature. 

 
4. Electromagnetic energy density in monochromatic wave 

 
 Let the plane linearly polarized monochromatic wave with the electric filed 
component xE  propagates in conducting medium. The indicated wave creates the 
conductivity current density xx EJ σσ = , which leads to wave energy dissipation. This 
dissipation has the exponential distribution along z-axis in form ( )( )zωα2exp −  and creates 
inhomogeneous along z heating of infinite space. Such heating, for one's turn, generates the 
thermal radiation in both directions z±  with all spectral components. Hence, the process 
primordially is nonequilibrium. It may be considered approximately as equilibrium and 
single-frequency, if the amplitude of wave is small (or infinitely small), or if the thermal 
capacity of medium is infinitely large.  

The undamped harmonic wave in infinite dissipative media may propagate only due 
to the distributed incident source energy which compensates the loss on dissipative heat Q 
[17]. We propose that such sources are outside the zone of wave consideration (usually at 
the infinity). The energy of plane wave is infinite even for lossless case that characterizes 
this wave as convenient mathematical abstraction (the solution of homogeneous Maxwell 
equations). Formally mathematically the plane wave is excited in both directions by the 
electrical current sheet with the density (23), which operates infinitely long in time. If the 
finite sources are at the infinity then the plane wave is the limit case of spherical wave.  

The permittivity (22) is obtained by exponential filed dependencies substitution 
direct to Maxwell equations with taking into account of conductivity current. One may get 
another derivation of this value. Namely, it is necessary to count the average over a period 
polarization of unite volume and use the relation 

( ) ( ) ( ) ( ) ( ) ( )ztPztEztEztDztD xx ,,,,,,,,,, 00 ωωεωωεεωω +===  .                        (28) 
Here ( ) ( ) ( )( )zjtjEztE x ωγωωω −= exp0,0,,,  is denoted. Let symbolize ( )0,0,0 ωxEE = . 
The relation (28) must be averaged over the oscillation period. In our case it is  

( ) ( )( ) ( )ztEztPx ,,,, 21 ωωκκω += . It may be written for the introduced receptivities 
11 −′= εκ  and ( ) ( )ωεσωκ 02 /j−= . Indeed, the unite volume polarization in this medium is 

creating by proper matter polarization and by the movement of free charges, which are 
scattering on matter atoms, molecules, and one on another. The first polarization happens 
instantly without any delay owing to our assumption that the characteristic matter 
frequencies are extremely high. The charge motion is described by the equation 
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( ) ( ) ( )ztENetx x ,,1 ωσ −=&  and occurs in such a way that their potential energy is equal to 
zero, and the average kinetic energy has the form ( ) ( )( )zNeEmU K ωασ −= exp4/ 22

0
2 , 

where ( )cmNe ωσ /2= , N is the number of charged particles of unite volume. This result 
also may be gotten from the plasma dielectric receptivity 

( ) ( )c

p
p jωωω

ω
ωκ

−
−=

2

                                                      (29) 

in the supposition that pωω <<  and cωω << , i.e. that the plasmic frequency and the 

collision frequency are highly large, and at the same time cp ωωεσ /2
0=  is the conductivity 

on zero frequency. In other words, the conductive medium may be viewed as the plasma at 
very low frequencies. The averaged electrical part of energy density and the permittivity for 
gas of oscillators with the self-resonant frequency 0ω  have been obtained in the work [15] 
and have the forms 
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( )

( )( )zE
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p
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+=  .                          (30)  

( ) ( )
( ) 2222

0
2

2
0

22

1
ωωωω

ωωωωω
ωε

c

cp j

+−

+−
−=  .                                              (31)  

It must put 0ωω <<  (or 0=ω ) for nonconductive medium without the dissipation, that 
gives 

( ) constp =′=+=+= εκωωωε 1
2
0

2
1 1/1  .                                               (32)  

( ) ( ) ( ) ( )( ) ( ) ( )( )zEzEztU pE ωαεεωαωωε 2exp4/12exp/14/1, 2
00

2
0

2
1

2
00 −=−+=  .                  (33) 

Here the index 1 denotes the plasmic frequency connected with the matter dipole 
concentration. In such medium the energy at the frequencies lower than minω  propagates 
with phase velocity. For conducting medium with plasma it is necessary to add the terms 
from the formulas (30), (31), in which 00 =ω  (free charges). In this case we have 

ωω >>2p , therefore 

( ) ( ) ( )zEztU cppE αωωωωε 2exp//1
4

, 22
2

2
0

2
1

2
00 −++=  ,                               (34)  

( ) ( ) 21
2

2
2
0

2
1 1//1 κκωωωωωωε ++=−+= cpp j  .                                            (35) 

 
 

5. Velocity of energy movement 
 
For any wave process the transfer velocity of some substance is determined 

according to [21] by its density and by vector of flow density in unit time. In our case for 
the energy it is the Pointing vector ( ) ( )tzSztzS ,, 0

rr
= , and at that: 

( ) ( ) ( ) ( ) ( ) ( ) ( )tzutzHtzEztzutzStzvztzv ee ,/,,,/,,, 00
rrrr

=== .                          (36) 
This leads from the energy conservation law (4) under the general suppositions. The real 
physical fields are used in (36) and further. For harmonic fields in homogeneous medium 
averaging the (36) over the time with consideration of (30) and also taking the magnetic 
part of energy, we get 

( ) ( )ω
δς
δ

µε
ω pe vcv <

++
+

′
=

1
12 .                                         (37) 
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Here 21 ςδ += , ( )ωεεσς ′= 0/ . If the conditions cωω <<  and cωεεσ ′>> 0  are fulfilled, 
then one can neglect of second term in denominator of (37) and get 

( ) ( )ω
δµε

ω pe vcv =
+′

≈
1
2 .                                            (38) 

Under the indicated approximations we also may neglect of unit under the square root, and 
then 

( ) ( ) ( ) 2/22

0

0 ω
µσµ
ω

σ
ωεε

µε
ωω gpe vcvv ==

′
′

== .                              (39) 

The group velocity may exceed the velocity of light in vacuum for the dispersion (39) and 
for µ = 1 at small decelerations. Namely, from the demand cvg >  we have the condition 
σ ωε< 8 0 . Using the conditions of formula (39), we have ωε ε σ ωε0 08<< < . For the 
media with ε ~ 1  it may regard such when the conductivity σ  is closed to 08ωε  from 
below. But for the frequencies of order ( )08/ εσ  one couldn’t fully neglect the bias current 
as compared with conductivity current, and so should consider the rigorous relation (25). 

There is another wave to obtain the result (38). This is limit transfer from quasi-
stationary process to stationary one [16]. Let the plane surface current source has been 
arisen at 0=z and the time 0=t  (23). The field was absent for times 0<t . The source 
creates the plane wave in the region 0>z . Then we can write its work (energy) density w 
spend on the field creation (5) in our case for the clearness as:  

( ) ( ) ( ) ( ) ( ){ } =′′′+′′= ∫ ′′

t

tt tdtzBtzHtzDtzEtzw
0

,,,,, ∂∂  

( ) ( ) ( ) ( ) ( ) ( ){ +′+′+
+

= ∫
t

me tzHrtzEztzHtzE

0

2
0

2
0

2
0

2
0 ,,0ˆ,,0ˆ

2
,, rκµκεµε           (40) 

( ) ( ) ( ) ( ) ( ) ( )[ ] } .,,ˆ,,,ˆ,
0

00 tdtdtzHztttzHztEztttzE
t

m
t

e
t ′′′′′′′−′′+′′′′−′′+ ∫

′ rrr
κ∂µκ∂ε  

Here the kernels of permittivity and permeability integral operators eκ̂  и mκ̂  have been 
symbolized. Further on account of homogeneity the dependence on z is omitted, and the 
fields are exponential-dependent on z. Note, that low limit in (40) may be taken as ∞− . For 
the considered dispersion law we have ( ) ( ) ( )ttm δµκ 1ˆ −= , and the operator of permittivity 
has the presentation 

( ) ( ) ( ) ( ) ( ) ( ) 0/1exp
2
1ˆ εσχδεωωωε
π

κ ttdtjte +−′== ∫
∞

∞−

, 

where ( )tχ  is the Heaviside step function. In order to find the energy density there is need 
to subtract the dissipative energy density or heat q from (40) [15–17]. Detecting these 
values at big times δ/1>>t  and ω/1>>t , one can get mentioned parameters for quasi-
monochromatic process. Averaging over the oscillation period ωπ /2  and taking the limit 

∞→t , we can find the energy of such process. Substituting all incoming value expressions 
into integrals like (40) over the respective spectral integrals, extracting the proper delta-
functions and integrating with them over the time, and then calculating the spectral integral 

by the method of residuals, we get the formula (30). Note, that the result 4/
2

0 EU E

r
εε ′=  

for the conducting medium ( 00 =ω ) at the low frequencies just follows from Pointing 
theorem in complex form [34,35]. This result also is obtained from the explicit field 
representations by the equations (24) [35]: 
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( ) ( )zztEEEx αβω −−== expcos0 ,       ( ) ( )zztHHH y αϕβω −−−== expcos0  .        (41) 
Here )/arctan( βαϕ =  is the phase angle (shift), which is given by the formula (6.32) from 
the work [35], and the ratio of amplitudes in (18) gives the real impedance 

22
000 // βαµωµ +== HEZ . At the same time ( )2

0
222

0 // εωσεµ +′= ZZ ,  

000 /εµ=Z  (formula (6.31) from [35]). This implies 

( )
( ) pe v

ZEE
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U
S

v ==
+′

=
+′+′

=
+′

==
β
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δµµεε
βω

ωςεεεε
β

µωµµµεε
ϕ

1
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/
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00
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2
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6. Momentum transfer velocity 
 
 Let examine the question about the electromagnetic momentum transfer velocity. In 
vacuum the momentum density is unambiguously determined by the Abraham vector 

( ) ( ) 2
0 /,, cztSzztg A rr

= . In the electromagnetic of continuity there are traditionally two 
forms: the Abraham Agr  and the Minkowski ( ) ( ) ( )ztgncztSnzztg AM ,~/,~, 222

0
rrr

==  ones, at 
that up to now the question for benefit of choice one from them has not solved yet [3–
13,41]. This fact even is reflected in the physical encyclopedia. Both definitions lead to 
identical conservation laws for Minkowski and Abraham energy-momentum tensors (EMT) 
in dispersionless media [3]. It is considered that the chose of form for momentum density 
impossible without the solution of equations of substance motion in the filed and before the 
definition of substance EMT. However, without the momentum density and its flow 
definitions and also even one from them it is impossible to define the momentum transfer 
velocity also. Such ambiguities are generally typical for electromagnetics of continuum. 
Thus, the introduction of electromagnetic potentials in media is also ambiguous or 
polysemantic [47] that is connected not only with calibration transformations. In our case of 
plane wave ( )ztg M ,r  and ( )ztg A ,r  have the forms 

( ) ( ) ( )( ) ( )( ) ( )( )zztzt
Zc
Ezztgzztg AA ωαϕωβωωβω 2expcoscos,, 2

2
00

0 −−−−==
r

rr  ,          (42) 

( ) ( ) ( )( ) ( )( ) ( )( )zztzt
Zc
Enzztgzztg MM ωαϕωβωωβω 2expcoscos

~
,, 2

2
0

2
0

0 −−−−==
r

rr  .   (43) 

Now we introduce one more definition, which more closer to Minkowski one: Mgzg ~~
0
rr

= , 

where ( ) A
p

M gnvSg ω22/~ ′== . At 0=σ  we have MM gg ~= , 0=α , c/µεωβ ′= , and in 
this case the momentum on average is not transmitted to matter (with the exception of 
reflections from the boundaries), because the Lorentz force and the electric polarization 
current density ( ) tEJ e

P ∂∂−′= /10

rr
εε  are phase-shifted on 2/π , and the momentum 

propagates with phase velocity ncvv pi
~/==  [29]. It also is related to the Lorentz force 

m
PJE
rr

×′εε 0  for magnetic polarization current density ( ) tHJ m
P ∂∂−= /10

rr
µµ . 

In dissipative media due to photon absorption the momentum is transferred to 
matter, its flow is directed along z, therefore the balance equation for momentum density 
vector may be written as [19,29] 

( ) ( )[ ] ( ) ( )[ ] ( ) ( )ztgztvztgztvztgztg ziizt ,,,,,, ∂=∂=+∂− σ ,                       (44) 
where the transmitted to matter momentum ( )ztg ,σ  has been designated. By virtue of 
medium homogeneity the velocity iv  here is not dependent on z. For any of three forms one 
has the functional dependence ( ) ( ) ( )zztGztg αβω 2exp, −−= . The velocity of momentum 
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change transferred to matter for thickness layer dz  with unite square is the difference 
between the flows of g  through the sections z  and dzz + , so 

( ) ( ) ( )ztgztvztg it ,,2, ασ =∂  .                                                (45) 
The value (45) is equal to field pressure on the unite thickness layer. In order to get the 
pressure on some finite thickness layer one must integrate the expression (45) over its 
coordinates. If the layer is infinite then all momentum is transferred to the matter. 
Substituting the (45) into (44), we get that the momentum transfer velocity is constant and 
equal to phase velocity: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )ωωβωωα pzti vztgztgztgztv ==+∂−∂= /,2,/,,  .                       (46) 
Here we do not concretize the momentum form. One may get this relation from the 
following reasoning. The Maxwell equations are taken form (24). Hence the balance 
equation is 

[ ] EHgHE M
tz µσµµµεε 0

2
0

2
0 2/2/ −−∂=+′∂ .                             (47) 

As ( )SzSvtS p α2// +∂∂−=∂∂ , that the unique form 2/ cSg η=  which compensates the 

acting on the charges Lorentz force Sµσµ0  is obtaining under the form Mg~ . Indeed, we 
demand the fulfillment of balance equation ScSvp µσµαη 0

2/2 = . This balance is written 

for matter charges, from which ( ) 222
0

2 /2/ pvcc == αωµσβωµη . Therefore we do the 

replacement ftgtg MM ~/~/ +∂∂=∂∂  in the right part of (47), where ( ) tSnncf ∂∂′−= − /~~ 222 . 
The average energy density in (47) has the presentation 

( ) ( ) ( )µµϕ 0
22

0
2
0 2/2/cos/ ppp vEZvEvSu === . In a similar way for the third momentum 

form one has ( )µµ0
2
0

222 2//~
p

M vEncSng ′=′= . Therefore the transfer momentum 

velocity for Mg~ is 
 ( ) ( )ωpp

MM
i vvncguv =′== 22 /~/~ .                                              (48) 

The additional term f~  appears in this case in balance equation. It is similar to Abraham 
force and acts on the medium. But the appearance of indicated force (as and Abraham 
force) must not lead to any objections on balance equations nonfulfillment, as 0/ =∂∂ tS  
for any phase shift ϕ . Therefore, the mentioned force, as well as the Abraham force, does 
not transmit the momentum to the matter on average. In non-conducting medium 0~

=f , 
MM gg =~ , and the energy and the momentum both propagate with the phase frequency 

independent velocity ncvp
~// == βω . Carrying the divergent part of Mg~  into the left part 

of equality (47), one get the another balance equation 0/ =− pvSu  which is the identity. 

The residuary before averaging term in its right part f~  is the force acting on the matter but 
is not transferring the momentum on average over a period. Notice, that usage of traditional 
Minkowski momentum density does not lead to any physical clear expression for its 
velocity in conductive medium. But if we have the localized initial electric current and 

0=σ , then the usage Mgr  is more convenient than Agr  and leads to the full momentum 
transportation with the velocity ncvvvv egpi

~/==== , that is trivial as there is no 
dispersion. Essentially thus the EMT is traditionally introduced for media [3–5]. 

In big number of papers the “correct” momentum density is defined as Abraham one 
( ) ( ) 2/,, cztSztg A =  [3–5]. As the result, the additional volume Abraham force 

( ) tScf A ∂∂−′= − /12 µε  arises. Such definitions is supposed more rigorous, though the 
Minkowski definition is frequently more convenient for continuum [3,5] and corresponds to 
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experimental data for light pressure. The balance equation (47) may be written in such 
manner 

[ ] SfgHE AA
tz µσµµµεε 0

2
0

2
0 2/2/ −−−∂=+′∂  .                            (49) 

Now the momentum density change per second acting on the matter is ( ) 2//2 cSβµεαω ′ . 
This is the first and the second terms in the right part of (49) result of contribution. But it 
does not compensate the last term as nn ′≠~ . Evidently, the usage of first or second terms in 
the right part of (49) separately always does not lead to any such compensation. Using the 
value Ag  as the momentum density one does not succeed to get any rational determination 
of its rate of movement which is not exceeding c for the dissipative media. The exception is 
the nonconductive nondispersive medium with nn ′=~ . As 

( ) ( ) ScvSc zpt ∂−′−=∂−′ −− 11 22 µεµε , then, introducting the divergent part of Af  into the 
flow density, we have 

( )
( )[ ] ( ) ncvnvncScSvvSc

g

cSvu
v ppppA

pA
i

~/1~~//1/
/1 222

2

==−−=−′−=
−′−

= µε
µε

. 

Consequently, in this case the filed momentum also is carrying with the phase velocity 
which is smaller than velocity of light and coincides with the energy velocity in 
nondispersive medium. 
 Let consider the momentum transferred to matter per unit time (second). For this we 
write the balance as 

[ ] ( ) ( ) ( ) HEcEHcSSgHE tt
A

tz ∂−−∂−′−−+−−∂=+∂ 1112/2/ 22
00

2
0

2
0 µεσµµµσµµε .  

(50) 
This equation also has been obtained from the Maxwell equations when the medium is 
taken into account as the electric ( ) EJ t

e
Px ∂−′= 10 εε  and magnetic ( ) HJ t

m
Py ∂−= 10 µµ  

polarization current densities. This approach more peculiar to microscopic electrodynamics 
[7,8], but for all of that the description is more complicated. It is well known, that the 
Abraham force does not fully characterize the effect on the matter [5]. The three last terms 
in the (50) correctly reflect such effect. Namely, EBSf L σµσµσ == 0  is the Lorentz force 
acting on conductivity current, ( ) BJEHcf e

Pxt
L

Pe =∂−′= − 12 ε  is the Lorentz force acting on 
electric polarization current of medium, and ( ) m

Pyxt
L

Pm JDHEcf =∂−= − 12 µ  is the Lorentz 
force acting on the magnetic one (here HB µµ0= ). For the first force we had obtain the 

following averaged meaning ( )cEnESf L 2/2/ 2
0

2
00 σωβσµσµσ ′=== . For the second 

and third ones we accordingly have ( ) ( )cnEf L
Pe ′−′−= 4/1 2

0σε  and 

( ) ( )cnEf L
Pm ′−= 4/1 2

0σµ . As usually 1>>′n , the first term plays the determinative role in 
momentum transfer to mobile charges. They, scattering on the molecules and atoms of 
matter, transmit the momentum. The energy uvS p=  is the one transferring per unit time 

through unit surface. The lost in unit volume power here is ( )ztE βωσ −22
0 cos , and its 

averaged over the period value is 2/2
0Eσ . On the other hand, this value may be determined 

by such a way: tSvtu p ∂∂=∂∂ − // 1
σσ , that is equal to the 

expression ( ) 2//cos2 2
0

2
0 EZES σϕαα == . The lost energy corresponds to the transmitted 

momentum tg ∂∂ /σ . For the three momentum definitions we have correspondingly: 

( ) ( ) ( )22
0

222
0

2 2/~/cos~2 cvEnZcEvng pp
M

t σϕασ ==∂ , 
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( ) ( ) ( )22
0

222
0 2/~/cos2 cvEnZcEvg pp

A
t σϕασ ==∂ , 

( ) ( ) ( )pp
M

t vEZcEvng 2//cos2~ 2
0

22
0

2 σϕασ =′=∂ . 
As the free charges satisfy the equation of motion 

( ) ( )( ) ( )( )zztEtxNe ωαωβωσ −−= expcos0& , it may come into view that the matter has the 
oscillatory x-component of momentum. But this is not so. As long as we have assumed the 
matter is electrically neutral, there are the charges, which is deposing into opposite side and 
they have the opposite momentum (for example, in metal this is the lattice). Such question 
may arise: from what the filed has the momentum when it is exciting by dipole or by dipole 
system (by the dipole plane in our case) as soon as the sources had not them? Here the 
answer is trivial: each source excites two waves in opposite positive and negative directions 
of z–axis with opposite momentums having the equal modules. 

It must be mark that the elementary momentum filed quanta are transferred in 
matter by photons between the acts of its scattering on the particles with the velocity of 
light c. The momentum transportation with phase velocity is the collective effect of these 
elementary acts with taking into account the phase delays and the interferences. Formally 
the taking into consideration of matter influence may be carried out by polarization currents 
introduction. For nondissipative media (i.e. for dispersionless ε ′  and µ ) the phase shift 
between the filed is 2/π , and the momentum in not transferable by this currents to matter. 
It is transferring only by conductivity current. The balance equation (50) (and the analogous 
one for power) with the density ( ) 2/2

0
2

00 HEu µε +=  is also not convenient for the 
determination of the transfer phenomena in media. 

The balance relations with incident and polarization currents introduction are highly 
productive under the nonstationary excitation [16]. In this case the energy accumulated in 
any volume and the momentum is dependent on filed creation process prehistory. For 
example, in plasma one must consider the energy and momentum of field-matter system. 
For plasma it means the taking into consideration of charge particles kinetic oscillation 
energy and its momentum. Solving the motion equations for filed-matter system, we can in 
principle define the EMT of field and matter in any time and the correspondingly the values 
( )trve ,rr  and ( )trvi ,rr . In macroscopic electrodynamics of continuum the averaging over the 

physical infinitesimal volume (or homogenization) leads to material conditions which are 
the analogue of motion equations. For example, we write the one-dimensional 
nonstationary equations (24) in homogeneous medium with taking only the time 
(frequency) dispersion: 

eJtDzH +∂∂=∂∂− //  ,            mJtBzE +∂∂=∂∂− //  .                    (51) 
All values in (51) are the functions of time and one coordinate z that simplifies the analysis. 
The dispersive material conditions will be taking in the Landau-Lifshitz forms 

 ( ) ( ) ( ) tdtzEttztzD
t

′′′−= ∫ ,,,
0

0 εε ,      ( ) ( ) ( ) tdtzHttztzB
t

′′′−= ∫ ,,,
0

0 µµ  .         (52) 

Without lack of generality we will consider that the field was absent at 0=t . If the sources 
are located at the plane 0=z , then for the time t  the field will be located within the 
bounds ctz ≤ . The conductivity corresponds to pole at zero in the spectral complex 
permittivity 

( ) ( ) ( ) ( ) ( )∫∫ ′′−′=−=
∞

∞−

t

tdtjtzdttjtzz
0

exp,exp,, ωεωεωε . 

Here we have ( ) 0, =tzε  at 0<t . The plasma model is more convenient here. The wave in 
plasma has the Landau attenuation, and this pole may be eliminated. Writing the balance 
equations for the momentum, one can get such form 
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( ) ( ) ( )[ ] me
ttz EJHJtzBEtzDHtzu 00000 ,,, εµεµ −−∂+∂−=∂  .            (53) 

The last two terms here create the field and matter momentum. They correspond to Lorentz 
force in vacuum but not in matter. Meaning that in the square bracket must stay the value 
like the ( )tzgt ,∂ , we get after the integration the following relation 
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,,,,0,0,,0,

,,,,,

00
1

00

00
1

00

00
1

tzBtzEtzDtzHtzBtzEtzDtzH

tzHttztzEttzzHztzEz

tzDtzHtzBtzEtzg

yttt

ttt

ttt

′′∂+′′∂∂−+=

=′′−∂+′′−∂∂++=

=′∂′+′∂′∂=
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  (54) 

From this follows that the z-component (54) at time t depends not only on filed values in 
given present moment, but on all their previous values. For homogeneous plasma we have 
( ) ( )ttz δµ =, , ( ) ( ) ( ) ( )( ) ( )ttttz Lccp ωωωωδε −−−+= expexp1/, 2 . The last exponent here 

determines the Landau attenuation, and in the final results one may take the limit 0→Lω . 
Then ( ) ( )cp jωωωωωε −+= 22 /1 . Setting the electrical current density as 

( )[ ] ( )ttIJ e ωτ sin/exp1 −−= , the equation (51) may be solved and the density (54) 
determined at grate times t, when the process is almost stationary. But the relation (54) does 
not agree with momentum in continuum. For vacuum it is trivial: 2/ cSgg A == . The value 
more agreed with continuum is the Minkowski density DBgg M == . The Corresponding 
to it and to equations (51) momentum balance equation has the form 

m
yx

e
xy

M
tz JDJBg −−=∂+Σ∂  .                                               (55) 

Here EDHB zzz ∂+∂=Σ∂ , DBg M = , Σ  is the z-direction momentum flow density, and 
the real Lorentz forces are in the right part of (55) taking into account the collective 
influence of all charges motion in the continuum. Evidently, the relation (55) more 
acceptably for continuum as without the dispersion i.e. at the material relations ED εε0= , 

HB µµ0=  we have 2/ cSg M εµ= , ( ) 2/22
0 HEu µµεε +==Σ , p

M
i vcv == εµ/ . 

Therefore we have got the generalization of Minkowski momentum density. The difficulty 
for nonstationary case is in calculation of DBg M =  and Σ  that demands the knowledge of 
all process prehistory, and the flow Σ  must be found as the solution of differential equation 
yet. For the one-dimensional case of plane wave diffraction on the plate it is sufficient to 
fulfill the integration over z. The Abraham force introduction in (55) (as the makeweight to 
Abraham momentum density in order actually to get the Minkowski one) only confuses the 
consideration. Let get the corresponding to (51) power balance 
equation ( )quwp tt +∂=∂= : m

y
e
xzt HJEJSw −−=∂+∂ . Here ( )tzq ,  is the dissipated source 

work or heat which always may be calculated. For the simplest case of conducting medium 
it is ( ) ( )( )tzEtzq t ′∂= − ,, 21σ . From here the field-matter energy density follows as:  

( ) ( ) ( ) ( ) ( )( ) ( )tzqtdtzBtzHtzDtzEtzu
t

tt ,,,,,,
0

−′′∂′+′∂′= ∫ ′′ .                             (56) 

 
7. Conclusions 

 
 The presentations for plane monochromatic wave energy and momentum densities 
have been obtained for the dispersion determined only by conductivity. It had been shown 
that in this case the transport energy and momentum velocities are identical and equal to 
phase one which always is smaller than the velocity of light in vacuum, whereas the group 
velocity may exceed the light velocity. The several forms of momentum densities have 
been considered and it had been shown that the Minkowski form in this case is more rather 
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than the Abraham one. The result for mentioned energy transportation velocity has been 
received by several independent ways, in particular, by using the dispersion law for gas of 
oscillators. These conclusions are generalized for media with several resonant frequencies 
and also for the inner field availability. The essential here is the calculation of polarizability 
with the use of particle motion equation which has the first order. In this case the matter 
potential energy is not accumulated, and its characteristic oscillations (or kinetic energy) 
are absent. This result may be generalized for conducting polar dielectrics such as see or 
water, which contains the conductivity ions. The retardation in ideally distillated water 
changes from 9 about to 1 (without the influence of infra-red and ultra-violet resonances), 
and the energy velocity coincides with phase one. The retardation and loss coefficients in 
water with ions for ultra low frequencies tend to infinity. In see water ( 4=σ  С/м) at the 
frequency about 900 MHz the displacement current is equal to conductivity current, and for 
the essentially low frequencies the water is likewise a metal. The energy and momentum 
transportation velocities knowledge is important for communication. For example, the 
communication with submarines is realized at extremely low frequency, and the signal hare 
is transmitted with about the phase velocity. The group velocity in see water is 
approximately in two times greater. For example, the pulse with the carrier frequency 1 
kHz and with the duration 2 ms (or two periods) reaches the submarine located at the depth 
of 100 m during 2 ms and its envelope maximum is detected at that time (without the 
detector delay time consideration), whereas the strongly diffused and degraded front of 
pulse belled in several times comes during 1 ms must and is not be detected [38]. 

The question about EMT and corresponding densities forms in electromagnetics of 
continuum which is known as Abraham-Minkowski contravention is still open and 
discussion (see additionally [48–53]). There are different papers with model examples pro 
and contra of appointed EMT forms which often contain the inaccuracies. We have not 
opportunity to analyze it in this paper (see [12]). In overwhelming number of works the 
static material conditions ED

rr
εε0= , HB

rr
µµ0=  are used for the analysis of this question. 

The main objection against the Minkowski EMT states in fact that it is asymmetrical and 
the momentum conservation law has not fulfilled for it [4]. The component 44T  for both 
EMT forms is defined as in static, i.e. in form ( ) 2/2

0
2

044 HEuT
rr

µµεε +== , whereas there 
is the interaction between filed and matter in dynamics, i.e. one must use the expressions 
like (56) [15,16]. It is not clear why the energy density in media should be depended on its 
parameters, but the momentum density Agr  is nondependent like as in vacuum. It is clear, 
that the filed-matter interaction may leads to full EMT asymmetry [13]. It had been shown 
above that the momentum density depends on the process prehistory and is determined by 
it. Evidently, we can speak about the concrete EMT form as algebraic relations only for 
harmonic process in the media with definite dispersion laws when this process is gotten as 
the limit transition from quasi-monochromatic one and when the averaged over the period 
components of T̂  came out to stationary levels. The general full filed-matter system EMT 
does not construct for arbitrary (time and spatial) dispersion and the question of its 
symmetry is open yet. If the field and matter tensors are symmetrical separately, it is means 
that there in no field-matter interaction from the viewpoint of energy and momentum 
exchanges. 
 As the example we now will demonstrate the Minkowski momentum conservation 
law fulfillment. Let the plane quasi-monochromatic hence long wave pocket with length 
size l with the rectangular envelope and carrier frequency ω  (the pulse in sense of 
nonstationary wave) at the moment 00 =t  had approached to the boundary of layer with the 
thickness d  and the permittivity and permeability ε , µ . The quasi-stationary means that 

ωππλ /2/2 00 ckl ==>> . It is required in order to one may use the monochromatic values. 
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The wave-length in the layer is n/0λλ = , εµ=n . Let for simplicity the thickness d  is 
matched so that at the time 1t  all wave train came into the layer and fully filled it. As the 
wave pocket velocity is ncvp /= , we get cndvdt p //1 == . In order to it will be, we must 
impose ndl = . We select the big length l  so that it contains the integer number M of wave-
lengths: 0λMl = , 1>>M , and for this Md =λ/ . There is the reflected wave also. At the 
time 1t  it is located in the same region 0≤≤− zl  as the incident wave at the time 
moment 0t . The electric field reflection coefficient for normal dip plane monochromatic 

wave is ( ) ( )1/1 00 +−= ρρR , where εµρ /0 =  is the normalized to 0Z  impedance, and 
for the transmission coefficient we have ( )1/2 00 += ρρT . The incident wave has the form 
(41) under 0=α  and 0=ϕ . Further we will consider the balance for unit square and 
averaged momentum densities. At the time 0t  the field had the momentum 

2
00 / clSlgG MM ==  in z-direction, and the plate momentum was zero. At first let consider 

the ideal case of matched (stealth) plate: µε = . In this case the reflection is absent, and the 
momentum is not transferred to the plate. The factor ½ arises at the amplitudes after the 
integration over z or averaging over the period. 
Correspondingly ( ) cnucEnZg M /2/ 22

0
2

0 == , where 2/2
00 Eu εε= . At the moment 

clt /1 =  of full plate filling the field momentum is equal  
to MMM nGcudncSdndgG 01

2
1

2
1 // ==== . After the wave train completely went out 

from the plate, i.e. in the time 12 2tt =  and after we again have MM GG 01 = . The Minkowski 
momentum as though is not conserved as the plate is motionless. Such “nonconservation of 
Minkowski momentum” raises in the work [4] as the basic argument against Minkowski 
and for Abraham momentum. Let see what will be with the Abraham momentum. At 0t  we 
have: cluclSGG MA // 0

2
000 === , and at 1t  accordingly 

2
10

2
11 /// nGcducdSG MA === . We have got the paradox: neither Minkowski and 

Abraham momentums are conserved, and under this for the first one the additional 
momentum arises from the beginning and then disappears, and for the second one the part 
of momentum disappears from the beginning and then it again appears! What is the matter? 
Always when any paradox arises, one must seek where he did the exchange of conceptions 
or illegal used theirs. In the work the similar reasoning had been proved for plate with 

1=µ , ε=n , in which connection it is assumed that the plate is ideally matched by help 
of antireflecting coating. Though the plate can not be ideally matched, it is possible to get 
the sufficiently small reflection for monochromatic process by multilayered of 
inhomogeneous antireflecting coating. Naturally this coating must be considered. But we 
have the rectangular wave pockets having all frequencies, and the process is nonstationary! 
No doubt that the main spectral intensity is concentrated nearby the carrier frequency, but 
nevertheless, the plate will get any small momentum. For unreflecting plate the condition 

µε =  may be fulfilled only for artificial highly dispersive media in very narrow frequency 
band, and in this loss case these parameters are also complex. It means that the real stealth 
plate also will get some momentum. We will abstract one's mind from this further. Notice, 
that the formula (1.13) from [4], supposedly showing the Abraham momentum 
conservation, in reality shows its violation: nceG /= . Here e  is the full wave energy. It is 
unified at any wave pocket position. In the vacuum we have lue 0= , and in the media 

correspondingly due = . And as the train is squeezed in last case in n times, 0unu = , 
that one can see directly from (41). The full momentum for both cases is ceG /= . 
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 So, how to resolve the paradox? It is clear, that for our case without the Lorentz 
force the local balance equation is 

tgzu M ∂−∂=∂∂ // ,                                                        (57) 
that directly follows from (41). If the local balance fulfills then the global (integral) balance 
fulfills also, and it must be fairly calculated. We notice for this that ( )tzu ,  has the steps 
( )( )1,00 −ntu  at 10 tt ≤≤  and ( )( )ntdu −1,0  at 21 ttt ≤≤ . Correspondingly there are the 

delta-function terms ( )( ) ( )zntu δ1,00 −  and ( )( ) ( )dzntdU −− δ1,0  in (57) at the indicated 
time moments. The momentum at the time 1t  must be calculated in the following way: 

( ) ( )( ) ( ) MMM
t d

M GGnnGdtntudztzuG 000
0

0
0

1 11,0,
1

=−−=







−+−= ∫ ∫ . 

The mentioned conclusion about MG  “nonconservation” in [4] has been made on the mass 
center velocity constancy for the system: the motionless plate – moving electromagnetic 
wave train (photon). The first one has not a velocity, and the second one has not a mass 
[40,41]! Meantime the “mass of photon” has been introduced in [4] from the relation 

2/ cem =  and also its momentum has been designated as ( )cnemvG p /== ! Speaking about 
the wave pocket or photon in the medium it is necessary take into account that the energy 
density increases in n times, consequently the number of photons rises so, and the energy 
transportation velocity declines. This is means that there are the both direction photons in 
the plate moving with the velocity c between the elementary interaction acts with the 
particles, and the photon with the momentum cn /ωh  is, as a matter of fact, the quasi-
photon [3]. The full interference result for macroscopic wave with big energy and many 
photons is the consequence of cancellation theorem, according to which the wave in 
medium goes in direct direction with phase velocity. For general case of reflection from 
non-absorptive plate at 2tt >  one has the energy balance: 221 TR += . Here 

( ) ( ) ( ) ( )( )0
2
0

2
0 2tan1/tan1 ρθρθρ jR −+−=  is the full reflection coefficient and 

( ) ( )( ) ( )( ) 12 2/1sincos −
++= ZZjT θθ  is the transmission coefficient, 0/2 λπγθ ll == , and so 

the reflected momentum is cReGM
r /2= , and transmitted one – correspondingly 

cТeGM
t /2= , i.e. the plate gets the momentum ( ) cTRe /1 22 −+ . If we take 0=R , then 

1=T , and the plate is immovable. If ever 0≠σ , then the value γ  is complex, and the 

energy balance is such: 122 <+ TR . For this some part of momentum in the any layer is 

transferred to it. When the R  is extremely small and the thickness is extremely large then 
the plate gets all momentum. At the limit ∞→σ  we have 1−→R , 0→T , and the plate 
gets the doubled momentum. We again have applied the stationary formulas to quasi-
stationary processes instead of the solution more complicated nonstationary problem that is 
justified for long wave train. For the stationary case it means to say only about the light 
pressure ( ) cTRu /1 22 −+  or about the transferred to matter per the second momentum, 

and at the same time the formulas already are exact. As regards to momentum AG , that it is 
conserved only if the additional momentum conditioned by Abraham force is added to it. 
The mention force for nondispersive medium arises only at the train entrance into the plate 
and at the exit from it [5]. Exactly, the necessity of adding AG  with some momentum to 
provide the conservation law is the main argument against. The other such argument 
against the Abraham momentum in the media is based on the fact that the Abraham force is 
not precisely equal to Lorentz forces acting on polarization medium current. 
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For example let consider two atoms with the masses 1m  and 2m  motionless in 
laboratory system at the times 0<t . The system energy here is 21 eee += , 2

11 cme = , 
2

22 cme = . The first atom is excited with the excitation energy ωh  and is located at 0=z , 
and the second one – at the point ( )z,0,0 , 0>z . The excited atom is immovable (as 
quantum particle) from the viewpoint that its wave function is time-independent (precisely 
has the factor ( )h/exp 1tie− , ji −= ). And at the same time the probability to disclose the 
atom at 0=z  is maximal, and the indeterminancy principle here fulfills: 2/h≥∆∆ zpz . All 
of these are regarded to the second atom. As there is no interaction, the full wave function 
is the product of atomic functions and is the time-independent until the time 00 =t . In the 
time moment 00 =t  the first atom radiates the photon with the energy ωh  and the 
momentum czpzp /00 ωhrrr

== . The atom gets the momentum pr−  and moves to the left, 
that means the dependence of its wave function on the time. This wave function gets the 
wave pocket presentation as the eigen-function of momentum operator. The wave pocket 

displaces to the left with the velocity satisfy the relation ( ) ( ) ( )cmpcvcv 1
2

11 //1// ′=− , and 

under this ( ) ( )cmpmcpcem 11
2242

11 /21// −=−−=′
r

hω  is the mass change due to 
interaction. The atom excitation energy ωh  plays the role of incident inner 
nonelectromagnetic energy which creates the field. Let at the time 1t  the photon at the point 

1ctz =  is absorbed by other atom. This atom gets the momentum pr  and turns into excited 

state with the energy ( )22
2

22 /1/ cvcme −′=+ ωh . And so its mass ( )cmpmm 222 /21+=′  
is changed. The atom velocity is also determined by the relation 
( ) ( ) ( )cmpcvcv 2

2
22 //1// ′=− . Until the time 0t  the system of  noninteracting atoms had 

the null momentum, mass 21 mm +  and the energy ( ) 2
21 cmm + . In the period 10 ttt <<  the 

mass is 21 mm +′  and smaller than the initial, and the photon mass is zero, but the full system 
filed-matte mass does not change and is equal to 0mm + , as full system momentum is zero. 
The energy and momentum are conserved here, and the photon position is non-designated. 
The photon is localized and the filed disappears at the time of interaction at the point z. the 
all system mass again is equal 21 mm +  and is conserved during all time. The full 
momentum is also conserved and is zero. The full energy is 

( ) ( )22
2

2
2

1
2

1 /1//1/ cvcmcvcme −′+−′=  and conserved also. The total atomic mass is 
equal to 2121 mmmm +<′+′ . There is the mass defect due to the fact that the atoms have got 
the opposite momentums. The full energy, momentum and mass values of this closed 
system had not changed. If ( ) 1/2 <<cmp i , 2,1=i , then one may use the decomposition on 
small parameter. Evidently, to a first approximation there is no mass defect. This qualitative 
example based on nonstationary interaction replacement by stationary processes with two 
point interactions is given here in order to show the necessity of taking into account the 
incident sources in the balance, including if the field has the angular momentum. It is also 
useful in connection with the example from [4]. The wave propagation in the continuum on 
microscopic level is based on similar numerous interaction acts, and the transport velocity 
depends on atomic life times, i.e. on scattering character: how much it is elastic. There is 
the preferred flow of photons in energy propagation direction in such waves always, but the 
backward photons are possible. The macroscopic level of consideration shows that the 
wave creates the polarization currents which are supporting the wave from the other hand. 
It is follows from the stated that the photon exchange processes are always nonstationary 
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and at least quasi-stationary. Therefore the monochromatic wave is in a certain sense the 
convenient abstraction which never experimentally in principle may be obtained. 

In conclusion it is useful to notice that the concrete dispersion laws of real media are 
highly complicated. It is necessary to use the inner molecular or crystalline structure, the 
inner molecular field, several eigen-resonant frequencies, the spatial dispersion (if it exists), 
and also the nonstationary approach. It means that the EMT for filed-matter is not 
determined only by the field values in the present time, i.e. the process prehistory must be 
taken into account. If there are no any sources in the volume, one must consider such 
prehistory from the time of entering the before created field into this volume. Therefore the 
momentum density should be taken in the form BDg M

rrr
×=  with the calculation of (1), and 

the energy density must be calculated using the relations like (56) [15,16]. The full field-
matter EMT for this is asymmetrical. For dispersionless case it turns to the Minkowski 
EMT. The value uz∂  determined by the relation (56) does not give the momentum flow 
density for plane wave. The usage only the material conditions in general case allows one 
to separate the filed and matter momentums and its flows. Such separation for energy 
density flow apparently has no place without of solution of motion equations. It is 
connected with the fact that the polarization current power density in right part of (9), 
which is containing the time derivatives, is rather corresponded to full power density, than 
is the divergence of any vector. What is more the mentioned vector is ambiguously 
determined. Besides the system interaction energy in general case is not separable on field 
energy and matter energy. The main remaining objection contra the Minkowski EMT 
consists of its dissymmetry. The demand of symmetry arises from the requirement of EMT 
uniqueness and the condition that the angular momentum tensor must be determined via the 
EMT using the standard formulas. In this case the connection of momentum components 
with EMT components is such like in vacuum ([52], page 107). It is obvious that such EMT 
is the filed tensor in vacuum or Abraham tensor. The EMT for media in our nonstationary 
excitation case is determined unambiguously without any additional condition. The angular 
momentum for filed-matter system must be determined separately. Here it is necessary to 
take into account the following facts. 1) Had the matter any angular momentum before the 
creation of field, or not. 2) Had any angular momentum been transferred to the incident 
sources of not in the process of filed generation.  

The obtained EMT expressions depend on material condition. If one takes other 
material conditions, for example, the Casimir conditions [18], he gets other ones. Recently 
the question about the EMT and corresponding densities (and velocities) arises for artificial 
media (metamaterials) with spatial dispersion including the bianisotropic and left-handed 
media (see for example подобный such lame attempt in [53]). Similar media have the very 
complicated rigorous models. However in several cases the dispersion laws for certain 
frequency bands may be described by more simple relations or models that had been used 
in this paper. 
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Abstract – We report the control of dispersion in the optical fiber with photonic crystal cladding. 

The specific type of fiber is considered. The structure of fiber cladding is comprised of the 
hexagonal lattice of rods with finite wall thickness. The Finite-Element method and the Plane Wave 
method with a supercell modification is applied to compute the dispersion. We have demonstrated 
that dispersion slope and absolute value of dispersion coefficient can be controlled with a variation 
of geometrical parameters of fiber cladding. 

 
1. Introduction 

The optical fiber with photonic crystal cladding provide new approaches for 
achieving single transverse mode guiding in large core fibers. Such fiber often is named [1] 
microstructured fibers (MF). There are many applications of MF in fiber-optic 
communications, fiber lasers, nonlinear devices, high-power transmission devices, ultra-
broad supercontinuum generation and broadband dispersion compensation. MF with a solid 
core, which has a higher average index than the microstructured cladding, can operate on 
the same index-guiding principle as an ordinary optical fiber. Such fiber exhibit novel 
dispersion properties such as ultra-flat dispersion over broad wavelength range [2]. We 
considered the MF with the hexagonal lattice of rods with finite wall thickness in the fiber 
cladding. Thereby we assumed the complicated triangle-form area in the transverse section 
of MF that usually appears during the manufacture of such fiber. The control of dispersion 
in fiber has been demonstrated by variation of geometrical parameters of fiber such as size 
of an air-hole defect in the fiber core and distance between holes. The effect of varying 
cladding parameters is estimated to find the trends of the decrease of dispersion slope and 
control of absolute value of dispersion coefficient and then applied to the design of an ultra-
low, ultra-flattened chromatic dispersion photonic-crystal fiber. 
 

2. Simulation description 

We consider the MF that has a transverse section consisting of a hexagonal lattice of 
rods with finite wall thickness (Figure 1a). The number of rings of rods is assumed to be 3. 
The radius of the air-holes is r  and the lattice pitch (the distance between air-holes) is Λ . 

 

 
 

Fig. 1. a) The transverse section of fiber that has produced of rods with finite wall thickness.          
b) The intensity distribution of transverse electric field for xE -mode in the core of fiber 
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The numerical modeling of microstructured fiber was performed using two methods, 
namely finite-element method (FEM) and the plane-wave method (PWM). The former 
assumed the explicit frequency or wavelength dependence of the refractive index. The latter 
was applied with the supercell modification and the material dispersion wasn’t assumed 
explicitly. However we summed the waveguide (geometrical) dispersion ( )wD λ  obtained 

by PWM and the material dispersion ( )mD λ  obtained by Sellmeier’s equation [2] and the 

dispersion coefficient ( )D λ  is then calculated as 

 ( ) ( ) ( )w mD D Dλ = λ + λ , (1) 
where waveguide and material dispersion are  calculated with 

( ) ( )2

2
eff

w

d n
D

c d
λλ

λ = −
λ

 and ( ) ( )2

2
Si

m

d n
D

c d
λλ

λ = −
λ

 respectively, ( )effn λ  is the effective 

refractive index of the fundamental mode in MF, ( )Sin λ  is the refractive index of silica, c  
is the speed of light in vacuum. 

For the computation with finite-element method the program for calculation of 
eigenmodes dispersion of the transmission line with complicated transverse section [4] was 
applied. The plane-wave simulation was done by MPB (MIT Photonic Bands) package [5]. 
Simulation was conducted by these methods to investigate the effect of varying r  and Λ .  

The intensity distribution and polarization of electromagnetic field for fundamental 
mode of the fiber are shown in Figure 1b. This mode is polarized along the horizontal axis 
and the results for other mode that polarized along vertical axis is omitted because there is a 
similarity between them. The electromagnetic field energy is localized in the fiber core. It 
can be seen from Figure 1b, where the intensity of transverse electric field is depicted with 
shades of gray. 

Figure 2a shows the calculated dispersion curves for wavelength range from 0.8 to 
1.7 mµ  for different values of distance between air-holes Λ . The dispersion curve of 

1.84 mΛ = µ  (bold curve 3 in Figure 2a) demonstrate that there is the wavelength range 
0.9 1.1 m< λ < µ  with the small change in the dispersion coefficient D  and the absolute 
value of D  lies in the interval 0 D 7 ps /(nm km)< < ⋅ . Figure 2b demonstrates that 
dispersion coefficient decreases with decrease of air-hole radius r  and that there is a flat 
region offset in the range of shorter wavelengths.  

 

 
Fig. 2. Family of dispersion curves with various a) lattice pitch: 1 - 3.68 mΛ = µ ; 2  - 2.76 mΛ = µ ; 
3 - 1.84 mΛ = µ  and with r  fixed at 0.4968 mµ ; b) radius 1 - 0.53475 mr = µ ; 2 - 0.4968 mr = µ ; 

3 - 0.4485 mr = µ  and Λ  fixed at 2.76 mµ . Computational results obtained with plane-wave 
method denoted with solid lines and finite-element method – with dashed lines 
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However, using a MF with all of the same air-hole diameter in the fiber cladding, it is 
difficult to control both the absolute value of dispersion coefficient and dispersion slope in 
wide wavelength range. An recent publication by Saitoh et al. [2] have reported that there is 
a new controlling technique of chromatic dispersion in MF. It is shown from numerical 
results that it is possible to design MFs with both ultra-low dispersion and ultra-flattened 
dispersion in a wide wavelength range. We have applied this method of dispersion 
controlling for our system. The hole radius of each air-hole ring in the fiber cladding 
increases 20% from hole ring to ring relative to the first one. Figure 3a shows the result of 
calculation for the system with different air-hole radii of each air-hole ring: the dispersion 
of the system with radius increases 20% from row to row denoted with dashed lines, for the 
system without air-hole radius difference the dispersion curve denoted with solid lines. The 
simulation was done for systems with different air-hole radius in the first ring. It was shown 
(curve 4 in Figure 3a) that this method can be used for control the dispersion slope of MF. 

The control of chromatic dispersion in optical microstructured fiber can be done with 
doping the center part of the fiber with 2GeO  [6]. We have demonstarated that the increase 
of mol fraction of 2GeO  [6] in the silica core of our type of MF shift down the dispersion 
curve and it is possible therefore to design the MF with small value of dispersion 
coefficient in the definite wavelength range (1.0 1.05 m< λ < µ ) as shown in Figure 3b 
(bold curve 2). 

 

 
Figure 3. a) Family of dispersion curves with various air-hole radius obtained with finite-element 

method. 1 - 0.345r m= µ ; 2 - 0.2875r m= µ ; 3 - 0.2r m= µ ; 4 - 0.1725r m= µ . The 
computational result for the system with radius increase 20% from row to row denoted with dashed 
lines, while solid lines denotes the system without such radius increase. 2.3 mΛ = µ . b) Family of 
dispersion curves with various mol fraction of 2GeO  obtained with plane-wave method: 1 - 0x = ; 

2 - 0.056x = ; 3 - 0.15x = . 0.4968r m= µ , 1.84 mΛ = µ  

 

3. Conclusion 

We have shown that the variation of geometrical parameters of optical 
microstructured fiber can modify the dispersion properties of such system. The Finite-
Element method and Plane-Wave method have been applied. We have considered the 
structure of fiber cladding that is comprised of the triangular lattice of rods with finite wall 
thickness. We have demonstrated that dispersion slope and absolute value of dispersion 
coefficient of MFs can be controlled with a change of size of an air-hole defect in the fiber 
core, with variation of interval between holes and with a doping the center part of the fiber 
with 2GeO . Simulations and estimations shows that one can construct a system based on 
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microstructured-fibers with minute difference of dispersion coefficient in the operating 
range of wavelength and dispersion control can help to improve transmission speeds and 
distances. 
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   Abstract – Linear theory of a traveling wave tube (TWT) amplifier with end reflections is 
presented along with its further generalization for the case of multi-sectional tube. The method of 
solution of the boundary problem using the Laplace transform is described. The results of gain 
calculations for the different TWT structures and different matching conditions are presented. 
 

1. Introduction 
 

Calculation of small signal gain is an important stage of traveling wave tube (TWT) 
theoretical analysis. Usually linear TWT analysis is performed by solving the dispersion 
equation or by the method of successive approximations [1-4]. However, most theories 
consider half-bounded systems when reflections of radiation from the ends are not taken 
into account. On the other hand, end reflections may strongly affect the TWT performance 
causing gain ripples and parasitic self-excitation [5,6]. In this paper, we develop the linear 
theory for a finite-length TWT connected with input driver source and output load. In Sec.2 
we review basic equations of the linear TWT theory with the boundary conditions proposed 
in [7] which take into account end reflections. In Sec. 3 we describe solution of the TWT 
boundary value problem using the Laplace transform and generalize the theory for the case 
of multi-sectional tube. The method of solution is similar to [8] where TWT interaction 
near the cutoff was considered. In Sec. 4 results of numerical calculations of TWT gain are 
presented. 

 

2. Basic Equations of Linear TWT Theory and Boundary Conditions 

 
Let us start from the well-known of 1-D TWT linear equations [1-4] for 

amplification of a single-tone signal with frequency ω : 

 
2

2 3
0 02

d E E j KI
dx

+β = β , (1) 

 
2

2 0

02
e

e p
j Id j I I E

dx V
β + β +β = 

 
. (2) 

Here, E  is electric field of the high-frequency wave, 0 phvβ = ω  is the propagation constant 
in the “cold” structure, 0I  and 0V  are the beam DC current and voltage respectively, I  is 
the first harmonic of the current, K  is the coupling impedance, 0e vβ = ω , 0p p vβ = ω , 
and pω  is the electron plasma frequency. Equations (1), (2) should be completed with 
boundary conditions for the beam and the field. In particular, when the beam at the entrance 
of the SWS is modulated neither by velocity nor by density 

 

 ( ) ( )0
0 0

dI
I

dx
= = . (3) 
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Fig. 1. Schematics of the SWS connected to input and output waveguides 

 

Consider the finite length slow wave structure (SWS) located at 0 x l< <  and 
coupled with input driver source and the output load by dispersionless waveguides on the 
left and right ends, respectively (Fig. 1). For that case, the following boundary conditions 
were proposed by A.P. Kuznetsov [7]: 

 0 0 0 0| 2x
dE j E j E
dx

±
=α = − αm , (4) 

 | 2l x l l l
dE j E j E
dx

±
=α = αm . (5) 

Here, 0,lα  are the parameters equal to propagation constants on the certain matching 
frequency. The reflection factor equals zero at that frequency and grows with moving away 
from the matching point. 0E±  and lE±  denote amplitudes of forward and backward waves in 
the input and output coupling waveguide, respectively. Note that for reducing the 
reflections 0α  and lα  should be chosen different since the propagation constant of the 
forward “hot” wave differs from that of the reflected backward wave [9]. 

Equations (1), (2) with boundary conditions (3)-(5) define TWT linear theory 
boundary problem for finite length system with end reflections taken into account. 

 

3. Solution of the TWT boundary problem 
 

The equations of the TWT linear theory boundary problem is solved using the 
Laplace transform similarly to [8] where the case of interaction near cutoff was considered. 
Applying the Laplace transform to (1) and (2) results in 
 ( ) ( )2 2 3

0 0
ˆ ˆ ˆ0 0s E sE E E j KI′− − +β = β , (6) 

 ( ) ( ) ( ) ( )22 2 0

0

ˆ ˆ2 0 0
2

e
e p e

j Is j I s j I I E
V
β  ′+ β +β − + β − =  

. (7) 

Here, Ê , Î  are images of ( )E x , ( )I x , respectively. One can express Î  using (7): 

 
( ) ( ) ( )

( )

0

0
2 2

ˆ 0 2 0
2ˆ

2

e
e

e p

j I E I s j I
VI

s j

β ′+ + + β
=

+ β +β
. (8) 

Substituting (8) into (6), after some manipulations we get 

 
( ) ( )( ) ( ) ( ) ( ) ( )( )

( )

2 2 3
00 0 0 2 0

ˆ e p eE sE s j j K I s j I
E

p s

 ′ ′+ + β +β + β + + β = . (9) 
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Here ( ) ( ) ( )( )22 2 2 3 3
0 02e p ep s s s j C= +β + β +β + β β , 3

0 04C KI V=  is the Pierce gain 

parameter [1-4]. The forth order polynomial ( )p s  has four complex roots j ns jk= − , 
1,..., 4n =  and can be represented as 

 ( ) ( )( )( )( ) ( )
4

1 2 3 4
1

n
n

p s s jk s jk s jk s jk s jk
=

= + + + + = +∏ . (10) 

Substituting (10) into (9) and applying the inverse Laplace transform we obtain 

 ( )
4

1

njk x
n

n
E x c e−

=

=∑ . (11) 

Here 

 
( ) ( )( ) ( )( ) ( ) ( ) ( )( )2 2 3

00 0 0 2 0n n e p n e

n
n

E jk k j K I j k I
c

p

′ ′− − −β −β + β − − β
=

′
, (12) 

 ( ) ( ) ( )( )2 2 2 2
02 2n

n n n e p n e n

dp jk
p jk k j k k

ds
−  ′ = = −β −β + −β −β  . (13) 

 Similarly the following expressions for ( )E x′ , ( )I x , ( )I x′  can be obtained: 

 ( )
4

1

njk x
n n

n
E x j k c e−

=

′ = − ∑ , (14) 

 ( ) ( )
4

2 2
03

10

njk x
n n

n

jI x k c e
K

−

=

= −β
β ∑ , (15) 

 ( ) ( )
4

2 2
03

10

1
njk x

n n n
n

I x k k c e
K

−

=

′ = −β
β ∑ . (16) 

Thus, the variables ( )E x , ( )E x′ , ( )I x , ( )I x′  are expressed through four constants ( )0E , 

( )0E′ , ( )0I , ( )0I ′ . It is convenient to represent these expressions in matrix form 

 

( )
( )
( )
( )

( )
( )
( )
( )

0

0ˆ
0

0

TWT

E l E

E l E
T

I l I

I l I

   
   

′ ′   
=   

   
   ′ ′   

, (17) 

where, T̂WTT  is the transmission matrix of the uniform TWT section, that could be 
represented as 

 ( )
4

1

ˆˆ
njk x

TWT n
n n

eT A k
p

−

=

=
′∑ . (18) 

Here, ( )ˆ
nA k  is the 4 4×  square matrix which elements are defined as follows 

 ( ) ( )2 2
11 n n n e pa k jk k = −β −β  ,  

 ( ) ( )22
12 n p n ea k k= β − −β , 

( ) ( )3
13 0 2n n ea k K k= β − β , 

 ( ) 3
14 0na k j K= β ,  

 ( ) ( )2 1n n n n na k jk a k= − , 1,..., 4n = ,  

 ( ) ( ) ( )
2 2

0
3 13

0

n
n n n n

j k
a k a k

K
−β

=
β

, 1,..., 4n = ,  
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 ( ) ( ) ( )
2 2

0
4 13

0

n n
n n n n

k k
a k a k

K
−β

=
β

, 1,..., 4n = .  

One can express the unknowns ( )0E , ( )0E′  through 0E±  using the boundary 
conditions (4): 

 
( )

( ) ( )
0 0

0 0 0

0 ,

0 .

E E E

E j E E

+ −

+ −

= −

′ = − α +
  

These expressions can be represented in the matrix form 

 
( )
( )

0

0 0 0

0 1 1
0

E E
j jE E

+

−

   − 
=       − α − α′    

. (19) 

Similarly, ( )E l , ( )E l′  are expressed through lE±  using (5): 

 
( )
( )

11
12

l l

lll

E lE j
jj E lE

+

−

   − α 
=        αα ′    

. (20) 

Thus, the vector ( ) ( )( ), , ,
T

l lE E I l I l+ − ′  is expressed through the vector 

( ) ( )( )0 0, , 0 , 0
T

E E I I+ − ′  as  

 
( )
( )

( )
( )

0

0ˆ
0

0

l

l

E E

E E
T

I l I

I l I

+ +

− −

   
   
   

=   
   
   ′ ′   

. (21) 

Here, 0
ˆ ˆ ˆ ˆ

TWT lT T T T=  is the transmission matrix of the whole system, 0,
ˆ

lT  are the transmission 
matrices of the transitions between the SWS and the coupling input/output waveguides: 

 0 00

1 1
0ˆ

ˆ0

j jT

I

 −  
  − α − α=   
 
 

, (22) 

 

1
2 2

0ˆ 1
2 2

ˆ0

l

l

l

j

jT

I

  − −  α  
  = −  α  
 
 

, (23) 

where Î  is the 2 2×  unitary matrix. In (21) we know the values of 0E+ , ( )0I , ( )0I ′  and 

lE− . Thus one should express the unknowns lE+ , 0E− , ( )I l , ( )I l′ . In particular, if the 
electron beam is not modulated at the input, i.e. current satisfy the boundary conditions (3), 
and the output waveguide is perfectly matched with the load, i.e. 0lE− = , from (21) one can 
easily find the following equations 

 11 0 12 0

21 0 22 0

,

0 .
lE T E T E

T E T E

+ + −

+ −

= +

= +
  

Solving these equations we get 
 ( )0 21 22 0 0E T T E RE− + += ≡ , (24) 
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 ( ) 11 22 12 21
11 12 0 0

22
l

T T T TE T RT E E
T

+ + +−
= + = . (25) 

Here, R  is the reflection factor from the finite length structure, ijT  are the elements of the 

transmission matrix T̂ . From (25) one can find the gain factor of the TWT amplifier 

 11 22 12 21

22

T T T TG
T
−

= . (26) 

Evidently, when  
 22 0T = , (27) 
the gain becomes infinite which means self-excitation of the amplifier. Analysis of the 
equation (27) allows to find start-oscillation current and frequency. 

The method of solution of the TWT boundary problem can be easily generalized for 
the case of TWT consisting of several sections, for example, the TWT with local absorber. 
In that case, the transmission matrix should be represented as 1 2

ˆ ˆ ˆ ˆ...TWT nT TT T= , where îT  — 
transmission matrix of i-th section. 
4. Numerical results 

A computer code for numerical solution is developed by means of the 
«Mathematica 6.0» software package. We perform calculations for TWT with coupled-
cavity SWS (CC TWT). Using the results presented in [10-12] where nonstationary theory 
of the CC TWT has been developed, we obtain the following equations for phase velocity 
and coupling impedance dispersion 

 

( )

( ) ( )

0 0
0

0 0

0

0

,
sin arccos

.
sin arccos

v d

K
K

ω ω−ω
β ω = +

 ω−ω  ∆ω −  ∆ω  
ω

ω =
 ω−ω  −  ∆ω  

 (28) 

Here, ∆ω  and d  denote the SWS bandwidth and period, respectively. It is 
necessary to emphasize that the developed theory is not applicable near the cutoff 
frequency, where group velocity becomes zero and coupling impedance becomes infinite. 

First let us consider a single-section TWT with parameters listed in Table 1. The 
parameters are chosen close to that of the TWT described in [13], which had been widely 
used for satellite uplinks. Value K  represented in Тable 1 corresponds to the central 
frequency of passband, chosen accelerating voltage value corresponds to synchronism at 
the central frequency 0ω . 

 
Table 1. TWT parameters 

Beam current 0I , A 0.025  
Beam voltage 0V , kV 15.32  
Coupling impedance K , Ohm 38.93  
Beam radius br , mm 1.25  
Central frequency 0f , GHz 6.49  
System period d , mm 5.9  
Plasma frequency reduction factor R  0.48  
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In Fig. 2 gain versus normalized frequency is plotted. Dash-dot curve shows 
solution of the boundary value problem by method described above. The periodical 
structure is matched with the input and output waveguides exactly in the center of the 
passband, i.e. 0, 0 0l vα = ω .The maximum gain about 16dB is obtained at a frequency close 
to synchronism. The results are in good agreement with the successive approximations 
method (dashed line) and dispersion equation method (solid line). However, the method of 
successive approximations agrees with the other methods only for the case of relatively 
small gain, less than 20 dB. 

 

  
 

Fig. 2. TWT gain versus normalized frequency        Fig. 3. TWT gain versus normalized frequency 
calculated using the successive approximations        for    different    values   of    0,lα    parameters: 

method  (dashes),  dispersion  equation method            0, 0 0/l vα = ω  (solid), 0 01.8 / vω  (dashes) 
(solid),  and  solution  of the boundary problem  
                             (dash-dot) 

 
 
When the match frequency moves off from the central frequency, the reflections 

grow. Fig. 3 shows ( )G ω  for 0, 0 01.8 /l vα = ω  compared with the curve for 0, 0 0/l vα = ω . 
One can easily see strong gain ripples caused by the end reflections. 

Fig. 4 shows field and beam current distributions along the system in case of 
matching at the central frequency when the DC beam current is increased up to 0.25 A. One 
can easily see the ripples on the curve ( )E x  caused by reflections. Despite the input signal 
frequency is chosen equal to 0ω , reflections arise since “hot” propagation constant of the 
forward wave differs from the parameter lα  that is chosen equal to “cold” propagation 
constant 0 0/ vω . To eliminate reflections lα  should be chosen approximately equal to real 
part of the propagation constant for the growing forward wave [9]. Fig. 5 shows field and 
beam current distribution along the system in case of matching at the frequency different 
from the input signal frequency. One can see considerable enhancement of reflections. 

The main way to avoid TWT self-excitation caused by reflections is to introduce a 
local absorber. In that case, we have to solve a boundary problem for a multisectional 
TWT. Consider a TWT consisting of three sections where the second one is the absorber 
with attenuation 60γ =  dB/cm (Fig. 6a). Fig. 7 shows field and beam current distributions 
along the system for this case. Parameters 0,lα  are chosen as 0, 0 0l vα = ω , i.e. matching 
frequency is equal to the central frequency, and the input signal frequency equals 0ω  as 
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well. One can see strong attenuation of the wave in the absorber section. Accordingly, in 
that domain bunching process is interrupted and the amplitude of the first harmonic of the 
beam current remains nearly constant. However, the rapid jump of the attenuation factor 
causes considerable reflections from the absorber. As a result, the ( )E x  curve still exhibits 
strong ripples, especially in the first section located before the absorber. 

 

       
 

 
Fig. 4. Field and beam current distributions along the system for the single-section TWT in 

case of matching at the central frequency 
 
 

     
 
 
Fig. 5. Field and beam current distribution along the system for the single-section TWT in 

case of matching at the frequency 00.9− ∆ω+ ω . No losses 
 

   
   a       b 
 

Fig. 6. Absorber profiles for TWT consisting of three (a) and five (b) sections 
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Fig. 7. Field and beam current distributions along the system for the TWT with absorber profile 
shown in Fig. 6a 

 
 

   
 

 
Fig. 8. Field and beam current distributions along the system for the TWT with matched absorber 

profile shown in Fig. 6b 
 

  
   a       b 
 
Fig. 9. Fields distributions for three forward waves (a) and backward wave (b) in the case of TWT 

with matched absorber 
 

To avoid the reflections from the absorber, one should use tapering i.e. ( )xγ  should 
be smoothly varying at the ends of the absorber. To simulate that case we add two matching 
sections with 10γ =  dB/cm attenuation, as is shown in Fig. 6b. Thus, we are dealing with 
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the TWT consisting of five sections. The field and beam current distributions along the tube 
plotted in Fig. 8 show substantial decrease of reflections. The gain value decreases as well. 

The developed code allows calculation of field distributions separately for the three 
forward waves and the backward one. Such plots are shown in Fig. 9. From Fig. 9b one can 
see damping of the backward wave the absorber and its rapid jumps at the ends of the 
sections. 

 

    
    a      b 

Fig 10.  Gain vs. normalized  frequency  for  the  TWT  without  absorber  (solid line)  and  with 
mismatched (dashes line) and matched absorber (dash-dot line). The match frequency is (a) equal 

to 0ω  and (b) 0 2ω −∆ω  
 

In Fig. 10a gain vs. frequency curves are is plotted for the case of matching exactly 
at the central frequency 0ω . In the case of TWT without absorber (solid line) strong gain 
ripples caused by reflections are observed. Introducing of the mismatched absorber that 
corresponds to ( )xγ  shown in Fig. 6a (dashed line) does not reduce the ripples and results 
only in nearly 10 dB gain decrease. When the matching absorbing sections are added (dash-
dot line), the ripples disappear, i.e. the reflections from the absorber are suppressed. When 
the match frequency is not equal to the central frequency the role of the absorber becomes 
more evident. In Fig 10b the curves similar to Fig. 10a are shown, but for matching at 

0 2ω −∆ω  frequency. The ( )G ω  ripples are stronger than on Fig. 10a, but when the 
absorber with matching sections is introduced, the gain ripples becomes suppressed and the 
dashed curves in Fig. 10a and Fig. 10b are almost identical. 
 

5. Conclusion 
 

Linear theory of a TWT amplifier with end reflections taken into account is 
developed in this article. The method for solution of the boundary problem using the 
Laplace transform is described. A computer code for numerical solution is developed by 
means of the «Mathematica 6.0» software package. The developed code plots both field and 
beam current distributions along the system at the different frequencies, and calculates gain 
versus frequency for TWT with arbitrary number of sections. 
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