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BBEJAEHMUWE

KommsroTepHoe MoJenMpoBaHue SBISETCS OCHOBHBIM MOLIHEHIINM WHCTPYMEHTOM HCCIIEJOBAaHMS
CIIOKHBIX CHUCTEM M CTPYKTYp. VICIOJIB30BaHME CTPOTMX KOMIIBIOTEPHBIX MOJIENeH ITO3BOJISET a/IeKBATHO
MIPOM3BOANTH X AHAIN3, CHHTE3 WJIN ONTUMH3ALMIO W 3a9acTyl0 BBITECHSET HATypHbIH dKcriepuMeHT. s
OO0JIBIIOrO YKCIIa pacCMaTPUBAEMBIX 3a/1a4 POBEAECHHE HATYPHOTO SKCIIEPUMEHTA YPE3BbIYaiHO CIIOKHO WIIH
HEBO3MOXHO BOBCE, IOATOMY Pa3BUTHE METOAOB MaTEMAaTHUECKOTO MOJEIMPOBAHMS SBISICTCS YPE3BBIUANHO
Ba)KHBIM M aKTyaJIbHBIM.

B mpuknagHOW 3NMEKTPOHMKE U ANIEKTPOIAWHAMHUKE, BKIHOYAs M ONTHKY, HCIIOJIb30BAaHHE CTPOTHX
METOJIOB aHAJIN3a M CHHTE3a IIPU MOJCIMPOBAHUU O3HAYACT NIPUMEHEHHE aITOPUTMOB Ha OCHOBE YPaBHEHUH
MakcBenia ¥ CTPOTHX PElLIeHHH YpaBHEHUH IBHXKEHUs. BaKHBIM 3JIEMEHTOM, BIIMSIOIIMM Ha aJIeKBaTHOCTb
MOJICIIMPOBAHMS, CIIY)KHUT KOPPEKTHOE BBEJICHUE MAaTepUAIbHBIX YPABHEHUI M YPaBHEHUH IBU)KEHMS YaCTHI,
a TaK)Xe y4eT HEJIMHEMHBIX CBOWCTB.

B nocnenHee Bpems Bce Ooiblliee 3HAYCHUE PHOOPETAIOT aBTOMATH3UPOBAHHBIE CUCTEMBI aHAIHM3a
U TIPOEKTHPOBaHUs NMpHOOpPOB, ycTpoicTB U cTpykTyp CBY, KBY n ontnyeckux anamnazoHoB. [IpuMmeHeHune
JIEKTPOJUHAMUYECKUX METO/IOB IPOUCXOAMT ISl BCEX YACTOT HCIIOJIB3YEMbIX SJIEKTPOMArHUTHBIX BOJIH,
BKJIIOYasi W ONTHYECKHH [AWAra3oH, NMPUYEM B ONTHKE TPAJWIMOHHBIE METOMABl AHAIN3a BBITECHAIOTCS
CTPOTHM D3JIEKTPOAMHAMUYECKHM DPACCMOTpeHHeM. Hapsity ¢ TpaIuIMOHHBIMH YAaCTOTHBIMH IOAXOAAMH K
MOJIETIMPOBAHNIO PA3BUBAIOTCS W TPOCTPAHCTBEHHO-BPEMEHHBIE METOIBI, YTO XapaKTepu3yeT OypHBIi
Iporpecc MNPUKIAAHOW HECTAMOHAPHOM JNEKTPOAWHAMUKM M ONTHKH. JIpyrHMH  aKTyalbHBIMH
COBPEMEHHBIMH HAIpPaBJICHUSIMH, NIPEICTABICHHBIMU B COOPHHKE, SBIISIFOTCSI MOJICTUPOBAHUE HAHOCTPYKTYP
(BKJIFOYAsl KBA3UIIEPHOIUUECKHE CTPYKTYPBI) U MPUMEHEHHE DJIEKTPOANHAMUYECKHX METOJI0B K HEJIMHEHHBIM
3agadam.

JleBaTplii BBITYCK COOpPHHKA IIPOAOIDKAET CepUio IyONMKaluid TpPyJOB HAayYHBIX CEMHUHApOB
oowenuuennoi meppuuHOM sueliku (IEEE MTT/ED/AP/CPMT.PS Saratov—Penza Chapter) Bxopnsmeii B
MEXITyHApOAHYIO HayuHyr0 opranu3ammio Institute of Electrical and Electronic Engineers. Ykazannas siaeiika
coznana yetoM 1995 r. B CapatoBe u Ilenze. B cOopHuk Bomwm Tpyzpl, nmpexacrasieHHsle B 2008 r. Ha
ouepeqHOM IBeHangmarom cemuHape (Saratov—Penza Chapter Workshops), KOTOpBIf SBISICS IIECTHIM
CEMHHApOM JaHHOW MEepBUYHOM sueikm mox Ha3zBaHmeM «Workshop on Electromagnetics of microwaves,
submillimeter and optic waves». C 2003 roma ceMuHapsI 1I0]] YKa3aHHBIM Ha3BaHHEM IPOBOISTCS €KETOTHO B
CeHTSIOpe B paMKax MexayHaponHoil KoH¢epenuun «Saratov Fall Meetingy B CaparoBckom
TOCYAapCTBEHHOM YHHBEPCHUTETE.

INTRODUCTION

In recent time there was an increasing development of Computer Aid Design (CAD) methods and
rigorous approaches for microwave electron devices, units and elements all over the world and in Russia
particularly. These methods have been applied both for linear and nonlinear systems and structures in time
and spectrum domains. There is growing interest in electromagnetic and optics to nanostructures and
metamaterials.

The correct introduction of material and motion equations and using of strict electrodynamic models
play important role in adequate numerical simulation of structures. Recently the nonstationary approach for
electromagnetics and electronics stays more desirable and applicable. The nanostructures such as photonic
crystals and metamaterials play the important role in modern science and cause the different methods of its
simulation. These directions of modeling is also have mirrored in the present 9-th issue.

In 1995 on July 11 the IEEE Joint MTT/ED Chapter has been formed in Saratov and Penza under the
sponsorship and help of Electron Devices and Microwave Theory and Techniques Societies (ED-S and MTT—
S). Then it has been supported by Antennas and Propagation, Components, Packaging, and Manufacturing
Technology and Nuclear and Plasma Science Societies (APS, CPMTS and NPSS), and now it is named as
IEEE MTT/ED/AP/CPMT/NPSS Saratov—Penza Chapter included into the IEEE Russian Section.

This issue contains the papers presented at the 11-th IEEE MTT/ED/AP/CPMT Saratov—Penza
Chapter Workshop named as “Electromagnetics of Microwaves, Submillimeter and Optic Waves” which has
been held in conjunction with Saratov Fall Meeting at the Saratov State University in the September, 2008.



NONLINEAR SELF- FOCUSING OF BOUNDED BUNCHES
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Abstract - Results of research of effects of self-influence of magnetostatic waves in the 2D -
structure consisting of two ferromagnetic films, on the basis of the numerical solution of system of
two-dimensional nonlinear Schrédinger equations are presented. The basic features of these effects
in comparison with similar in 2D-structure on the basis of one film are analyzed and possibility of
use of the coupled structures for control of formation of 2D-nonlinear wave bunches and packages
magnetostatic waves is considered.

1. Introduction

At present the scientific interest is attracted by researches of nonlinear effects of self-
influence of waves in various mediums on the basis of the solution of system of coupled
nonlinear Schrodinger equations (see, for example, [1-5]). It is necessary to notice, that
such researches play the important role, first of all, in problems of nonlinear optics [1], in
hydrodynamics, the physicist of plasma, in vacuum and solid-state electronics, and in other
areas [2-5]. In particular, such problems play a basic role in a case when distribution of
several types of normal waves is possible, for example, fast and slow waves of a spatial
charge [4,5], a signal containing some spectral component [5], in case of need the account
of interaction of the direct and reflected waves [3].

Such researches represent special interest in a case magnetostatic waves (MSW),
propagating in ferromagnetic films since the nonlinear effects of self-influence caused by
modulation instability of waves, here are shown at rather small power levels [6-8]. In
particular, the system coupled Schrodinger equations was used in [8] for the description of
MSW behavior at simultaneous excitation of two signals on different frequencies.

New possibilities of control of effects of self-influence on MSW arise at use in quality
waveguide systems of multilayered ferromagnetic structures [9-12]. In such structures
coupling leads to essential change of MSW dispersive characteristics, that also influences
character of modulation instability of waves [12,13].

It is necessary to notice, that in the works specified above [9-12] on research of
influence of coupling on effects of MSW self-influence in ferromagnetic structures the one-
dimensional case was considered. To such problem there corresponds a situation when
excitation of waves in boundless ferrite structure the antenna with a length is much more
than MSW wave length. However certain interest is represented also by the researches
directed on studying of the nonlinear phenomena in two-dimensional ferromagnetic
structures in which distribution of 2D-wave bunches and packages takes place. The account
of limited width of structure allows to analyse also the effects connected with reflexion of a
wave from cross-section borders of a film. With reference to a single film results of such
researches are adduced in [7,14] in which possibility of formation of 2D-channels of
BVMSW, in particular, is shown.



The present work is devoted research of features of effects of self-influence MSW in
2D-structure consisting of two ferromagnetic films, on the basis of the numerical solution
of system of two-dimensional nonlinear Schrodinger equations.

2. Theoretical model

The investigated structure consists of two ferromagnetic films, in thickness D and
magnetization of the saturation M. The films are located in a plane (x, y) and divided by a

dielectric layer in thickness d . Magnetic field /, directed long an axis y, tangential to

surfaces of films and orthogonal to the exciting antenna in length @ what located between
films. Along an axis y will propagate backward volume MSW (BVMSW) what has
modulation instability in longitudinal and cross-section directions [6].

According to the model two-layer ferromagnetic structure described in [11,12], we
will assume, that mutual influence of MSW in each of films is carried out through high-
frequency magnetic fields. It allows in the equations of movement for a vector of

magnetization and the equations of magnetostatic effective magnetic fields H, 1, in each
film 1 or 2 to present as follows: H,, = H/, +l71,2 JrKl_zL1 , where }_11,2 - variable high-
frequency magnetic fields, H 1‘?2 - constant components, K - coefficient of coupling between

layers. Value K can be calculated on the basis of the linear theory (see, for example, [13]).
Let's admit also, that nonlinearity of each film is defined only by size of variable
magnetization of this film, i.e. the nonlinearity caused by change longitudinal components
of the magnetic moment M, , for each layer is set in the form of [11]:

1,2

M y, ® M, (1— |m,, |2), where m, , — variable magnetizations in films 1 and 2, accordingly,

which values are defined by high-frequency magnetic fields both one, and other film. The
important feature of the considered coupled ferromagnetic structures is separation of the
dispersive curve concerning to MSW in a single film, on two, corresponding to two normal
waves in structure — fast and slow - with wave numbers k ;s [13], and group velocities

— ow . . .. . .
s« =—=- On the basis of the made assumptions it is possible to receive system of the
s
nonlinear equations for envelope amplitudes of high-frequency magnetizations of fast and
slow waves ¢, , which for a considered case will look like:
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where 47" = c?fa)z - coefficients of dispersion spreading in a cross-section direction for
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fast and slow waves, 4, = 2 coefficients dispersion in a longitudinal direction,
Ok
B, = 0w f = 0w ; = oo , i =8_a) - coefficients,
olo, |, olo, |, olo. ), ol |,

characterizing nonlinearity, and depending on parameters of films and size of coupling K ;



a , ,-parameter of dissipation. The index “f” concerns a fast wave with k :Ef. and an
index "s" — to a slow wave with k = lz Unlike [11,12] system of the equations (1) it is

written down for two-dimensional model, it was thus supposed, that longitudinal

. - ow

components k' >>k/* ie. V/F=—
r okl

]

associated with amplitudes of waves in each of the identical films ¢, , a following ratio
[13]:

. Amplitudes of normal waves ¢,  are

Prs =Pria Ty, (2)
The system (3) contains a number of differences from the similar NSE systems
applied to the analysis of the nonlinear phenomena in other mediums (see, for example, [2-
6,18,19]). The system concerns structure in which there are two waves extending with
different group velocities that leads to occurrence of the cross nonlinear complex-
conjugated members in the equations (3). Coefficients in (3) are defined not only MSW
dispersion, but also depend on size of coupling and can vary in very wide limits [11,12].
Besides, in the equations dispersion spreading of envelope amplitude in a cross-section
direction, and also damping in ferromagnetic films, that essentially for the analysis of
MSW behavior, are considered.

3. Calculation results

On the basis of the received model researches of features of nonlinear wave processes
and effects of self-influence were carried out in the 2D-coupled ferromagnetic structures.
Boundary conditions in a longitudinal direction along a magnetic field were set as: At

y=0 @, (xy0)= (/)O“Cos(mc/a), if 0<|x<a/2 and @, (x,y,)=0 , if
a/2< |x|<L,/2; at y=L, ¢, (x,y,0)=0, where L L, - lengths of structure in
directions y andx. The case of excitation of system by a continuous signal of constant
envelope amplitude fast and slow waves ¢,  at y =0 was considered. Boundary

conditions in a cross-section direction x were set in a kind of «a magnetic wally, i.e. at
x=%L /2 ¢, (x,y,6)=0 . Initial conditions at =0 looked like

9, ,(x,0,0) =g, f’aCos(fzx/ a).
The analysis carried out for films by thickness D =7,2 um with magnetization of
saturation 47zM;=1750 Gs and length L =4 cm, placed in an external magnetic field

H,=1391 Oe for which in [14] results of numerical research of nonlinear effects of self-
influence are resulted at excitation dipole-exchange BVMSW on frequency f = 5,82 GHz

with wave number & =63 cm™ in single yttrium-iron garnet films. Coefficients in system (1)
calculate off from a dispersive relationship for coupled dipole BVMSW [13], propagating
in structure from two identical films with the parameters resulted above. Value of
parameter of coupling K in such system lays in limits from (K =0 at d > ) to (K =1 at
for d =0 a film of the doubled thickness). Calculations were spent at the fixed size of
coupling K =0,4 that corresponds to a thickness of a dielectric interval d = D. Value of
parameter of coupling got out so that thresholds of nonlinear effects on fast and slow waves
differed weakly. Coefficients for fast and slow waves in system (1) at the chosen sizes of

parameters of structure have following values: V/ =4,25~106 cm/s, V* =2,75'106 cm/s,



A/=3,41-10° om? s, 4/=2,1410° cm? s, 45 = 2,47-10° cm’/s, A= 2,12:10° cm’s,
BJ{' =B =B/ = B; =-7,3-10° s, a case of absence of losses, i.e. a, =0 are presented.

If one normal wave is excited in structure the equations in (1) describe behavior of
amplitude envelope amplitude in a single film and coincide with the similar equations in
[6,7,14]. In this case, as shown in [7,14], at amplitude of an entrance signal above some
threshold value, formation one or several stationary waveguide channels takes place.

If in structure it is excited two waves, fast and slow for the description of behavior
envelope amplitude it is necessary to use the system (1). Excitation of two waves

(@y, #0,¢,, #0) is possible if to supply a signal only in one film (@, =2¢,,¢,, =0 thus
Po; = Py, = @ )- The basic features of wave evolution in this case, unlike MSW behavior in

a single film or the excitation of one wave considered above a case, will be caused, first of

all, by existence of two normal waves with various velocities (¥’ and V*) in the structure.
At amplitude above some threshold value formation waveguide channels, both on
fast, and on slow waves takes place. Because of different coefficients of a dispersion and
nonlinearity of normal waves wave channels have various velocities and parameters. At
the small amplitude of an entrance signal close to a threshold of self-focusing, the sizes of
channels on fast and slow waves differ weakly (see the results presented on fig. 1) see. The
basic role in wave evolution in this case is played by a difference of their group velocities.

Film 1 Film 1

Film 2 ' Film 2

a b
Fig. 1. Lines of equal level the amplitudes showing evolution of envelope amplitude in films 1 and

2 at excitation of two waves in structure at /=200 ns (a=0,25cm, L =1 cm): (a) ¢,=0,005;

(b) ,=0,06

If the signal originally supplies in a film 1 after some time ¢ the difference in group
velocities of fast and slow waves will lead to formation in a film 2 a perturbation of length

(Vf - K)‘ between forward fronts of fast and slow waves (see fig. 1a). Perturbation will be

«lengthen out» and travel eventually by the structure end. After perturbation will travel by
the structure end, the whole of power will be concentrated in a film 1. The similar picture
will be, if a signal to supply only in a film 2.

At increase in amplitude of an entrance signal the channels formed on each of
waves, have not only different velocities, but also the various characteristic sizes, and also
there can be various a number of channels on each of waves. Joint distribution of fast and
slow waves in this case will lead to formation of the stationary channel not only in a film
1, but also in a film 2 (in which the signal originally did not supply), as is shown in fig. 1b
at ¢,=0.06.



At the further increase in amplitude of an entrance signal (fig. 2 see) energy of the
basic bunch supplying in a film 1, divided already between three bunches extending in
waveguide regime under some angle, it looks like from fig. 2 (and both in a film 1, and in a
film 2 at that). Hence, it is possible to conclude, that existence of two waves in the coupled
structure and various character of their nonlinear self-focusing leads to that the signal of
the large amplitude supplied only in one of films, divided between films, and the signal
with small amplitude — is not pumped over in other film.

Limitation of the cross-section sizes of a film leads to reflex ion of wave channels
from boundaries. As a result, both in a single film, and in the coupled structure, the
symmetric picture from minima and maxima envelope amplitude of a signal is created on
width of films. However, in case the width of a film is close to the sizes of the exciting
antenna in a single film takes place waveguide distribution of a signal with width of the
wave front, coinciding with width of a film. In the coupled structure formation of channels
on fast and slow waves, with various parameters and evolution in time, allows to observe
following dynamics, which cannot be realized in a single film (see the results presented on
fig. 3). If the sizes of a film coincide with the sizes of «a focal spot» (the area in a film
plane, on some distance from the exciting antenna in which the width of a bunch is
minimum), is observed stationary sequence of impulses in a film 2 (in which the signal
originally did not supply) as is shown in fig. 3a, 3b. In a stationary state impulses remain
practically immovable, and along a film 2 eventually only there is an increasing number of
impulses.

Fig. 2. Distribution of intensity of a wave bunch in films 1 (| @, |) and 2 (| ¢, |) in a plane (x, y) at

t=200 ns at excitation of two normal waves in structure (a=0,25 cm, L =4 cm, ¢,=0,09)
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=100 ns §

=150 ns

=200 ns 4

a b

Fig. 3. Evolution of envelope amplitude in a plane (x, y) at a=L _=0,25 cm: (a) in films 1

and 2; (b) lines of equal level of envelope amplitude in a film 2 (| ¢, ||) during the various
moments of time

4. Conclusion

On the basis of the numerical investigation the self-channeling caused by presence of
coupling in ferromagnetic structure in comparison with similar effects in single 2D-
structure are analyzed.

It’s shown, that at excitation by a continuous signal various character of self-
channeling for fast and slow waves leads to dependence of efficiency of swapping of a
signal from one film in another from amplitude of a signal (there is «a nonlinear
coupling»). In particular, for signals of the large amplitude there is an intensive swapping
of a signal from one film in another, and for small amplitude — swapping is absent. Reflex
ion from cross-section borders of films of fast and slow waves in system gives difficult
interferential picture of behavior envelope amplitude in both films. Thus, if the width of the
antenna is equal to width of a film and coincides with the sizes of «a focal spot», creation
of stationary sequence of impulses along the second film is possible.

The results received in work concern a case of fixed value of coupling ( K =Const).
Change of size of coupling over a wide range, as shown in case of the analysis of one-
dimensional similar structures, can lead to change of character of instability magnetostatic
waves (see, for example, [12]), and it can be of interest as well with reference to 2D-
structures. The last opens more ample opportunities of control of nonlinear effects in the
2D-coupled ferromagnetic film structures.
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Abstract — The integral and integrodifferential equations and functionals in two-dimensional
dielectric waveguide cross-section and the iteration algorithms of their solutions have been
considered. The parameters of H-modes are determined numerically for square dielectric
waveguide.

The rectangular dielectric waveguides (RDWs) have been considered and
investigated for various practical applications in the series of works [1-30]. They have been
used as probes, in the structures of filters and planar integrated circuits, as elements of
resonators, for measurements of dielectric material properties, and for other purpose.
Different approximate and rigorous approaches have been applied to analyze the RDW and
its discontinuities. There are: the decomposition on the cylindrical harmonics [2,12,17], the
Marcatili’s approach [3], the transverse resonance method [13], the generalized telegraph
equation method [9], the finite difference method [12,15,24], the mode matching method
[6,16], the integral equation method [17,18,25,26] and the variation approach [5]. For
numerical investigations of these approaches several numerical algorithms have been
applied: the moment method, the Bubnov-Galerkin method, the collocations, the finite
elements, the finite differences and some others. The dimensions of such approaches are
very high when good accuracy is need. Therefore the precise determination of RDW mode
parameters is actual [14]. In this paper we introduce the simple relations and effective
algorithm for accurate determinations of eigenmodes (eigenwaves) and complex H-waves
for RDW. The approach is based on two-dimensional hyper-singular integral equation and
iteration procedure for its solution which allow one to determine parameters of modes with
very high accuracy and small computing resources. Instead of usually used infinite-
dimensional functional banach spaces we seek the solution in the two-dimensional
Euclidean numeric space with analytical field presentation. The algorithm is easily
generalized on other RDR modes and for nonuniform RDW in one direction.

Let consider the open RDW with constant permittivity £ =1+« in the region

|x| <a, | y| <b, and equal to unit permittivity outside of them. We seek the solution in the

form E(F)= E(F, )exp(— jjz). For the H- modes we have E. =0, E=E, . The transverse
components in the dielectric region are presented evidently with respect of symmetry as:

£()=? (698(006)}(008(@)} E.(7)- g(sin(wc)j(sin(ﬁy)J , (La)

P sm(( )) smEﬁy; x CQS(( )) COS((ﬂy))
S )] LA ] |

It should be taken separately either upper or lower significances in each of round brackets
(first and second). Then they include all cases of solution symmetry or parity-oddness

regarding to transverse coordinates. The electric field (1) is solenoidal: V | E . =0. Here

= \/ kie—y* = \/ a’+ B is the transverse wave number in the dielectric. Moreover, the

filed inside satisfies the wave (Helmholtz) equation inasmuch as we apply the condition
kie=a’+pB +y°. (2)
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It is convenient to classify the modes by component H_  parity-oddness properties
relatively x and y coordinates using which one can express all other electric and magnetic
components.  Particularly, for electric filed (1) there are E = —( Jjou,! x* )aHZ /oy,
E, = ( jou,/ ;(Z)GH _/0x. It is need else to find two additional equations connecting three

quantities (&, £,y ) in order to determine the propagation constant y . We will use for this

the hyper-singular integral equation (IE) for electric field in the cross-section S of arbitrary
inhomogeneous dielectric waveguide (DW) [25,26]:

B(7) -

TJ[(VL - jﬁ0)® (VL - jﬁ0)+ kOZ]J.H(EZ)(ZOFL - Fl|)K(7j)E(7i)dx'dy' . (3)
N

Here V|, =X,0/0x+ y,0/0y, the symbol ® denotes the tensor (dyadic) multiplication,

H® is the Hankel function of second kind and zero index, y, =+/k2—y’ is transverse

wave number in vacuum, the zero indexes denote the orthonormal coordinate vectors. Let
g(?l - Fl): -jH éz)(;(oﬁ - FL’D/ 4 denotes the two-dimensional Green’s function (GF). The

operator corresponding with equation (3) belongs to pseudo-differential ones [31]. In our
case the equation has the form

EJ_(FJ_):K[VL®VJ_+k§]J‘g(?J___’J_’)E‘L(Fl)dx'dy" 4)

Let F l(la) is the continuously differentiable vector in the rectangular region S. We turn
from the equation (4) to corresponded bilinear functional:

© = J.ﬁl(’_i)El(a)dXdy _k(?KJ-J-ﬁL(’_i)g(’_i —FL)EL(FL)dx'dy'dxdy—I =0. (5)
s SS

The equality to zero in the (5) is achieved on the exact solution. The integral / in (5) may be
transformed as follows:

I= KJ-J-FL(?L)VL ®vig(7_i _FL’)EL(FL)dedy,dXdy =
s

=xf[v) F.G IV, -(gG ~7)E, G sl «[ [V, -F.E )WV, (e ~7)E, (7))sids.

LS

(6)
Here L is the bounding rectangular contour for rectangular cross-section, dS = d’r = dxdy
is the elementary surface element, v is the unite normal to the contour vector in the plane
x,y. It is convenient to take the function F, so that her normal component is zero on the
contour. Then the first integral in the (6) disappears. If one demands the condition
V,-F/(7,)=0 then the second integral in the (6) disappears. On assumption of both
conditions one has /=0 . The equality (5) gives the additional condition for
7 determination. Fitting two vector-functions F | (FL) one can get two necessary conditions.
However, if the function F' (7, ) is chosen, then the X,F.(7,) and VoF, (7,) also are the same

functions. Indeed, their normal components are equal to zero if it is justly for initial vector-

function F . Thus, choice of two-component vector-function defines two additional
conditions.

It is expedient to choose the weight functions F in such way that they have the
same symmetry as the desired solution. Then the functions with zero normal components
on the contour (accurate within any multiplier) take the form

L cos(a,'nx) ﬂ,’cos(ﬂ,; y) oy a, sin(a,’nx) sin(ﬂl'y)
FX(Q) B [sin(a,’;x)J( ﬂ,”sin(ﬂ: y)} - b (’1) B [a,',', cos(aix)}(cos(ﬂ,’jz)} ’ ™
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F( )= [cos(a;x)J(ﬁ}”sin(ﬂ;’y)J RG)- _( a, sin(a;x)j(cos(ﬂ;’y)j ®

sin(a”x) \ B/ cos(y) o cos(a’x) | sin(5y)
Here o/, =(m—1/2)/a, a! =mx/a, f=1x/b, B/=(-1/2)x/b, m,l=1.2,..., and the
functions (7)—(8) are solenoidal. They may be used as initial approaches to the solutions for
the modes with appropriate indexes. It is possible to use also non solenoidal functions. The
same, for example, are the functions )?OFX(FL), )70Fy(77l). At the same time the integral /

may be defined for each function.
Substituting the relations (7)—(8) in to functional (5), we get the necessary number
equations for ¢ and £ determination. Thus, using the two above named functions we have

a=| kx| [ F,(7 ) —7)E, (7 )dx'dy'dsdy +1, |/ 1,, 9)
NN

B =\ kx| [F.(7 e —7 ) (7 ax'dy'dxdy+1, |/1,, . (10)
SS

Here I, and [, are the significances of integral (6), I/, =—1,, and fI,, and al,, are the

significances of the first integral in (5) for these two function. As example, for the upper
functions in the (1,a) there is

I, = j.icos(ax)cos(a,’nx)cos(ﬂy)cos(ﬂ,’y)dxdy =

a—

AL k) sinla b9, =)

a+a a—-a
a b
I, = jjsin(ooc)sin(ar’nx)sin(ﬂy)Sin(ﬂb/ﬁxczy =
a-b

!
m m

_ {Sin(ia_—az; Ja) sin(ga:a? )a)}{sin(;ﬂ_—ﬂfi)b) _ sin((ﬁﬂ:ﬂ?’)b)}

Correspondingly, the integrals in the numerators of (9)—(10) may be introduced as:

a - — a - = — a — — '
]x = _Iy = _K:!:!an(rJ_>|:Ex(rJ_)ag(rL _rJ_)+Ey(rJ_)5g(rJ_ _rL):|deS =

0 (= N0 [~ N VI
= K'!::[%F;(Vl ){Ex(’l )ag(rl —rL)+ Ey (rl )5g(rL -7 )}dS ds.

Instead of equations (9)—(10) one can use similar relations for the functions (7)—(8) under
the different indexes, and also for other functions. Such equations with the relation (2)
allow to determine the eigenmodes with the parameters «,, f5,, y, for each k,, where

n=0,1,2,.... denotes their numeration. It is appropriate to introduce this numeration for
each group of modes having the adjusted symmetry (for example, with even component E_
relative to both coordinates). It must notice that &, and S, depend from frequency and do
not coincide with the significances m /(2a) and Iz /(2b), where m and [ are the integers
(the numbers of field variations with the coordinates). Therefore the classification like /,,

is not quite successful. If the permittivity & is real then there are the slow surface
eigenmodes with y, >k, . In this case the transversal wavenumber y, is imaginary, and GF

is presented by MakDonald’s function K, and is real. There is finite number of such
functions for any given frequency. In the opposite case the GF is complex, and the problem
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is not self-conjugate. Complex in this case will be the modes and their parameters. All
modes are complex in presence of dielectric loss i.e. for the case € =&'— j&".

The mode parameters are entering nonlinearly into the equations. To determine
these, it is proper to use the iteration methods and algorithms. If the principle of contraction
is fulfilled then iteration approaches converge to appointed value from any initial
approximation in this region. Let such solutions «, , B, , y, are determined. The

corresponding transverse function is E,(x,y). The test functions for the second mode
determination must be orthogonal to E, . It is obvious, this is
= . . . - - 2
E(st’) = El(x,y)—Eo(x,y)<EL(x,y),Eo(x,y)>/HE0(x,yX )

where the Dirac’s brackets denote the innerproduct in the form of the integral over S from

Other based on the equation (4) approach follows from the integration by parts and
construction of quadratic functional. Let write the (4) in the form

S L [ e el 8

s Y

- - = =1 =1 1. 0 =1 og\r, —r/ =1 0 '
()= K !g(n—n)Ey(n)dx T e e
Then the right integrals are integrating by parts. For example:

J'E ——r 0 g(;l rl)i ’dy IE *’ %x’dy':jg(ﬂ—fl)ﬁg—(a)dxdy -
X N x

2 2

_J[gx(x—a,y Y)E(a,))-g (x+a,y—y)E(-a,y )y -

—j[gcc—a,y—y) L) g(eray-) Ll Ny,

ox' ox'

= a _” a !’ ! e = aZE F’ ! !
J-Ey( J.) g(rl d IE g r% , )dxdy :Ig(’l _’l) ax%(y,l)dxdy -
5 5

_ j [gx (x—x',y=b)E, (x'.b)~ g, (x—x', y+ B)E, (x',~b) v’ -

b

~OE (a,y' NOE (—a,y')| . NOEF)
—I{g(x—a,y—y)ya(—,)—g(“a,y—y)w}dy = | n)#dxd
-b y ay S axay

b

~ [le,(c-a.y=y)E, (a.y)-g,(x+a.y-y")E,(~a.y )y -
)

a E 4 E I _
i ox ox

The remaining integrals result by index replacement x <> y. by virtue of electric field
solenoidality the first equation is transformed thus:

KE (7)) =k [ g — 77 )x'dy'
S

b

~[[e.(x—a,y=y)E (a,)-g.(x+a,y=y)E (~a,y )by -

b
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The second equation follows by replacement x <> y. Obviously, it is sufficient to conside
two cases from four cases determined by (1). Let, for example, consider the first:

=(/ x)cos(aex)cos(By), E, = (a/ y)sin(ax)sin(By). Multiplying the first equation on
E_ and integrating over the S, one can get the equation for o/ f:

abab
k1, —k(fJ‘.”J-cos oox)cos(By )G (x, v | x', ¥ )cos(ax)cos( By dx'dy'dxdy +
0000

+
O ey

b b
I ‘[ coslax cos ,By)ij (x vy )cos(aa)cos(ﬂy )dy'dxdy =
00

= %EIICOS(O&X)COS(IBy)sz (x,y | x")sin(ce’)sin(Bb )dx'dxdy .

Here the integral /,, is defined for o' =, ' = f and the following kernels are introduced:
G“(x, |2, y) =gl =2,y = y)+glatx',y =)+ glr =2,y + y')+gle+ 2,y + )],
Galxyly)=lg.-ay-y)relx—ay+y)-g(x+ay-y)-glc+ray+y),

Gy (ry1x)=[g,(x =%,y =b)+ g (x—x.y+b) =g (x+ ',y ~b) g (x +x,y +D)].
The second equation for S/« is derived in a similar way. Using the vector form of above

equations, we have the quadratic functional for k, :
K_IJ'EE(FL)CZS + ﬁﬁ(’i)' Ei(’i)g(’i - ’1’)‘7(771) EL(?L’)dZdZ,
S LL

k2 = ] )
0 [[e(F ~7)E () E, (' )dsds’
SS

(1)

Here the first integral in the numerator is equal K’l(ﬂzl()x +a’l,, )/ 7’ , and the integral in

the denominator has the form
abab

[TITIEx2)G, (63 12,3 )E (&, 5)+ B, (3,9)G, (30| ¥, '), (' iy ly

0000
By its symmetry the double loop integral in the numerator is converted to the sum of two-
dimensional integrals with limits on integrals (O,a) and (O,b). As it is easily seen, it is
equal to zero. The introduced kernels are depended on mode type. Thus, if £ is even
relatively both arguments then G_= G* (symbol “e” denotes the parity). The functional

(11) depends nonlinearly depends on k, and it may be used to determine wave number
dependence on y . Particularly, setting the y for the case of square waveguide with
symmetrical mode a = £ and zero-order approximation for k,, one can get the relation

o= 1/ik028— 7’ i/2 which allows to determine the next order approximation for k, from
(11), i.e. to construct the dispersion low 7(k0).

The dispersion for quadratic DW with permittivity ¢ =4 is presented at Fig. 1, 2.
The calculations have been performed by getting the stationary values of functional (11),
which have been obtained by successive approximations method (SAM). The SAM rate of
convergence near the critical frequencies is strongly reduced and the region of convergence
is converged. Therefore it is impossible to approach closely to critical frequencies.
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In the regions near the critical frequencies there are the mode jumps to the
neighboring highest mode branches, i.e. each y corresponds with the highest &, obtained

by SAM. Sometimes for two first modes near the second critical frequency it is possible to
find two k, values. Note, that GF turn to infinity at the critical frequency. The integrals
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Fig. 1. Dispersion in the quadratic dielectric waveguide: solid curves —modes H,?; .,

ee
dashed curves —modes H, ;5 s,

dashed straight line— y =k, and y = kO\/Z

—
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Fig. 2. Dispersion of the mode H; of square section dielectric waveguide with ¢ € =4.0: the

curves 3, 5 have been obtained by iteration method, the curves 1 and 2 correspond to lines y =k,

and y = kO\/E , the curve 4 has been obtained by bisection method
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in (11) have been calculated by mean-value method and decomposition of intervals (O,a)
and (O,b) on N parts with taking into account the symmetry.

The singularity has been taken into account by extraction of corresponding
elementary regions (for which 7, =7) and by the analytical integration over the equivalent
circular regions with equal square a’/ N> (for @ =b). The results of lower mode HS,
calculation are produced in the table for two values N. We have used such classification:
index “e” on the fist place denotes the component /_ parity with regard to x, and on the

second place — relative to y. Correspondingly index “o” denotes the oddness. The index o
is not integer and depended from frequency. It designates the number of field variation
along the coordinates, i.e. is is determined from the equation & =(8+n)z/(2a). For
quadratic DW the modes are doubly degenerate. After the passage from dispersion branches
the index o gets the jump. Therefore it is convenient to introduce such mode classification:

H(ﬁj‘; S)nss)- HETE L4,V have the values e,o, and mode number n — values 0,1,2,... Then the

main mode has n=0.
The main mode H; dispersion is presented in the Fig. 2. The first part of curve

corresponds with Fig. 1. The second part of curve has been obtained by iteration of (9). In
the region of second critical frequency and lower this iterations do not converge. And the
convergence to main mode takes place for the functional (11) in the region lower the
second crucial frequency. Here there is the analogy with dielectric resonators for which the
iterations converge to the mode with lowest resonant frequency.

The mode H, parameters for quadratic DW under the two numbers N of integration points
na kya o o

N=3 N=5 N=3 N=5 N=3 N=5

0.70 0.61597 0.61642 0.71682 0.71600 0.45634 | 0.45683

0.75 0.64525 0.64606 0.74307 0.74489 0.47305 0.47365

0.80 0.67424 0.67485 0.76756 0.76759 0.48866 0.48935
0.90 0.72989 0.73066 0.81269 0.81408 0.51738 0.51826

1.00 0.78405 0.78461 0.85409 0.85512 0.54373 0.54438
1.10 0.83742 0.83847 0.89051 0.89503 0.56853 0.56979
1.20 0.89049 0.89168 0.93056 0.93485 0.59241 0.59327

1.30 0.94364 0.94499 0.96742 0.97004 0.57735 0.61755

Let consider the algorithm generalization for inhomogeneous in one y-direction
RDW, i.e. let consider that permittivity is the function of this coordinate: ¢ = e(y). In the
case of RDW symmetry it is usually even function. Let use the piecewise constant its
approximation. It means that there are the coordinate massive y,, for which y, =0,

vy =b/2, and in each layer the permittivity has the constant value ¢,, / =1,2,..,.N. We
determine the field by the functions (1) with parameters «, £, ¥ . Inasmuch as the
component £, continuous, and the component £ has the jump at the division boundaries,
there are only two independent parameters from N +1 parameters «, f,. Let take such «

and f,, and the remaining we will expressed through g, . For example, for above
considered case we have

B COS(ﬂzJ’z ) =B COS(ﬂmJ’l )= & Sin(ﬂlyl ) =& Sin(ﬂl+1yl)’ (12)
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and ., =p, cos(ﬂ,y,)/\/l—(gl /g, )sin®(By,), [=12,.,N—1. If the function &(y) is

neither even nor odd then no y symmetry, therefore the dependence must be taken as
A,sin(,y)+ B, cos(,y). In this case the layers may be unsymmetrical placed in the RDW
region 0< y<a. For N layers we have the 3N +1 unknown magnitudes, the 2(N —1)
conditions of kind (12) and the N conditions of kind (2). One more condition we impose
taking 4, =1 by force of problem homogeneity. Thus, again we have the two unknown
parameters. It is easier to express the amplitudes in the layers via the amplitudes in the first
layer using the transfer matrix. Note, that the odd function g(y) for y<0 means

symmetric negative permittivity values, which hypothetical (only at one frequency) may
correspond to plasma RDW with y-nonuniform (nonequilibrium) charge carriers
distribution.

At last, let consider the extension for the £- modes and for hybrid modes HE and
EH. There are the three E-filed components in all these cases. For £- mode more proper to
use the formulating relatively the two magnetic field components. In this case the singular
integrodifferential equation is

H(F)=(V, = jiZ,)x [ e —F)R(E FNV . — sz, )x HFE ) . (13)

It is offered in the general form for the inhomogeneous anisotropic dielectric and means the
availability of tri-component magnetic field. The E- modes in the uniform RDW are
described by the equation
280 b l-¢ = =1 \v7! 2 o 1 ' = =1\ (= '
HJ_(FJ.):T|:VL xJ-g(rl —F V' XHL(”L)dZ” + 72Ig(’l _rJ_)HJ.(rJ_)dzr } - (14
S S

The test-functions for magnetic field are the same as (1). The integration in (14) with
corresponding weight function leads to the functional with weakly singular (logarithmically
singular) kernel. If one uses the electric field formulation then it is necessary to introduce
the additional term into (4) and also the additional equation for longitudinal component:

Ei<a>=z<{[vl®vl+k3]fg(a—a)a<f;>d2 i jg(a—a'm(mdzr}, (15)

Ez(ﬁ) = K{_]'WL '_[g(’_i —FL)EL(?l)dZ’””rZoJ‘g(ﬁ —FI)EZ(Fl)dzr}- (16)
S S
In the case of £- mode with even component E_ relatively x and y we have
E(F)=~lay | 1 Jsin(cxx)cos(By)exp(- jrz),
E,(7) =By 1*Joos(ax)sin(y)exp(- jiz),
E(F)= jcos(ax)cos(By)exp(- jrz).
In general case for such hybrid mode one must use
EX(F) = (}//;()2 [A,B - Ba]sin(ax)cos(ﬂy)exp(— j;z),
E,(F)=~(y/ x)[4a+ Bp]cos(ax)sin(By)exp(- jrz),
E(F)= jBcos(ax)cos(Ay)exp(~ jrz).
According to homogeneity of the problem we can arbitrary set one of amplitude

parameters, putting for example B =1. Consequently, there are three scalar equations (15)—
(16) for tree parameters determination. The modes with different symmetries have similarly

forms. Often the other classifications are used: E; or E’ in [3], or even HE - mode and

odd HE - mode according to Schlosser [1] (when a>5). Concerning the modes with
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E, =0 or E, =0 may be considerable. They may be treated as H- modes concerning x or y

axes, or as modes LE. The indexes m and n here are also integer only approximately.
Evident, the test functions for such even mode are E,=ycos(ax)cos(By) ,

E. = jasin(ax)cos(By).
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Fig. 3. Dispersion y = k. for LM>- mode (a) and deceleration (b) in the plane-parallel waveguide at
the following parameters of infinite coats: & =3.0 (the curve 1); £ =12.0 (2); £ =12.0—12.0(3

— daggers); € =1.0— j10* (4)

The plane-parallel waveguide structures have been also considered in this paper. In
this case the rigorous dispersion equation [33]

Z¢+ jz¢ tan(k a/2)=0 (17)

had been sole using the iteration approach. Here the dimension 4 is infinite, Z; is the

wave core impedance and Z°¢ is the covering impedance transformed to the core atx =a.
The multilayered and homogeneous finite and infinite coating has been considered. The
results of the equation (17) solutions are presented in the fig. 3-5 for different electro-
physical parameters of coating and hollow core. The iterations have been performed using
the step by step impedances, k_and k_ calculations from high frequencies with little step.

The initial values for &£_have been taken as the values at previous frequency value. The fig.

1-2 present the results for mode with index m=1 for real and complex permittivity values.
The retardation is less then unity and weakly changing. It sharply falls down and reaches
the its minimum and the loss increases at some frequency. At very low frequencies the
wave is slow and leaky with great attenuation. The slowness in this case is caused by wave
penetration into coating which refractive index is greater than unity and the reflection
coefficient for near 7/2 glancing angle is not small. The fig. 3 demonstrates the
deceleration for first four modes when the coating is the copper with ¢ =10— jo, /(goa))
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and the conductivity ¢, =5.8-10" S/m. For the quasi-T- mode in the wide frequency band

the deceleration # is practically equal to unity and increases at very low frequencies. In the
region sufficiently low than cutoff we have n <<1, but there is the sharp increase up to
values n >>1 in the region of superlow frequencies. The cutoff is defined by the condition
k.a=2mm and corresponds to the condition o, =0 . The multilayered coatings including
the dielectric and semiconductor layers have been investigated also. For the semiconductor
plasma there is three cases. The first corresponds to low frequencies when &' is negative.
The second one corresponds to the real part coating permittivity values 0 < &’ <1, and the
third when &’ >1 corresponds to the hollow center channel waveguide which is realized at
high frequencies.

n
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Fig. 4. Deceleration of even LM,,- modes (m=0,1,2,3) for small in the case £ =10— jo,/ (goa)) ,
o,=5.8- 10" S/m (copper)
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Fig. 5. The deceleration (a) and the normalized loss (b) for even LM,,- modes (the number of curve
corresponds to the value m) at small frequencies for copper walls correspond to fig. 4

Conclusions

The nonlinear equations for two-component transverse RDW wavenumber
determination have been obtained using dielectric waveguide integral equation and
corresponding functionals. The eigenmode dispersion problem is reduced to the solution of
two nonlinear equations for two parameters. For this the standard numerical methods may
be applied, for example, the iterations procedures or the minimization of discrepancies.
Apparently, the last way may be more efficient to determine all dispersion branches, and
also for the regions near critical frequencies. The dimension for the quadratic DW with
symmetric modes (o = ) is unit. The derived equations also may be used below the

frequency cutoff, and for the lossy dielectric case when the propagation constant y is

complex.

The extension of derived equations for nonuniform in one direction RDW has been
performed using the piecewise constant approximation. In this case the problem dimension
equals to three, i.e. one must solve three equations with three unknowns.

The field presentation as the sum of functions like (1) with unknown amplitudes and
the set of parameters which satisfy (2) may be used in the case of DR with arbitrary
boundary. Such functions play a part of metaharmonic functions for field approximation
along with cylindrical harmonics [1,17,32].

The on-dimensional case of core coated by finite or infinite multilayered coating has
been also investigated numerically using the iteration procedures. The results of complex
mode solutions demonstrate some interesting properties at low frequencies.
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THE FORMULATION OF A PROBLEM ABOUT THE POCKELS
ELECTROOPTICAL EFFECT IN FORM OF THE MAXWELL EQUATIONS
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Abstract — The nonconventional problem statement about the electrooptical effect of the Pockels
in form of the Maxwell equations for some electrooptical crystals is offered. The generalized
expressions, which spot allowances to the components of the impermeability tensor caused by the
linear electrooptical effect, are obtained. The expressions for the components of vector of electric
intensity of optical plane wave propagating in the given electrooptical crystals, are deduced. The
Maxwell scalar equations which have been written down concerning required components of
dielectric density and magnetic intensity of optical plane wave, taking into account the Pockels
electro-optical effect for crystal of lithium niobate, are gained. The given statement of a problem
about the Pockels electro-optical effect in form of the Maxwell equations allows to transfer to the
wave equations and to find their solutions for optical waves propagating in presented crystals,
taking into account the Pockels electro-optical effect.

1. Introduction

At studying of propagation of electromagnetic waves in anisotropic mediums,
including the presence of an external electric field, the method of an ellipsoid of refractive
exponents [1] is widely used. The given method allows to determine refractive exponents in
the given propagation directions in a crystal, but does not give, in our opinion accurate
representation about the transformation of the field structures of electromagnetic waves in
the process of their propagation in anisotropic mediums, in particular in electrooptical
crystals in the conditions of existence of the Pockels electro-optical effect.

In the present work a problem statement about propagation of optical waves in the
some crystals in the presence of the linear electro-optical effect, in form of the Maxwell
equations is offered, allowing further to solve a task concerning fields of these waves.

2. The definition of the components of the impermeability tensor of a crystal
in the conditions of existence of the Pockels electro-optical effect

The propagation of optical waves in a crystal is identified by the impermeability tensor:

A ~A\-1
n=2,(2)". (1
g 0 0
where £=| 0 &) 0 |- the permittivity tensor in coordinates system which coincides
0 0 &

with main dielectric axes in a crystal (without the Pockels electro-optical effect); g,- a

permittivity of vacuum, and we consider, that the crystal is the homogeneous, non-
absorptive and magnitno-isotropic medium.
According to a quantum theory of solid bodies, the impermeability tensor depends

on allocation of charges in a crystal. Superimposition of exterior electric field £ will lead
to redistribution of latent electricities and to partial deformation of the ionic lattice, what in
turn will lead to change of the impermeability tensor:
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A774‘/ =1y (ECT) =1 (O) = ’”y‘kE;T ) (2
where the summation index k means: 1=x, 2=y,3=z;

o
Mo 00
n0)=n"=| 0 7, 0 |-theimpermeability tensor without the Pockels electro-optical
[}
0 0 7
£ &£ &
.20 _ %0 o _ %0 o _ %0 .
effect, and: 7 =—"-, ), =—>~, n.. =—;
gxx gyy gzz
ﬂxx nxy 77){2
nE")=n=|n, n, 7, |- the impermeability tensor in the presence of a stationary
nzx nzy 7722
exterior electric field £ ;
N Tz s ne oKy, I
For Top T Iy Ty Ty
By, T v oy T
A 33,1 33,2 333 31 32 33 : :
r= = - the electro-optical tensor of the third rank.
By Top s T T Ty
31 N3z Nsgs sy Ty T3
Nap T2 T2 oo T e

The electric intensity of optical beam (of electromagnetic plane wave), taking into

account the Pockels electro-optical effect, is determined by the vector relation:

S

E=—nD,

€y

where D - the electric inductance vector, or three scalar expressions which have been
written down in the Cartesian coordinates system, at which axes coincide with main
dielectric axes in the unperturbed crystal (i.e. without an exterior electric field):

E = gi(nxxDx +n,D, + szz),

0

E = gi (nnyx +n,D,+n,.D, ), 3)

0

E.=Y(p.D,+n.D,+n.D.).
. :

X x 2z z
0

The components of the indignant impermeability tensor in expressions (3) are determined
as follows:

M =M T AN Ny =A1n,; n.=A4An.;
My = A1, My =10, + AT, n,.=An,.; (4)
nzx =A772x; nzy :Anzy; 77zz =7752+A7722'

The allowances to expressions (4) for a components of the impermeability tensor, caused
by electro-optical effect, in a general form are determined on the basis of a relation (2),
taking into account a known rule of a relabel of pair coefficients: (11)=1; (22)= 2;

(33)=3; (23)=(32)=4 (13)=3D)=5; (12)=(21)= 6, as follows:

_ cr cr cr _ cr cr cr .
Amy, _711,1Ex +’”11,2Ey +7”11,3Ez =n,E; +”ley +rE
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Any =Any, = rza,lE;T + rza,zE;T + r23,3EzT =r B+ V42E;T +rgEl
Anyy = ’33,1E§T + ’33,2E;T + r33,3EZCT =r, BT + 7§2E;T +rgE
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CT CT ,
An. =nkE] +”12E +rsE

CcT CcT CT ,
Anxy = Anyx N +r62E +r ET
An.=An,=r\E’ "'rszECT +roED
An,, = ES +1,E] + 1B

)
An,.=An, = ey ""’42E;T +rgED

An. =rE” +732E;T +rpE
3. The definition of the components of vector of an electric intensity

of optical plane wave, propagating in crystals of lithium niobate,
barium titanate, strontium-barium niobate

For the crystal of lithium niobate ( LiNbO, ), having a symmetry point group 3m, the
electro-optical tensor is determined in the form [2]:

0 -n, £
0 T T
. 0 0 , ©)
0 g, 0
75 0 O
-, 0 0
where at optical wave length 1=0,633(mcm) : 7, =86-10"" (m/V) |,

7y =30,8-10"% (m/V), 1, =3,4-10"7 (m/V), r,, =28-107"7 (m/V).
Then allowances to the impermeability tensor, caused by the Pockels electro-optical
effect, defined by expressions (5), for crystal LINbO, become:

A’] ( FZZ)ECT +rl3ECT Anxy = A’?yx = (_ 7’22) ST’ A77xz = Anzx = rSlE;T;

XX

(7N
An,, = rzzECT +1,ET An,. =An, _”51ECT An.. =rzE>.

The components of the vector of electric intensity E of optical plane wave, propagating in
the given crystal, taking into account the linear electro-optical effect, expressed through the

components of the electric inductance vector D, are defined by substitution of expressions
(7) into (4), and then the obtained result - into expressions (3), and become:

E = i[<(£‘L°+ (_ Iy )E;T + ”13EZCT>DX +<(_ rzz) §T>Dy " <FSIE§T>DZJ ’

XX
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E = gl[<r51E D, +(r, S )D, + <gi + r33EZ°T>DZ] .

0 zz

1 1
£ - L{{mr oo et oo, o ®

For the crystals of barium titanate ( BaTiO, ) and strontium-barium niobate

(Sry,sBay,sNb,Oy ), having a symmetry group 4mm, the electro-optical tensor is determined

in the form:
0 0 n
0 0 n
po 00 s )
0 r, O
e 000
0 0 0

where values of electro-optical coefficients for crystal BaTiO, at optical wave length
A=0,633(mem) : 7, =810 (m/V) , r;=28-100"(m/V) ; at A=0,546(mcm) :
r;, =820-10"2 (m/V) . For the crystal Sr,Ba,,;Nb,0, - at optical wave length
A=0,633(mcm):7, =67-1077 (m/V), r,, =1640-10"2 (m/V), r;, =42-107"* (m/V).

In this case, by analogy, expressions (5) for allowances to the impermeability tensor
will become:

An, =rE; An, =An,=0; An.=An, =r,E;

(10)
Anw - rl3EZCT’ A77yz :Anzy ZFSIE;T; A77zz = ’33E:T9

and expressions (3) for the crystals BaTiO; or St ,Ba,,;Nb,O, in turn, we will write

E = L(<LO+ r13E§T>Dx +<r51Ef.T>DZJ :
gl\e

XX

1/ 1 - ot
E, =_(<—0 + 5 ES >Dy + (1 E; >DZ], (11)
&l \€

Yy

E = gi[<r51E;T>Dx +(ryES)D, + <gi + r33EjT>DZ] .

0 zz

down as follows:

4. The Maxwell equations for optical plane waves propagating in the crystals,
taking into account the Pockels electro-optical effect

Now we will be turned to system of the homogeneous Maxwell equations, which
completely describe an electromagnetic field of optical wave propagating in a crystal. Two
first Maxwell equations:

rot H = a—D, (12)
ot
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. 0H
rotEk =— —_— 13
Hiy or (13)
we will write down in the scalar form in the Cartesian coordinates system. Then the first
Maxwell equation (12) becomes:

oH, OH, oD, ~oH, oH, oD, OH, 0oH _aD

: ; -, (14)
oy 0z ot oz ox ot ox Oy ot
and accordingly the second equation (13) becomes:
OE. ©OE, OH OE, OFE, 0H, ©OE, OFE, _ OH .
oy o __ﬂﬂoﬁ’ oz ox - ot~ ox oy - o’

(15)
where H - magnetic intensity of optical plane wave, propagating in a crystal, x - magnetic
permeability of medium, g, - permeability of vacuum.

Obtained above expression (8) for the components of an electric intensity of the
wave propagating in crystal LiNbO;, taking into account the Pockels electro-optical effect,

we will substitute in the equations (15). In this case the equations (15) become:

<’31E;T>8a_l));+<r51E§T>a§j +<810 +V33E§T>a§; _<(—I”22) ;T>aézx B (16)
_<77)O/y +r22E;T +’13E§T>%_<r51E;T>% = —HUHE, %;

zz

<77;x +en, )E;T N FBEZCT> 661? <(_ - )E§T> aalzy n <r51E§T> oD,

Oz
(17)
— <I"51E§T>% _<7"51E;T> aéiy _<6‘L0 + }33E§T>% = _ﬂﬂogo %;
e} 2o, e ) ) 2
(18)
_<77;x N (_ . )E;T N ’/I3EZCT> 8;)); _<(_ FZZ)EXCT> aé))/y _<,,51E§T> ag/z = — 11,8, %

5. Conclusions

Thus, have gained six scalar Maxwell equations ((14) and (16) - (18)), which are
written down concerning required the components of the electric inductance D,, D, , D,

and magnetic intensity H , H,, H_ of the optical plane wave, taking into account the
Pockels electro-optical effect, for lithium niobate. For other crystals ( BaTiO, ,
Sr,;sBa,,sNb,O, ), which considered here, the similar equations are obtained by analogy by

substitution of corresponding expressions - (11) - for the components of electric intensity,
into the second Maxwell equation (15) in the coordinate form.

Then at the given statement of a problem about the Pockels electro-optical effect in
form of the Maxwell equations, it is possible to transfer to the wave equations, having
excluded H , H,, H_ (having substituted (16) - (18) into (14)) and to find their solutions,

for example, for the optical plane waves, propagating in considered crystals, taking into
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account the Pockels electro-optical effect. Moreover, using a method of transformation of
coordinates, it is possible to gain the expressions determining phase velocities of the optical
waves propagating in electro-optical crystals in any direction.
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APPROXIMATE ANALYTICAL MODELS FOR CALCULATION
OF CUTOFF WAVELENGTHS OF SOME HIGH ORDER MODES
OF COMPLEX CROSS SECTION SHAPED WAVEGUIDES

V.V. Komarov, Member IEEE, A.G. Savina, I.I. Novruzov

Saratov State Technical University, Russia
e-mail: vkom@mail.saratov.ru

Abstract — Cutoff wavelengths of some high-order modes propagating in complex cross
section shaped waveguides are simulated using approximate analytical models taken from the
literature. Obtained results are compared with numerical data.

1. Introduction

Complex cross section shaped waveguides (CCSW) find application in modern
microwave engineering as basic units of directional couplers, transitions, ferrite circulators,
polarizers and etc. Most of such waveguides belong to one of two groups: so-called
waveguides with capacitance gap (WCG) and waveguides without metal septa. Rectangular
T-septum waveguide (RTSW) and horseshoe shaped waveguide (HSW) are the examples of
WCG (fig.1,a,b). Crossed rectangular waveguide (CRW) can be included in the second
group (fig.1,c).

Different numerical approaches: partial domains method (PDM), method of
integral equations, finite-difference method and finite element method (FEM) are used for
computation of CCSW. Along with numerical techniques several analytical approximations
sometimes are applied for the same purpose. Homogeneous and inhomogeneous CCSW can
be simulated using transverse resonance method, perturbation method, equivalent networks
method (ENM).

d
¢ d
b b 2d |2a
{
w
H=—1
a
a
a b c

Fig. 1. Rectangular T-septum waveguide (a); horseshoe shaped waveguide (b) and
crossed waveguide (c)

2. Computational models for waveguides with capacitance gap

It is well known that the dominant quasi-H;o mode of any WCG can be analyzed by
means of ENM [1]. One of the restrictions of given method is impossibility of modeling
high-order modes. We propose Oliner model, which is utilized presently for simulation of
high-order modes in microsrtip lines [2] for calculation of the first high-order mode in
RTSW:
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Aoy =2tNE";  2<e <38, (1)

Acy =2t NE* ;. 9<e <81, 2
t :t+L(ln(%+1) , 3)
Va [
0.5("-1)

e¥=0.5(g"+1)+

10d ’ @
VT

where ¢ is the dielectric permittivity of the capacitance gap filling; #,d,/ are the sizes of
RTSW (fig.1,a).

The first high-order mode in HSW can be approximately determined with the help
of the expression for H;;-mode in coaxial line [3]:

Acy = 27r,[14 0.16666 (u—’")2 — 0.058333 (u—’”)4] , Q)
2r, 2r

where 7, = rc + Re v u,, = 2(Ri-1y); here R, u r,are the radiuses of the internal and
external conductors of coaxial line. Sizes of coaxial line and HSW (fig.1,b):

QR =t+2d 2re=t;rm=t+d uy=2d. (6)

When capacitance gap of HSW is filled with dielectric the cutoff wavelength of the first
high-order mode HE; is defined as:

Acy = kﬂ\/z(t +d)[1+ 0.16666(L)2 - 0.058333(L)4] ) (7)
t+d t+d

Results of analytical and numerical modeling of the first high order mode in RTSW
and HSW with dielectric in capacitance gap are represented in fig.2 and 3 respectively.
Empirical coefficient k; = 0.85 was used in expression (7) for calculations of HSW.
Computational error for RTSW with sizes 0.3 < #a < 0.9 does not exceed A < 4.5% but
when 0.1 < #/a <03 it rises up to A% = 5 + 12. Approximate analytical model for
HSW shows A = 6% when #a <0.25 and A =8 % when 0.25 <#/a < 0.4 relatively
FEM. Oliner model was compared with the Ritz-Galerkin method employed in [4] for

simulation of inhomogeneous RTSW.

3. Computational model for the lowest E-mode in crossed waveguide

Wave numbers of the lowest E-mode in CCSW of the second group can be obtained
with the help of approximate model, which takes into account some geometrical

parameters of a waveguide cross section [5]:
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where v = 2.4049 is the first root of Bessel function; L is the waveguide perimeter; S is the

waveguide cross section square; ¢ is the radius of inscribed circle.

;vcz/a

3,25 |

2,75 |

2,25 |

1,75 | d/b=0.25

1,25 |
—m—m— Ritz-Galerkin method

Oliner model

0,75
0,2 0,3 04 0,5 0,6 0,7 0,8 0,9

t/a

Fig. 2. Cutoff wavelength of the HE; mode in RTSW partially loaded
with dielectric: b/a= 0.45; I/b = 0.05; ¢" =3

Expression (8) has been tested in [5] on an examples of elliptical, sector, triangle
and some other waveguides. We employed this model for calculation of cutoff
wavelengths of E;; mode propagating in symmetrical CRW with L = 8a; S = 8ad — 4d".
Comparison with theoretical data obtained by means of PDM [6] and FEM [7] shows a
good agreement between all three approaches (fig.4).
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Fig. 4. Cutoff wavelengths of E;; mode in CRW
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4. Conclusion

So described analytical models can be successfully adapted for approximate calculation
of some high-order H-, E- and HE-modes in different type CCSW.
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VECTOR ELECTRIC AND MAGNETIC POTENTIALS
IN ELECTRODYNAMICS OF CONTINUOUS MEDIA
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Abstract — The possible approaches for introduction of vector-potentials in inhomogeneous
anisotropic and bianisotropic media have been considered, and the new differential and
integrodifferential equations for these potentials have been formulated. It has been shown that the
potential boundary problem formulations have the advantages instead of field formulations. The
iteration algorithms and finite elements have been proposed for solutions of potential boundary

problems. The numerical simulations have been performed for investigation of /5 oscillations of
homogeneous and inhomogeneous dielectric resonators.

Introduction

In classical electrodynamics the final relations and equations, as a rule, are set in
form of fields, and the potentials are usually introduced for simplification of problem
solutions and for more simple expressions [1-25]. And at that one may do not use any
potentials. In classical microscopic electromagnetics (electrodynamics of vacuum) the
electrical vector-potential A and the scalar one ¢ are connected with the fields by the
relations [1]

E=-04/0t—grad$, B=u,H=rotd, (1)
at that we consider the movement of point (elementary) charges or charged particles under
the influence of field and also its excitation by accelerated moving charges. It is well
known that the fields completely do not describe the quantum system, and the introduction
of potentials is the necessity. In quantum electrodynamics they form the 4-potential and
have the clear physical meaning. In macroscopic electromagnetics the vector and scalar
potentials also are the measurable values [10,22,26,27], i.e. present the physical reality. The
introduction only the electrical (one vector and one scalar) potentials is the consequence of
the fact that predicted by Dirac elementary particles with magnetic charges (magnetic
monopoles) have not discovered yet.

The classical electrodynamics of continuous media ever operates with the material
parameters introducing by averaging over the physical infinitesimal volume (i.e. by the
homogenization) of electrical and magnetic polarization inputs under the movement of
great number of matter particles in the field. The motion equations are replaced by
equivalent in a certain sense material relations, and the field presentation by (1) is not quite
convenient, as there are the electrical and magnetic polarization currents of matter.
Therefore, in contrast to (1), it is convenient to use two symmetrical defined vector-
potentials: the electric one and the magnetic one [28], and also it is useful to introduce two
densities of electrical j¢ and magnetic ;" incident currents, which create the field. The

last one is the auxiliary and having the property divj" =0 i.e. may be consider (accurate

within a factor) as the rotor of some real electric current density. We will consider several
approaches to introduction of vector-potentials which describe stationary (harmonic in
time) fields with the time dependence exp( J a)t). All material parameters and field vectors
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may depend on frequency (the time dispersion). We will include the conductivity currents
into media permittivity and permeability [28]:

g=é-joNws,) , F=p-jo" loy,) . )
The tensors £ and 4 will be complex for dispersive medium if even the free electric
charges are absent [29]. The complex and frequency-dependent will be also (owing to
Drude’s formula) the electrical conductivity o° = a);go /(jo+®,,) caused by such charges

(here ®,, is plasma frequency, and @, is the free charges collision frequency). The
parameters in the relations (2) will be in general complex and inhomogeneous. The relation
div(ﬁI:I ): 0 is also fulfilled und the condition divj" = 0. It means the physical absence of

volumetric magnetic charges. We will introduce below electric and magnetic polarization
current densities. The availability of inhomogeneous magnetic medium leads to appearance

of volumetric magnetic charges, as div((ﬁ —1 )I:I): —divH # 0 (here [ is the unit tensor).

The fictitious surface magnetic charges may appear and on the media bedding interfaces
[28]. In case of open magnetodielectric resonator it gives the input to magnetic-dipole
radiation. It is easy to see that the full magnetic charge of any magnetodielectric body at
that is zero. We will further also introduce the general material relations for bianisotropic
media (metamaterials), which are characterized by two additional cross-polarization tensors
kpocc-nonspuzanuii. The material parameters for such artificial media are derived using the
homogenization procedure [30,31] which is polysemantic in general case. In such media the
material parameter tensors do not commute in general, that may fulfill in magnetic
semiconductors in magnetic field. In particular, one can consider the metamaterials with
magnetic and dielectric inclusions (including semiconductive ones) into background
(matrix), which are placed in constant magnetic field and having two turned on arbitrary
angles lattice and even having the different periods. The tensors are non-hermitian due to
loss. Below it has been only proposed that they are non-singular.

1. Potentials in inhomogeneous and anisotropic media

By virtue of Helmholtz circulation theorem [32,33] the vector fields are the sum of
their potential and solenoidal (vortical) parts and may be presented by several forms, for
example, as

E=—jou,jA° +(jos,) " grad div(E’IZe )— rotd" 3)
H=—jws,gA" +(jou,)  grad e a’iv(ﬁ%;l’” )+ rotd® 4)
Here the vector-potentials satisfy second order equations which are getting after the
relations (3) and (4) substitutions into the Maxwell equations:

[Egrad J div(g_lgle )— rot e rotA° + k(fgﬁgle] =—J+ joe, (Erot;lm - rot??l’") , %)

[ﬁgrad o div(ﬂ_ljzl’" )— rot e rotA™ + kozﬁ(?;l’" ] ="+ jou, (ﬁrotgle - rotﬁgle). (6)
The symbol e here denotes the product of operators and it also be omitted, k; = w’¢e,u, is
the wavenumber. Correspondingly in (5) and (6) the operators may be written in the forms:
roterot =VxVx u gradediv=V®V =VV. Simple point means here the scalar
product of two vectors, the symbol x denotes the vector product, and the symbol &®
designates their tensor (dyadic) product. Accordingly, for any vector a one has
(grad ediv)i = (V®V)i = V(V-d). Further we will use the different forms of operator
notation. The operators in the square brackets in (5) and (6), generally speaking, are
different. They will be identical for homogeneous anisotropic media if the matrixes £ and
4 commute. Then we get the inhomogeneous general Helmholtz equation
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v+ kgzmaten =l ()
The equations (5) and (6) in general case have not separated. It is necessary for such

separation the conversion to zero of second terms in its right parts. One may set up a
correspondence for operator ro¢ the following matrix or operator

0 -08/éz dloy
rot=| 0/0z 0 —d/ox|.
~8/8y dléx 0

Under the commutation of operator rot with the matrix £ and z on the vector-potential
functions equations are separable. Particularly, for the scalar permittivity and permeability
the expressions in the parenthesis in (5), (6) have correspondingly the shape — V& x A" u
Vi x A°, therefore the separation takes place if the vectors Vi, A° and VZ, A" are

mutually collinear. For isotropic media (described by scalar parameters) it is possible also
the representation in form

E= —ja),uoﬁje +(jos, )" grad?‘ldivje —roid" (8)

H= —ja)eogj'” +(jou, )_lgmdﬁ_ldivj'” + rotd* , )
where the new vector-potentials satisfy the equations

[Egmdg_ldiv —rot ® rot + k(fgﬁ]je =~ joe,VE x An , (10)

[ﬁgradﬁ_ldiv —roterot + kozﬁg]j’" =— "+ jou,Viix a° (11)

The separation here takes place at V& x A" =0 , Vi x A° = 0, and the equations get the

sufficiently simple forms, for example [V2 +kjen 1 +(§V g _I)V A = —j¢. At last, the
fields may be presented in the following way:

E= _jawOZe + (ja)go )_lgmd o divA® — rotA" , (12)
H=—jws, A" +(jou,) " grad o divA™ +rotd" . (13)
And in this case the equations for introduces in (12), (13) potentials become so:

A

(k2 +v2)dr =—gr + (i —IXVXVXZ'" +ja),uOV><Ze} . (15)

They may be written in this way:

(k2 +v2)a = —(E—f[kgi" ot —ngowim},

(k2 +v?)d = —(ﬁ—f[k(fj”’ LYV A" +ja),uOV><je]

These equations also are non-separable pasznenstorcs. The partial separation takes place
either for nonmagnetic (4 =] ), or for nonelectric (& =] ) media. Inn the first case the

magnetic vector-potential satisfy Helmholtz equation (V2 +k; )Z’" =—j", which has the
standard solution. Using this solution in the right part of (14), one may get the solution for

A° . If one considers the potential vectors A that this case leads to potential fields, that
is the trivial, and the case & = fi = I is also trivial. besides the mentioned vector-potentials

—
~

. . = ~-1
one may use some others vector-potential functions, for example, A =xa" A° ,
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A =&74". This becomes clear by ambiguity of potentials in the electrodynamics of
continuum [10].

In the simplest case coordinate-independent scalar material parameters the equations
(3) and (4) are simplified [28]:

2~~~
FoYOVERE G o (16)
JjweE
2~~~
g=YOVAk e G e (17

JOHH
in which connection the vector-potentials satisfy the equations (7). To get their solution one
can with the help of scalar Green’s function (GF) [28] G(lc,77):(47r|17|)7l exp(— jk|z7 ),

where k =k,\/€li . The explotable here electric vector-potential differs from respective

potential in the equation (1) by factor g,z . This is connected with the tradition to use the
magnetic filed but not the induction in applied electromagnetic, and also with the

conveniences (though the power magnetic vector is the vector B [1]). Mark that the fields
satisfy the same wave equations but with others more complicated right parts even in for
homogeneous and isotropic media [28]:

N - v _-'_e _ - = vv _-'_m _
(VZ +k§)E:_ja);uofuj; +—JZ’—V><J}-': ’ (Vz +k§)H=—ja)6‘06ji;" +.—JZ+ijifz .
WEE Jou

(18)
This just explains the advantage of usage the vector-potentials. But durante absentia of any
separation this advantage is insubstantial. Note also that here owing to Loorentz calibration
there is the bond of vector and scalar potentials

divA® + jos,E¢° =0 , divA" + joufig" =0,
and the last ones are also satisfy the wave equations

(V2 +iza =)' . (V4 KEaY" =~(wd) ol . (19)
In general case the fields satisfy following inhomogeneous equations:
[— roti 'rot + kgE]E =—jou,j —roti'j",
[— rotg 'rot + k;ﬁ][jl =—jwe,j! +rotgj .
For solving of different problems it is convenient to use also others potentials. These
are the Hertz vectors, Borgnis functions, Debye potentials [2]. At that time often the
direction of mensionad vector-potentials is fixed (for example, along some coordinate axis

which does not change it), or they are directed along ort-vector which changes its direction
(for the Debye potentials). Let consider the different Hertz vectors modifications. They are

m

defined standardly so: A = ]a)SOEH A" = ]a),uoﬁl'[ , and the fields are expressed

through it as
E=(VOV+kEE)NI - jou,vx(@l") (20)
=(V®V+k§§ﬁ #’"+ja)gOVx(§1:I") . (21)
In the case of nonstationary fields the multiplication on ( ja))f1 corresponds to integration

over the time, and the bond of fields with the potentials becomes integral, and so the Hertz
vectors is more preferable at that time. The hertz vectors satisfy the following
inhomogeneous wave equations:

27+ v @vE" -z 'vxv it = - al)i — jou|[EV x (EH")-vx (@), @2)
J W&,
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~—1"m
2z + vV — iV x vl =~ 2 iy e [V < (200°)- v (611)). (23)

J O,
For nonmagnetic media the equation (23) gets the view of Helmholtz equation with the

right part —( Jjou, )_1]:]. Then for anisotropic case the separation in the (22) occurs if

rotel1" =rofl1" , and for isotropic case — if Ve xII" =0, i.e. the V& and T1" are
collinear. In general case nonhomogeneous and nonmagnetic media we have the equation

k2492 + 5 (25 - Va1 )- v (x i = -2 Lo jou [ v x (],
0

which is simplified and separable at V&xII” =0 . The case & =] is considered
analogously. Notice that instead of Hertz vectors introduction one may use with such

success the vector-functions &£I1° and #I1" . Moreover, we can confront the above

introduced potentials with corresponding Hertz vectors. Here we introduce yet the
following vector-potentials:

E=(VOV+i i - jou,vxii" (24)
H=(VOV+r )"+ jwe,vxii | (25)

=, F-l7e n =
k2 +vev-z"vxvxfic = ]wio — jou, [~ =i | (26)
[k§+V®V—ﬁ_1V><V><]ﬁ’":—’Lj;£i’n+]a)80( —])Vxl_le (27)

Depending on specific problem the choice of different potentials may be useful and
convenient. In the view of equations separation the mentioned choice less substantial that as
for receiving of solutions separated equations. These equations have different forms for
different potentials, and some of them may be more founded and preferable. The general
approach to problem solution for the separable equations should be concluded in there
Green’s functions determination. These GFs must in general case be tensors as define the
vector values (potentials) by vector current densities (which may be multiplied on a certain
matrix). The mentioned GFs at the presence of boundaries even for homogeneous and
isotropic medium, as their components must satisfy different boundary conditions [34].
When the potentials are substituting into the field expressions, one can get the others GFs
which are directly connecting the fields with its sources — the current densities. Let
examine, for example, nonmagnetic case of potentials (8), (9). Then, if the magnetic vector-
potential is collinear to the gradient of permittivity, it is n necessary to find the GF satisfied
the equation

V2 + k22 )6 (7.7)+ BVE )@ (v G4 (7.7))= I8(F - 7). (28)
Let one has the particular case £(7)=2(x), j:(F)=%,J(F), A (7)=%,®(7). Then the
problem is simplified: it is necessary to solve the equatlon

1 dg(x)o . _
kg k -1 O\F)=-J(F). 29
[ 4400 60100 5 B L)) o)
Expressing the introduced functions via their spatial spectra

([ [0F)expl- jiF k.

Se(x) = E(x)— 1= jcsg(kx Jexp(— jk x)dk ,
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(o 1 dg( ° .
8(x)—g(x dx J. exp(— jk x)dk,

one gets the integral equation (IE) for the desired spectral function <D(l€ ):

o> - 52]- 2 j[k Sele, Yolk, — k.. k. k. )+ (k. —k)e'(k, ok, — &'k, k. k! = J(F).

(30)
It is not very convenient to solve the equations like (30) in spectral region, in which
connection then these solutions would be Fourier transformed and differentiated in order to
get the fields. Besides the similar equations are not general. It is easy to find the solution of
equation (10) with operator in the left part which corresponds to equation (28). We use for
this the scalar GF and turn into integrodifferential equation (IDE)

; :_[G(kO,F—?')l];(?’)Jrkj(E(F’)—l)je(F’)—E*(F’)V'E(F’)V'-je(?’)JaPr' . (3D

To solve this, we calculate the fields under the relations (8), (9). The operator B (31)
oneparop «nabla» or inverted delta V' operates on primed coordinates. One may also
consider the coupled IDE for the equations (10), (11). It is more convenient to get the
solutions of equations (14), (15). The corresponding to them coupled IDE we write in the

form:
jG (k7 — )6 (7 ){]m( )+ (g(;')_f[v'xv'xje(w)_ e,V x A" () }d

—00

(32)
)= [ Gk = (2 ()= ] 97 376+ o ) [
(33)

The integration in (31) and (33) must carry out over all volume where the integrands differ
from zero. Usually the incident currents are located in finite region, and the matrixes &, 1

outside the finite structures take one's stand unite. Solving the coupled IDE (32) and (33),
we define the fields using the formulas (12), (13). One may write the similar coupled IDEs
so many how many different potentials have been introduced. One of the such forms has
been got in [18,19]. Particularly, for the equations (5) and (6) we have

()= 6tk N7 s v 6 )9

((”’) ( ) ) ( )+ja)80(V'x§(F’) ~(”’) \vA )* (ﬂ)}aﬂr,’
()= .[ {jm( [ V' '( ')A ”’) v'v'.;jm(;r)]Jr

kB~ 1A )+ jouy (v x i(F) - WV ) (7).

Note that the volume IEs are traditionally introduced using the GF of free space G(k,,7)

(34)

(35)

for presentation of vector-potentials ;1(”" by the medium polarization current densities
f;(?)=jw80(~(”) f 4(”) 3 (F)= Jawo( - 1) ).
Al jG o7 = F)+ T Fr (36)

that corresponds to formal extraction of mentioned densities in Maxwell equations and they
addition to incident current densities. The potentials (36) satisfy the equations (7) under the

unit permittivity and permeability and with the right parts as —j(e”") —jl(f””). The

differentiation of (36) according to formulas (16), (17) with unit material parameters leads
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to volume IEs for the fields. These IEs contain the hypersingular singularities, and the
corresponding operators also are named pseudo-differential [35,36]. There are several
various equivalent forms of IEs and IDEs for the field, which may be obtained both using
the representation (36), or by other ways. They, in particular, may contain the terms with
the surface integrals.

The usability of IDEs for potentials is concluded in absence of surface integral

terms and hypersingularities. They contain also one kind of integrable singularity |77 -7 '|_l ,

and in this time there is the necessity of its differentiation in order to get the fields. The
solutions of equations (31), (32)—(33), (34) — (35) and similar to them we will base on the
potential decompositions over full systems of vector-basis functions. As the example let
consider the problem (34), (35) and the decomposition

. N
A(e,m)(l—;) ~ z a’(le,m)ﬁ’(l&m) (]j.’) . (37)
n=1

By virtue of used relations the vector-functions ﬁ(e"”)(?) must be, at least, twice

continuously differentiable functions. We will consider their second derivatives as
Lipschitz-continuous. It is important to propose so continuously differentiability and
boundness of tensor permittivity and permeability and the existence of their inverse values.
The case of discontinuous permittivity and permeability must be separately considered
matching thee solutions on the boundaries of breaks. In general consideration the breaks
lead to the delta-functions extractions and their derivatives, i.e. to appearance of surface

integrals. Note that the singularity |17 -7 ’|_1 in the first surface integral more strong as the

similar in the volume one. If one considers the for the functions of class C”, i.e. the
indefinitely differentiable ones, that on account of compactness of integral operator [37] u
and boundness (or continuity) of differential operator we have that the integrodifferential
operators are compact (or with the Fredholm property), i.e. the customary solvability
conditions fulfill. The relations (34) and (35) at that are infinitely differentiable. Note that
appropriate media have the smooth boundary bedding interface, i.e. have not the steps and
the steps of derivatives. On can prove the differentiability of relations (34), (35) directly by
transfer of operators V-, V and V x on primed coordinates (or source point) using the
corresponding integral theorems about the divergence, gradient and rotor, and also the
property VG(F —7')=-V'G(F —=7') . The mentioned theorems proved for continuously

differentiable functions are spreadable on GF G(F -7 ’) by the way of observations point

0 — neighborhood separation and then proceeding to limit &6 — 0.

It was proposed in getting of (31), (35) that the souses are located inside the region
where the permittivity and permeability differ from unity and have the same extent of
smoothness that the potentials. We can hold their as Lipschitz-continuous functions, and if
they are located at infinity — to introduce into the equations corresponding free (or the
outside the integral) terms respective to plane waves. The solutions of IDEs when the
second derivatives of potentials are Lipschitz-continuous are twice differentiable and they

define the fields by differentiation. Actually, let introduce the vector-functions u = (ﬁ ‘u” ):

2 2 . 2
||u|| =u® +Hu’"‘ norm, where

-]
14

—»mz
=1
V

The problem (34), (35) in this Hilbert space presents itself the coupled integrodifferential
Fredholm second kind equations with the kernel G . This problem is solvable in terms of

—e

i = [[l7+2G)E) vV 42 GV E )V x )+ BEY < F) o

i+ 2GR+ vV +BENY -7 F)+ V< 26)+ 2F WV <
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average convergence. Let show the differentiability of solutions. They constitute the
expressions like
F)=[GF —7")a(7")d*r
)

where Ez(? ) is the Lipschitz-continuous vector. Directly one see the continuity and
boundedness of derivatives like rotor and divergence from the vectors A" and also from
these vectors multiplied Ha on continuously differentiable material matrixes. Let consider
the VV - A(F) and break up the volum to & — neighborhood of point 7 and remaining
region in which all derivatives are continuous and bounded. We write for 6 —
neighborhood the GF as G(k,,7)=G(0,7)+[G(k,,7)-G(0,7)] , where the function
AG(k,,7)=[G(k,,7)—G(0,7)] is regular. The derivatives from respective integrals exist
and are bounded. The module of integral with the function AG(k,,7) may be done less than
any established & by choice of 6. Then we have the evaluation

vV A(F)- [@(F)-VIVGk,, 7 7 )d*r

V-o

v[a(F)- VG, 7 —7)d’r| <
5

<&+ +

NEGYESIN)

v[la()-aF)|veG(o,7 7 )d*r

S 47r|r |

<e+0vVC( )+— =& +8|VC(F).

V|a ]{c sm a’t9
0

We have used the condition |c7 (7') —a(r) < C(r)r —r| in the receiving it, and the the

integrals have been calculated in spherical coordinate system with the center in the point 7
and with the z-axis directed along the vector a . Correspondingly the integrals in the
expressions (3), (4) must be understood from the viewpoint of principal values. As

V2A(F)=—ad(F)+ k2A(F), that the solution is also differentiable with usage of operator

roterot .

When the permittivity and/or permeability are the step changed then the more
convenient the IDEs (32), (33) as they do not contain the derivatives, therefore there are not
any surface integrals. But for the fields such integrals may appear. Let S is closed surface

bounded the volume ¥, and there are the steps on it: £ =1, & =1, ‘=1, u #1.
Let also the sources only are inside the volume and are described by smooth functions.
Then the electric field may be presentable as E = Em +E°+E™, where

joe,E(F §VG ko, 7 =7 W (") (i -g” (?')[v' V' x A°(F')~ jwe,V' x j’”(?')}dz '~
— ()G (ky, 7 =FIV'- (i -g7 (F’)[V’ xV'x A(F') - jae,V' x A" (F’)}dzr +

N
+ [ Gl 7 7"z + 97 i 5 (f')[v' xV'x A(F)~ jooe, V' x A" (f’)}d%

4

WOEm(y):ia(;f)x{c(ko,;_;')(i_ﬁ—'(;')[v'xv 27 (7)+ ]a),uOije(F’)}dzr’—

—

. IG(kO,F—F’)V’x(f—ﬁ1(7’)[V’xv’ < A7)+ ,wﬂovxje(;')}dv,
14
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P)=olh 7 - ) (7 )

JW&,
In order that the delta—functlons do not arise in the volume integrals and do not produce the
surface integral terms the potentials must have the derivatives of forth order. Getting the
approximate solutions of IDEs by the method of volumetric finite elements (FE) in
form(37), it is necessary subject these elements to such conditions of smoothness.

2. Potentials in bianisotropic media

The potentials in homogeneous biisotropic media were considered in the paper [9],
and for bianisotropic ones — in [17]. In general case of inhomogeneous bianisotropic media
the following material conditions take place [38]

D=g,ZE+c'EH , B = p,jiH + ¢ . (38)
Introducing the vector-potentials by usual way by the electric and magnetic inductions
(these potentials coincide with (3) and (4))
2 2
ko +VV - A" D=-vxi"+ kypie +VV -
Jwg, J O,
taking into account the relation (38), one may expresses the field, for example

|— ZW . ~ — A~ 2 e . —
E= ce;' (ﬂ_lé - 5'15) 1{{17‘1 kOg'u—er Y X}A’” _ {6805—1 ko,ug—+VV Y x}}Ae _
jo jo

B=VxA°+ A°, (39)

In a similar expressing the magnetic field and substituting the fields into Maxwell
equations, we get the equations for potentials. They have not presented there from behind
of cumbersome form. The relations (39) present the inductions as the sums of solenoidal
and potential field. However one may offer the fields themselves by one of the ways (3)—
(4), (8)—9), (12)~(13) in form of such sums. Each of presentation leads to their wave
equations for potentials, that is connected with its ambiguity. As there are the four material
tensors, it is more suitable to use the presentations (12), (13) independent from them. Then
we obtain the equations

(vZ +k025)~e —}—(g—i)grad.dlee +ja)c_lévxze _
j s _iWxid k2 +grad ediv =, >
:_jifl+ja)80(g—1)VXAm_c’1§ o tgraae WA’"
Ho

(V2 +k§ﬁ):”’ +(,z7—f)grad o divA" —ja)c_lﬁxj'” =

- 2 TN
=y~ o (F- 1 e g o T &ade Al G

Other important problem at the boundary problem solution besides the potentials
choose is the usage of minimal number of independent components (scalar functions) and
its foundation. The maximal number such components is six as the number of field
components. But not always they are independent. It is sufficient for electric ot magnetic
dipole in free space one scalar function. In case of simultaneously electrical and magnetic
excitations there are two ones [1-9,11-25]. If there are the inhomogeneous and anisotropic
dielectric media it is necessary four scalar components or potentials (as for only magnetic
media). If there are the boundary bedding interface and the screens (or region boundaries)
then the potentials in subregions are used. The fields at the boundaries must be matched by
conjugation relations or boundary conditions. The planar parallel surfaces and boundaries
are more considerable in literature. For these, if the filling is homogeneous, also it is
sufficient of two scalar components. It already is not implemented for inhomogeneous

&y
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media. The particular case with two potentials in inhomogeneous dielectric is given in [13].
If the partial region is the generalized parallelepiped in orthogonal curvilinear coordinates,
then it is necessary to use the six such components [39]. particularly, two GFs of
rectangular waveguide connected the electric and magnetic vector-potentials with the
currents are the diagonal tensors, Its components describe the reactions of potentials on the
currents of corresponding dipoles (electric and magnetic), which are oriented along each of
the axis [39]. This also corresponds to inhomogeneous and anisotropic media. In general

case it need to introduce two scalar potential components @7 and @7 for each boundary

or aggregate boundaries in each partial subregion, which are determined by the equation
X, = const in generalized coordinates.

3. Numerical results

Let consider the open isotropic cylindrical dielectric (1 = I ) resonator (CDR) with
z|>h/2 and

scalar permittivity having the distribution & (77 ) =1,1f p>p,,

5)= e, (p)e.(2) - {1 ik cosm[z’fp H{l + 5, cos” (%ﬂ <o,

Z<h/2, (40)
Lo

where the p,@,z are the cylindrical coordinates. Here p, is the radius of resonator, 4 is
its height, m,n are the integer numbers. In order that the function (40) should be twice
continuously differentiable it is necessary to take m,n >3, i.e. to consider the body with
smooth boundary. We will analyze the characteristic oscillation. Then it is follow from

(32), (33) that 4"(7)=0,
A°(F)= [ GlkyF =7\ 2 P V' A9 (F ) @1)

The potential of azimuthally symmetric oscillations is the function of p and z. In general
case we have the three potential components 4 ,» 4,, A.. However, if 4,=0 then the

magnetic field has unique component H (p,z), and the equation (41) for two independent

components 4,, A, obtains the form of coupled scalar IDEs:

Py hl2 n azA (p, Z’) aZA (p’,Z’)
A — k . ro_r 1_ 1 ro_r z > _ 1Y !d !d rd!
P(p7Z) ‘([_Z[zg( 07p72|p’z)( & (p 52)1: ap,az, aZ,z 10 p ¢ Z
(42)
Po h/2
A(p,z)= J. J.g(ko;p,z | p',z')(l—g_l(p',z’)).
0 -h/2
(43)
0 \od,(p.2) (& o’
. 1 r Y P _ i A "o d /d /d r.
|:( +10 6/)') 82' [ap!—'_p 6p!2] z(p’z)j| p ¢ Z

Here the kernel has the following presentations [28,40]:

2z
glky; p.21 p',2)= [ Glky, 7 = 7)cos(p— ¢ )do' =
0

s

=2[G(k,,7 ~F')cos(p— Mo’ =

0

= _Tj T exp(— jr(z- Z’)){HI(Z)(KP)J‘ (Kp')}w

—00
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2 2| S ){Hl(Z)(ZP)Jl (}(,0’)} xdy

_ I ; _
_Tlexp(ﬂ O (o () \/kz—i2 )
0
Im(x

\/ -1

Here x =k, — )< 0, the upper values of functions in figure brackets are taken at
p>p', and the lower ones —at p < p’. If we have one potential component 4, (p,z) then
there are the oscillations with one electric field component £,. The potential in this case

satisty the equation

[« (BRI P ) TR P
- glky; ozl p 2’ 1= (0,2 —!(p'—,jﬂo’—'}A P,z )dp'dz",
U/Z ’ {ﬁp op oz |
(44)
which still may be presentable in two forms:
Po hi/2
4,(p.2)=k; [ [alky .21 0,2 NE(0',2)-1)4, (0,2 )p'dpdz" (45)
0-h/2
A(p(p,z): kOZJ. IE(p',z')g(O;p,z | p’,z’)Aw(p’,z’)p’dp’dz' : (46)
0 —o0

The equation (45) coincides with the IE for £, which is describing the H,, ;- modes of
CDR [40], because E, = —jaou,A, . The equation (46) is considering in infinite region with

the solution behavior in far zone as 4,(p,z)~ 4,,(p,2)= 4, exp(— jko\/ p°+ 1z )/ \/ P4z
The values 4, and k, are complex and Im(k,)>0 that means the potential increase with

the growth of distance from DR. The constant 4, may be defined using the known

potential distribution inside the DR. Since there are not the material parameter derivatives
in considered IDEs we may use also the discontinuous distributions. The spectral parameter

A =1/k; comes into the IE (46) nonlinearly.

Let consider the iteration methods of equations (42)—(45) solution writing they in
operator form 4 = LA(k0 )A . Here Lis the linear integrodifferential or integral operator, and
A defines the totality of components, for example 4 = (A . AZ) for (42), (43). Here we use
the vector-function components decompositions (37) by one-dimensional (1-D) FEs un(x):
u, (x) =u, (x - nAx), n=0,+x1,+2,..., determined on three nodes where

_ [1—(x/Ax)2]’, x
”o(x)_{o

These FEs are set on the nodes of uniform 1-D grid with the step Az. When /=0 we have
the piecewise constant FEs. When / =1 the FEs are continuous and differentiable inside the

< Ax, 47)

region of definition: w, =u’ (x)=-2Ax?(x—nAx). The derivative has the jumps at the
boundary from zero up to 2/Ax at the left and from —2/Ax to zero from the right. The

second derivative in the region of bearer is constant and equal —2/Ax’, and outside the
region it is equal to zero, i.e. is the piecewise constant. If / =2 then the first derivative is
continuous, and if / =3 then the second one is continuous. These FEs are biorthogonal. But
if />2 then the first derivative in the nodes is equal to zero that describes its
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decomposition not very satisfactorily. It is more useful to extend the bearer in (47), for
example up to five nodes.

We will consider the even and odd regarding to z oscillations dividing the regions
obmactu (0, p,) and (0,4/2) correspondingly on M+1 and on N+1 nodes by the intervals

Ap=p,/M,Az=h/ (2N ) and presenting the potentials as

ZZA,M o), (2) (48)

m=0 n=0
here o denotes the p, z or ¢. We get the matrix equations by usage the projection

approach with the same weight functions and with the weight p for coordinate p. Let

consider the minimal discrepancy method (MMH) [41] which write in operator form. The
discrepancies of spectral parameter k, and equation at the iteration k are:

<A“Li0%”>4“»
<A(k),A(k)> ’

The Dirac brackets here mean the scalar product and the approaches kéo) and A" are set.

AW =1- AW = AW — [ (k0)a®) (49)

We will get the approach & +1 using the approach k£ by the formulas:
K = e — 2 WAE 48 = 4B ®©ALD) = 0,1,2,... (50)
(with the posterior normalization). Here r(k), 77(") are the complex iteration parameters.

These parameters are defined on each iteration step from the minimum of discrepancies
(49):

AW, E (k) — 2 0ak0) A<k>>r

<A(k),A(k)>
(k )_77( ( (k+1) XA ]‘2 (52)
We have from (51) the equations <A(k),£’(k§ - )Akék))A(k)> =0 and

AK{) = min , [1- , (51)

AA"Y = min A0

<A(k),i(ko(k) —r(k)Akék))A(k)> = <A("),A(")>, in which the parameter 7*) comes nonlinearly.

In order to get the global minimum it is necessary the second condition. We have from (52)

the value
) _ (&~ 2 ), (&~ £kl
T <(E - i(k(()k+1)))AA(k), (E‘ _ l’:(k(gk+1)))AA(k)> >

where E is the unite operator. If the discrepancies are small one can get after the
linearization of (51) the expression

<A(k),£(kék))A(k)> -1
A, )

The stroke means the operator derivative on the parameter. The resulted operator does not
contain the singularities. The expression (54) may be defined more precisely by usage of

high order decompositions on discrepancy Akék). If the parameters 77, 7 are constant at

(33)

(54)

each iteration step, that the algorithm of direct iteration is realized corresponding at
n=r7=1 to serial approach method (SAM). On account of not self-conjugate operator the

eigenvalues of wave number £k, are complex, therefore the resonator excitation problem is
unambiguously solvable. The more laborious process is the search of complex roots of
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characteristic equation for k, .The IE (46) is also formulated difference potential

A, = A4, 4,, in the finite regions covered the DR by introduction of discrepancies
AA®) = ) _ <Af(k),ZAr(k)>/<Ar(k)’Ar(k)> , ALK — 40) gr0) T g1 k)

Here the operator L doe not depend on spectral parameter 4 =1/k;, and the iterations
have the form

A 2 40 _ p0p 40 L) [;gk)_ < AW T Ar(k>> Ha®, Af<k>>J/ AL

This approach demands to define the constant A(gk) at any step that is not inconveniently.

The problem (49)-(52) is also may be reformulated for eigen values of parameter 4. One
may “freeze” the operator dependence from this parameter in MDM (i.e. using the
linearized process), and take it into account in the discrepancy calculation. Other algorithm
may be founded on IE (45) kernel decomposition on parameter k, accurate within three
terms: A~k L,A— jkiLA—kL, 4. Here b L, =L(0), L, = L"(0), and the operator L, is
zero. For the iteration k£ we have

<A(k),£0A(k)> i \/<A(k),i0A(k)>2 _ 4<A(k),A(k)><A(k),£2A(k)>

2<A(k),A(k)>

If & >>1 then the equation (55) defines the real eigenfrequencies. In order to fine the
radiation quality factor it si necessary to take into account the next terms of decomposition

[40]. We can use also the iteration on A with the parameter 7" = (/1(" )5, )/ AA®) defined

by discrepancy minimization. The processes like (50) may alternate (as it is recorded), or
fulfill each several times up to good convergence at established k.

W =5 =

(55)

Eigenfrequencies f (GHz) and quality factor Q at different sizes of CDR and mode H ;

DR configuration, SAM, MDM, MDM, Results of
mm m=0,n=0 m=1,n=0 m=1,n=1 [40], f

7 o | 7 1ol 7 Jo ™"

h=17.0,p,=5.0 | 4545879 | 45.46 | 6.530581 | 27.85 | 6.007415 | 36.09 | 4.645

h=84,p,=7.5 |3.186053 | 44.27 | 4.550707 | 28.01 | 4.225319 | 34.62 | 3.251

h=170,p,=7.5 |3.333408 | 42.47 | 4.737466 | 27.65 | 4.431561 | 32.94 | 3.383

h=4.0,p,=5.0 | 5.210738 | 40.44 | 7.373461 | 27.02 | 6.939240 | 31.23 | 5.289

The resonance frequencies of H ,; oscillations are presented in the table. They have

been obtained using the IE (45) by SAM and MDM applications. Also here are the results
from [40]. We have used the 36 basis functions like (47) (six nodes for each coordinate) in
the region z >0 with parameter / =1. It is equivalent in accuracy to ten piecewise constant
fragmentations. The matrix elements have been calculated numerically with the extraction
of singularities. The function (40) at x, =37 , x,=0 with the number m=0
(homogeneous dielectric) and m =1 (inhomogeneously dependent on p dielectric), and
also at x, =k, =6.1644, m =n =1 (inhomogeneous dielectric with respect to p and z) has
been used as permittivity. The potential initial approximation was set from the physical
reasons as the sine and cosine product. It must comment that the results for resonant
frequencies have been obtained with small (about 0.5%) lack, as they some increase with
the increasing of basis functions number. Thus, the calculation in the first column of fourth
line in the table at the number 16 x16 of piecewise constant fragmentations leads to the
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value f =5.216752 GHz. The adjustment by the Eitken process gives f =5.231598 GHz.

On the other hand, the results [40] have been obtained, apparently, with excess, i.e. the
eigen problem for static matrix have been solved, and then the asymptotic perturbation
method has been applied. The iterations for such linear eigenvalue problem give the vary
closed to [40] results. The convergent was achieved over several (5-7) iterations. The GF
calculation was implemented over the angles by the mean-value method with usage of 60
points in the region (0, 7).

~

+
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0.0 4.0 8.0 12.0 16.0
N

Fig. 1. The convergence of results for CDR eigenfrequencies f (GHz) from the number N of
basis functions at the piecewise constant (1,2) and quadratic polynomial (3) approximations and

=38, 1, =5mm: h=T7mm(1); A =4mm(2,3)

The fig.1-5 present the results of eigenproblem solutions for CDR which are based
on field IE. These results coincide with the similar one obtained by IEs vector-potentials.
Also the cubic DR with homogeneous and inhomogeneous dielectric has been investigated
using the proposed equations and methods. The methods are very effective and precise
numerically as compared with the finite difference, traditional finite element approaches.
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100.0

€
Fig. 2. The resonant frequency /' (GHz) and the quality factor Q dependences for
homogeneous CDR 7, =5, =7 mm versus the permittivity: 1 —mode H;, 2 — mode
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Fig. 3. The resonant frequency f(GHz) Q dependence on CDR shape for homogeneous
(1,2) dielectric with &£ = 50 and for inhomogeneous along z-axis dielectric (3,4) for 2 =5 mm:
1 -mode H,,;;2,3,4 —mode H,,
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Fig. 4. The dependences Re(E (ﬂ) (solid curves) and Im(E w) (dashed curves) versus the

coordinate p (cm) for CDR ¢ =100, , =h =5mm: | —mode H; at z=0.09; 2 —mode
Hy, at z=2.41; 3—mode H, at z=0.09
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Fig. 5. The dependences Re(E (p) (solid curves) and Im(E (p) (dashed curves) versus z

(mm) for CDR ¢ =100, r, =h=5mm: 1,2 —mode H; at p=3.4 and p =1.66 mm;
2-mode H,, at p =4.46 mm
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Conclusions

Several possible approaches of vector electric and magnetic paired potentials
introductions have been considered and obtained for anisotropic and bianisotropic media.
The new general differential and integrodifferential equations have been formulated for
them. The method is based on the secondary source concept [28], which means the
equivalence of Maxwell equations with medium polarization currents as initial sources in
vacuum to corresponding equations in medium. Conformably the all introduces fields
satisfy Maxwell equations in medium. All fields and potentials as the solutions of IDEs also
satisfy the boundary conditions [42,43]. For open exterior problem they satisfy radiation
conditions. For closed or interior problems (for example, waveguides, cavity resonator with
medium) it is necessary instead of scalar GF to use the tensor GFs which determine the
potentials by way of sources. In this time thee fields are expressed trough four others tensor
GFs [44]. The mentioned potential GRs for hollow rectangular waveguide and resonator ate
the diagonal tensors [34] and characterize the excitation of hollow structures by dipoles
oriented correspondingly along thex, ory, or z axis. The GFs for fields in this case are

non-diagonal by now. The formulation volume-surface IDEs for impedance surfaces
presents no difficulties. The impedance conditions applying for relations like (3) and (4)
give additional equation for surface current density. It must be notice that the surface
current is the low frequency idealizations. More definitely one must describe the metallic
bodies as collision plasma, and in that sense the volume formulations have the general
character. The efficiency of potential boundary problem formulations in comparison with
field formulations has been shown. Namely, the IDEs have the weekly-singular kernels,
and the potentials themselves are continuous on the media bedding interface (in contrast to
fields). Furthermore, one usually seeks not the fields, but some characteristics expressed
from them (the resonance frequencies, reflection and transmission coefficients, radiation
patterns etc.), which can be defined by the potentials omitting the fields. The FEs and
iteration algorithms have been proposed for IDEs and IEs solutions. The modes H,; are

investigated numerically for homogeneous and nonhomogeneous CDRs. The potential
homogeneous CDR problem here coincides with the field formulation. The radiation
character here in homogeneous case is the magneto-quadrupole [40], and for the
inhomogeneous filling there is the electrical dipole term yet. It must be notice that one can
use the GFs of filled by medium structure. Such approach is not constructive as it not leads
to the closed form of GF definition.
Let once more stress that the potential introduction in electrodynamic of continuous media
is ambiguously determined. In particular, there are the works [45], [46] where such
introduction is based on the relations like (1) with the additional conditions (the superfluous
potentials method). The present approach in our case of arbitrary bianisotropic media has
the greater generality.
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Abstract — The general nonstationary balance equations for energy and momentum densities of
field-matter system based on rigorous nonstationary approach for their definitions with dependence
from the field creation prehistory have been obtained. Also the transport velocities of these densities
have been derived. The concrete examination and detailed consideration have been performed for
simplest dispersion law which is defined by the conductivity connected with the dissipation. There
are following parameters which have been found for plane monochromatic wave under this law: the
energy density, the phase velocity, the group velocity, and the transport velocities of energy and
momentum. It has been shown that the energy density has the static form in which the dielectric
permittivity must be replaced by its real part, and the energy transport velocity coincides with the
phase velocity. The group velocity in this case may exceed the light velocity in the vacuum. It has
been also shown that correct form of momentum density is the Minkowski one, and the momentum
transport velocity in this case also coincides with phase velocity. The energy and momentum
conservation have been shown for plane electromagnetic wave in the conducting medium and for
plane wave diffraction on the conducting plate.

1. Introduction

Up to present day there is paradoxical state in the electrodynamics of continuum,
when more than hundred years the energy-momentum tensor (EMT) has not got the
distinctness in correct definition [1-13]. There are two principal definitions: the Minkowski
[1] and the Abraham [2] correspondingly. Also there are many publications as pro
Minkowski and con Abraham, for example, [13], so on the contrary for the Abraham and
against the Minkowski (see, for example, publications [3—6], the latest surveys [11,12], the
paper [13] and the literature there). Besides there are the papers which confirm that two
stated are equivalent (for example, [3,12]), but, nevertheless the Abraham tensor is more
preferable or correct. But the Minkowski tensor also may be used and it often is more
convenient and more corresponding to continuum (media) [3]. The Minkowski tensor is
considered as more faithful in some other publications. There are series of publications
which contain the experimental confirmations or refutations of both definitions [12]. In

particular, there are the publications on measurements of Abraham force fA — the value,
which is the makeweight to time derivative of Abraham momentum density:8,g". As the

result of this one can get the derivative 9,g" of Minkowski momentum density [3].

Notice, that all mentioned experiments have been created for quasi-stationary or
nonstationary (pulse) processes, and the volumetric Abraham force is not equivalent to the
sum of Lorentz forces which are acting on polarization currents [5]. Further (in order to
avoid misunderstanding) we will understand that the electromagnetic pulse, or tandem, or
wave train is the nonstationary wave, and the field impulse or momentum G is the volume
integral of linear momentum field-matter density g.

The mention ambiguity has caused the series of attempts to define and introduce the
EMT otherwise, for example, using the microscopic electrodynamics [7,8], or by solving
the matter equation of motion, or by using the Lagrange approach with Noether theorem
[13]. It is believed that the EMT may be unambiguously defined only for the field-matter
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system, and separately the indicated values are not ambiguously determined. Meanwhile,
the ambiguity in momentum field density determination leads to uncertainty of momentum
transfer velocity of field ¥'*) and matter ¥"), and so to uncertainty for full momentum

1

transfer velocity of system field-matter v,. Also it leads to ambiguity of electromagnetic

pressure force on matter.

In present paper we introduce new nonstationary balance equations for energy and
momentum and the nonstationary definitions of their densities which depend on field
creation process prehistory. On this basis we give the expressions for energy and
momentum transfer velocities of system field-matter, and also the separately expressions
for field and matter. To simplify the consideration the general results are concretized by the
consideration of one-dimensional problems: a) for electromagnetic plane-wave in the
medium with the dispersion caused by conductivity; 6) for electromagnetic plane-wave
diffraction on parallel-sided plate. The mentioned relations for monochromatic process
allows one to construct the EMT and to defined the energy and momentum transfer
velocities of field-matter which for stated dispersion law are coincided with the phase
velocity.

2. The balance equation for energy and momentum

Always when any paradox arises, it is necessary to seek where the substitution of
conceptions took place or some conceptions have been unlawfully applied to considered
phenomena [14]. In case of EMT and energy-momentum densities in media it is concluded
in incompetent nonstationary concepts substitution by stationary ones. In particular, the
field energy density in  continuum is defined in such a  way:

u(?,t)=[l3(?,t)l77(?,t)+ E(?,t)ljl(?,t)]ﬂ , 1e. as in the statics, that is not true [14-16].
Similarly the Abraham momentum density is defined as g* = S/c?, and the Minkowski
one as g" = D(F,t)x B(F,t)=n’S(F,t)/c* =n’g" , where S(F,t)=E(F,t)x H(F,t) is the
Pointing vector, and n = \/; is the refractive index (or retardation ratio). Correspondingly
in overwhelming number of dedicated to EMT works it has been supposed that the material
conditions have the form [)(17,1): gog(F)E(F,t) , E(F,t): yoy(?)ﬁ(?,t) , 1.e. as in the
supposition of time (frequency) dispersion absence. That is also takes place only in static
case. The presented notation corresponds to inhomogeneous media. The parameters & and
4 simply are the constants in majority numbers of works. We will consider the material

conditions in Landau-Lifshitz form [17]:

D(F.t)= 0,0 (6.7 —EF.0)) . B(F.t)= w0, 0: (a7 - )HF ). (1)
although there are others forms (for example, the Casimir one) [18]. Here we had introduce
the following integral operators:

FO)=F)= [N, 6 (ol )= 0) = [ ol W @

where the scalar or vector functions may be under the integral, and d°#' =dV' is the
volume element for source point. The lower limit in the first integral may be putted to
infinity —oo, and then the function must satisfy f (t)—> 0 under ¢t - —oo. We consider the
homogeneous in time processes for simplicity, thereby the kernels in (1) depend on time
difference £ —1', i.e. the causality principle is implemented: &(7,7",t —¢')= a(F,7',t—1')=0
under ¢ > ¢ . In the second integral the causality principle is again implemented because the
volume is chosen from the condition |77—;7’|/ c<t—t". This principle means that the
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contribution to the electric displacement and to magnetic induction are carried by the fields
in the points which are located at the distance less than the light way c(t—t'). It is

corresponds to taking into account the spatial dispersion (here always ¢ >¢"). Usually the
spatial dispersion occupies lot smaller region, than above specified. The kernels in (1) in
general case are the tensor and nonhomogeneous coordinate functions that corresponds to
anisotropic inhomogeneous media. Let write the Maxwell equations in general form

VxH(7,t)=0,D(F,t)+J*(F,t), —VxE(#t)=0B(Ft)+J"(7.z) . 3)
Here as usual V =0. means the vector-differential operator. The meaning of Maxwell

equations (3) is sufficiently easy: it is the full balance of currents, at that in the left their
parts there are the full current densities (the electrical in the first equation and the magnetic
in the second one), and in the right their parts stand the sums of corresponding initial and
displacement current densities. The equations (3) are most general, as the all medium
influence (in particularly, the conductivity current) have been taken into account in material

conditions. The taking into account of electrical conductivity in form J¢(7,¢)= o*(F)E(F,¢)
(i.e. as for direct current) is possible using the following kernel representation

8.7t 1) =0t -7 7))+ (0° (F) &, )0, |+ &4 (7ot = 1),
where &°(F,7',t —1') is the kernel of electrical receptivity operator, 8,8, = I is the unit or

identical operator. In simple case of only frequency dispersion such taking into account of
conductivity corresponds to pole in the spectral function of dielectric permittivity at zero
frequency [17]. In general case it is necessary to use the Drude’s formula for frequency
dependence of conductivity, which corresponds to integral operator kernel £ as for plasma.
There is the incident magnetic current in the second equation (3). Although the unit
magnetic charge (Dirac monopole) is not discovered yet, the introduction of J" (77,1) is
highly useful for symmetry since the incident magnetic currents may be equivalent to
definite configurations of incident electrical currents. We will consider that the filed is
absent before the time momentsz < 0. Correspondingly the energy and momentum densities
of field and matter (accurate within the self-energy) before ¢ <0 are equal to zero. The
incident sources arise at the time #, = 0 and execute the work for the creation of field and

change the energy and momentum of field and matter. Usually it is considered that the
source energy is of nonelectromagnetic character that is convenient mathematically, though
physically this energy often nevertheless is of electromagnetic character, but it operates
outside the filed consideration volume. The part of produced energy is dissipating into the
heat q(F,t). The pointed part is not electromagnetic and is not in the balance. In general
case the warming-up of matter leads to nonequilibrium process, at that the heated up matter
radiates in all spectrum, the process is not stationary and equilibrium and demands to solve
the kinetic equation. Further we will consider this process as quasistationary and occurs
under the constant temperature, i.e. we will consider the intensities of fields sufficiently
small and the matter thermal capacity sufficiently great (infinitely large).

The momentum balance equation is conventionally received by each equations from
(1) scalar multiplying on another field vector and by its summation using the identity

a (V xb )— b (V X d ) =-V. (Zz xb ) Here the point means the scalar product, and the symbol

“x” means the crossproduct. Frequently we will omit the mentioned point (if there are not
misunderstandings). As the result we have

V- S(.0)+|E(F.00,D(F )+ H(7.0)0,B(F.0)| = —[EF.0TF.0)+ HFEOT"F)]) . @)
The right-hand part of (4) is the power density which is spending by sources on field
creation. This equation has the form

V- 8(F.0)+0,w(F.¢)=—|E(.0)J¢(7.t)+ A(7,)J" (7.¢)], which is typical for balance [19].
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The first term is the flow out power density of field, and the value &,w(F,z) is the

accumulate power density of field and matter. In order to calculate the spend work the
pointed value must be integrated:

w(F 1) =0, [E(F.0)0,D(F. 1)+ A(F.0)0,B(F.r")). 5)
Exactly this value, but not the term [E(F,t)[)(?,t)+ H (F,t)l?(?,t)]& (as usually accepted)
must be associated with W(F,t) [16]. The energy (5) which spent on field and matter

depends on all process prehistory, that is naturally for electrodynamics of continuum,
whereas for vacuum electrodynamics it is not required [20]. Solving the equation (3) jointly
with (1) one can determine all fields in the time interval (0,). It allows one to calculate the

energy dissipation density q(? ,t) (the emitted heat of unite volume). Note that the
dissipation is connected not only with conductivity, but with delayed polarization (i.e. with
the delay of electrical displacement and magnetic induction responses on field influences).
Finally for field-matter energy density we have e(7,t)=w(7,t)—q(7,t) . The energy
transport velocity according to N. Umov concept [21] is the value v, (7,¢) = S(F,)/ e(F,¢). Tt

is determined in each point for each time.
It is convenient to present the Maxwell equations (3) now in the form

Vx H(7,t)=g,0,E(7,t)+J(F,t)+ Jo(F,t)
~Vx E(F,t)= u,0, HF 1)+ J"(7,t)+ T2 (F.1),

and then the balance equations may be written as

V- S(78)+ 0w (7o) = | E G\ 7o)+ T 7o)+ HENT"F )+ TGO ©)

W o) = 0, (o EF )0, E ')+ o H (o )0,H (7 1')) = |60 B> (7o) + o H> (7)) 2. (7)
Since S is the field-matter power flow density, and the equation (6) is the same as for field
excitation in vacuum by the sources as the sum of incident and polarization currents, that
the sense of expression (7) is as field self-energy density. The quantity wg,) in (6) is
defined accurate within a constant. As the full field energy at # =0 is zero, the mentioned
constant is zero only. The Pointing vector S is only defined within a arbitrary solenoidal
vector §0 , 1.e. the vector which satisfy equation V-S’O(F,t)zo [19]. The flow of such

vector over any closed surface is zero therefore its influence on common energy flow is
absent. However it is easy to show that there is not any energy circulation over the closed
paths (loops). As long as the field at r =0 was absent, the cited equation must be solved

under the condition S,(7,0)=0, wherefrom one has S,(#,)=0. In order to find the field

self-energy transfer velocity, i.e. the energy connected only with photons (quasi-photons)
[3], it is necessary to find the energy flow density of matter. If the problem of motion for
matter particles in field is solved, then the average its velocity \7(?,1‘) in physical

infinitesimal volume may be determined. Then, if we choose any volume AV bounded by
surface AS surrounding the point 7, we can defined in nonrelativistic limit the flow
density in such a way:

o = . 1 =t =2z o= =z '
V. S(M)(r,t)= hmAV_mW §p(r ,t)vz(r ,t)v(r ).v(r ,t)dzr .
AS
Here the limit must be realized in terms of conversion to infinitesimal volume. This implies
§(M)(17,t) = [(1/2)p(?,t)§2(17,t)]\7(17,t), where ¥(7,¢) is the velocity of matter and p(7,¢) is its
density. Correspondingly we have S(7,7)= §(M)(17,t)+ §(EM)(F,t). In relativistic case there

are well-known relation between the energy and momentum [22,23] which must use. But
this way is not very constructive as it demands to solve self-congruent dynamic and
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excitation equations. On the microscopic level it is necessary to solve the excitation by
incident sources and by polarization currents and also the equations for electrical and
magnetic polarization vectors. Apparently, using only the balance equations, it is
impossible to disjoint the energy or momentum balances on constituent parts for field and
matter. For examination of this, let transform the equation (6) to the forms

V- S Fo)+ 8 waan) (7o) =~ E )T (70)+ HF, )T (7.0), (8)

VS (F.t) =V - S(7,t)+ E(F )T (7,t)+ H(F )T (7 1), 9)

The equation (8) is the same as in the vacuum. The question is thus: could the vector §(EM)
be unambiguously defined from equation (9)? According to Helmholtz theorem the vector

field §( w) 18 representable as sum of its potential and solenoidal parts:

Sun(Fot) = S(7,1) = S ) (7 1) = VO(7, 1)+ V x C(F, ). (10)
From here one has the Poisson equation for the value (10) determination:
V2O(7,t)+ E(7,¢) o (Ft)+ H(7 e (Ft)=0 . (11)

Notice, that this value of power flow density is defined accurate within the curl (rotor) of
vector C(7,¢). Also this rotor is the solenoidal vector and does not create the flow thus its
flow over any closed surface is zero, however in general case é(?,t) # (0. Moreover, it may

be that C(#,0)# 0, i.e. the flows in the matter may circulate at the time moment of field

creation. Consequently, the vector (10) is ambiguously determined. In order to solve the
equation (11) it is necessary to assume that the matter is located in some bounded volume V

(that is the natural demand for stationary case). In this case if the E(¥,¢) and H(F,¢) are
known, the solution may be obtained, for example, by Green’s function method
F(F,F’): (47r|77 - 17'|)_l for Poisson equation. Then the field self-energy is transferring with
the velocity 5")(7,2) = Sz (F.t)/ Wigyy)(F. 1) Evidently, this approach couldn’t be spread
on infinite medium. Furthermore, the velocity v**)(7,7), as distinct from the velocity
\76(17,t) , has not certain physical meaning. Let consider, for example, the plan
monochromatic wave in the infinite medium. The amplitudes E; of electrical and H, of
magnetic fields here are connected by the relation H, = Z,p,E,, where Z, =/ 1,/ &, , and
P, 1s the real normalized impedance. In general loss case the fields in such wave are
shifted on phase angle¢. The conditions <E(F,t)jf,(77,t)> ~ 0 and <I:I (Fe)Jr (F,t)> ~ 0 may

be fulfilled for monochromatic wave. Here the Dirac brackets mean the averaging over the
period, i.e. the field on average does not exchange the energy with the matter. These
equations are fulfilled religiously in the dispersionless medium, i.e. for ideal material

conditions D =505E , B= ,uo,uljl . Then one may neglect the value (10) on average and
calculate the terms <§ > and <w( EM)> . Let the plane wave propagates along z-axis with unite
vector Z,. Then we would obtain the expression

o3, 2ccoslp) (12)
Po+1/p,
for the transfer velocity of pure electromagnetic energy. In the case of considered material

y(EM)

conditions we have:p=0, p,=u/e, Jo =¢,(e =1)0,E, J = p,(1—1)0,H . In the case
when p, =1, ie. at ¢=u, the equation (12) gives the velocity of light, whereas

v,=c/n=c/¢. If one considers the balance relation (8), then it is clear that the second
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term in the right part of (9) is normally adding to w,) and the full energy density
W =1u = nW,, 1s obtained, whereas §(EM) =S, §(M) =0.

Now let consider the momentum balance. We multiply vectorially the first equation
in (3) at the left on the value B(F,¢) and the second one on the value D(7,¢) and subtract
one from another:

|B(7.0)x Vv x B(F 1)+ D(F.t)x V x E(7,1)|+ 0,(D(F 1) B(F.1))=
= JeG.0)x B(.0)+ DF.0)x J"(7.1)| == - (7.1).
The Lorentz force with inverse sign operating on incident currents stays in the right part of

(13). Le. this is the force spending by incident sources for full filed and matter momentum.
The second term at the left in (13) is the time derivative of field-matter momentum density.

Accordingly the same such density accurate within constant vector g, (17) is

(13)

g"(F,t)= D(7,t)x B(¥,t), i.e. it must be taken in Minkowski form. The first term in (13)
we rewrite in form

V- 3(7,0)= 0,87, 0) = [BG.0)x V x H (7 1)+ D(F,1)x V x E(7,1)). (14)
Here v =x,y,z. The value ﬁl(?,t) is the second rank tensor in the tridimensional space.

Therefore its divergence (or the furl over one index) is the vector staying in the right part of
(14). The indicated tensor is also defined accurate within arbitrary tensor which satisfies

equationV -2, (7,)= 0. Because the field was absent at the time = ¢, = 0, it is necessary to
impose the initial conditions so g,'(7)=0, £,(7,0)=0. The values g"(¥,¢) and 2(7,¢)
under this conditions are unambiguously determined by way of solutions of excitation
problem in any time, i.e. through the fields E(F,t) and H (F,t). At that in order to
determine the g (F,t) one must calculate the integrals (1), and for the determination of

ﬁ(?,t) it is necessary to solve the differential equation (14) yet. For this solution one can
use the Helmholtz theorem and solve the Poisson equation. Thus, the momentum balance
equation is:

050 (F.t)+ 0,88 =—fh=-0,0"fF, V=x,y,2. (15)
Here the first term is the full momentum component v’ flow. It is follows from this
equation that the transfer velocity of filed-matter momentum v’ - component is [19]

v, =0,20(F.1)/ g, (16)
and g/ is the full created momentum. If we consider the full infinite space and the volume
confined by the sphere surface with the radius » = ¢t there, then the full momentum of
field, matter and source is conserved: G, =0,'g, = 0.’ (gi” +0;" ff)= 0, as the flow over
the sphere is zero. Let consider the transmitted to matter momentum. It is obvious that such
transmission is carrying out by polarization currents:.J¢ = 8,(13 —g,E ): oF + N,0,p° and
J b= 8t(l§ - ,u01—7 )= N;0,p". As stated above yet, the conductivity current oF =eVN is
taken into account. Here the N is the number of charges in unit volume. Correspondingly
N, and N, are the numbers of electric and magnetic dipoles with dipole moments p° and

p" . The specific momentum transferred to the matter is
Gu=0,"8w)»  Bun)(Fot)=Jo(F.t)x B(F,t)+ D(F,t)x J} (7.1). (17)
It remains to find the matter flow density. For this we rewrite the equations (3) as
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Vx H(F,t)=£,0,E(F,t)+ Jo(F,t)+ J(F.t) , =~V xEF,t)= p,0,H(F,t)+ Ty (7,0)+ T"(F,t)
(18)

and present the momentum balance for this Maxwell equations form. Multiplying the first
equation in (18) at the left on the value i, H(,¢), the second one on the value &,E(F,¢) and
subtracting one from another we have:

VS (Fot)+0,8" (7 t)=—f1(7.1) . (19)
Here the Lorentz force

fon\#.t)=T5(F.0)x B(F,t)+ D(7,t)x I} (7.t)

acted on the matter is transferred into the left part of (19) and is presented by any flow
density f)( gv)- Lhis density satisfies the differential equation:

VS (7o) = |t HL (7, 0) % V x F (7, 8)+ £, E (7, 1)x V 5 B(7 )|+ ity (78) =
= wo VA (7)1 2= (B (F0)- VA 0|+ 2, [VE (7.)12 = (EF.0)- V)EG )|+ it (7o),
(20)
Let consider the means of balance (19). The Abraham density gA(F ,t) is the self
electromagnetic filed momentum density. It is creating by primary or initial sources and by
secondary sources (or polarization currents) which define the density fl(EM )(17 ,t). When the
sources are absent (fL =0), then the equation (19) is typical conservation law. So, the

tensor value i(EM)(F,t) determines the self field momentum density flow. It is presented
accurate within some divergentless or solenoidal tensor ig%}l)(?,t) and under the initial
condition ﬁEOE%M)(?,O): 0 . The matter momentum flow is determined by the

tensor i(M)(? 1) =3(F,1)- fl( EM)(?,t) . Now we can obtain the transfer velocity filed and
matter self momentum correspondingly:

Vi(ifn) = avi(EM):r(?’t)/g:{(?’t) > Vi(y) = avi(M):'(F’t)/g(M)v’(;’t) : (21)
In order to transform the equation (20) we have wused the vector identity
V(El-l;)z(5-V)5+(5-V)5+5XV><5+5><V><5 , which at @a=»b takes the form
Va* =2(a@-V)i+2axVxad . Also in order to transform the introduced tensors, for
example, the tensor i(? , t), one may use the vector-tensor identity

ix(Vxb)+bx(Vxa)=v-|i(ab)-a®b-b®ad|+alv-5)+b(v-a).
For the equal vectors it takes the form
2% (Vxd)=V-|ia’ -2a ®a|+2a(V-a).

The tensor X(7,¢) for vacuum is equal to Maxwell stress tensor &', which is taken with

inverse sign. It also may be transformed taking into consideration with regarding that
according to (3)

VD)= =07 (V- G.0) =0, (0,0 (1)) = o (7.1),

V-B(70) =0, (V- (7.0))= 80,07 (F.t")= 7 (F.0).
Since the incident sources satisfy the continuity equation (charge conservation law):
V- JF,t)+0,p°(F,t)=0, V-J"(F,t)+3,p"(F,t)=0. As the incident magnetic charges do
not exist, i.e. p” (?,t)= 0, that the density of incident magnetic current is solenoidal and
presentable as the rotor of some electrical current density.
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Thus, if the momentum density is defined according to Minkowski, it in
nondispersive medium is the density of the field-matter substance, and its transfer velocity
is the phase velocity. Its generalization for the dispersive media leads to transfer velocity
(16) which is the full momentum transfer velocity of field-matter. In this case it is
necessary for the determination of all values to solve the nonstationary excitation problem,
and all considered above magnitudes are depending on the process prehistory, i.e. they may
be complicated dependent on time. It must be note that the obtained local (differential)
balance relations may be rewritten as integral relations for any volume V' . Then the

integrals form u and g" over the mentioned volume present correspondingly the full

energy U and the full momentum G of this volume. These values are conserved from the
viewpoint of global conservation law. There may be two cases. 1) The sources of field are
located in the volume. Then the full energy and momentum balances present itself the
inhomogeneous balance relations with values in its right parts, which corresponding to
production of energy and momentum in the volume. The negative energy production means
the dissipation. 2) There were no any sources in the volume before the considered timez. In
this case the sources are located outside the volume, and one can take as the time 7, the

instant of time when the field comes to the volume. In this case the energy and momentum
are conserved from such viewpoint, that the value 8t(U + Q) in each time is equal to the

power flowing out the volume, and the change of full momentum is equal to flowing
momentum. For the stationary (monochromatic) in time field or wave for some dispersion
laws one may obtain concrete kinds of mentioned values. In this case, using the limit
transfer from quasistationary process to stationary one, the averaged over the period
densities “forget its initial senses”, i.e. do not depend on them. All received values for
EMT, energy and momentum densities coincide with the Abraham forms. As it is easy to
see, all received values are defined unambiguously. So, the solution of differential

equations V-3,(7,¢)= 0 with zero initial conditions gives zero of tensor, components.

3. Plane monochromatic wave in the conduction magnetodieleectric medium

For more concrete and simple analysis we will consider the monochromatic plane
wave falls down on the magnetodielectric layer with thicknessd . Let the layer is located at
the region 0 <z <d and has the constant real spectral permittivity &' and permeability z,
at that time &', # > 1. This means the absence of frequency dispersion, that is justly in any

frequency region0 < w << @, , where o_, is any minimal frequency from the set of self

min ? min

resonant mater frequencies, the frequency of normal skin-effect violation (if such takes
place), and also the plasma frequency @, of uncombined carriers of charge. As we consider
such, we suppose the conducting medium, i.e. having the complex spectral permittivity
with the pole at zero frequency [17]:

slw)=¢'- je"=¢' - jol(ew) , (22)
and constant permeability u = const . For example, for the water we have such frequency

o, .. ~ o, =1/t which lays at 100 GHz, @, is the collision frequency, and 7 determines

the relaxation time in the Debye’s formula. For the metals the frequency @ . may lay in
the diapason from infra-red to ultra-violet [24,25]. Further we will consider the plane quasi-
monochromatic wave (long wave train or wave packet), which is approached from the left
at time ¢, =0 to the layer boundary and is excited at infinity at the time ¢ = —oo. Such plane
wave may be excited in both sides formally mathematically by the current sheet with the

density J¢_(x,y,z,¢)= %, (t + 7)I(t)5(z + 1), which is located at z =~/ and is started to act

mc
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at the time ¢/ =—7 [26]. Here y is the Heaviside step function, and for monochromatic
wave it is convenient to take / (f)=sin(er). Later we will consider the wave train

diffraction on the plate (layer). But at first let consider the plane quasi-monochromatic
wave. For it we introduce the current density in such a way:

JE (%, p,2,8) =X, y(t + ) 8(z + 1)1 — exp(— &t )]sin(t) , (23)
and consider the field at great time ¢ >> 7 +//c. As the special case we also will consider
the excitation by the current density (23) in the infinite homogeneous conducting
magnetodielectric medium. The introduced current densities create the plane wave with the

components £, =E and H = H (further we often will omit the indexes x and y). The
indicated wave satisfy the Maxwell equations in the form

0.H =—¢£,60,E — oF , 0.FE =—p,uo H . (24)
For vacuum we impose ¢'=u=1, 0 =0.

As is well known, two velocities, which defined the transfer of inherent wave
physical substances or characteristic, may be introduced for plane monochromatic wave
with complex dependence exp(j(wt — f(@)z) - a(w)z) moving along z-axis in dispersive
medium. These are the energy transport velocity v, and the momentum transport velocity
v, [27-29] (owing to one-dimensionality we omit the vector designations). Besides, for the
dispersion law ,B(a)) one may else introduce two velocities which determine the movement
of mathematical (kinematic) wave characteristics. These are the phase velocity
v, (w)=w/ (@) and the group velocity Vg ()= (08(w)/0w) ™. The first one characterizes
the phase movement, and the second one defines the velocity of phase perturbation or
interference pattern (beating) for two infinitely frequency closed waves with equal
amplitudes (as it was introduces by Stokes). At the same time the positive derivative

corresponds to positive dispersion or forward wave (in z-direction), and negative one — to
negative dispersion or backward (inverse) wave. The coefficient n'(w)=c/ v, ()

determines the wave retardation (deceleration) and the refraction on the boundary interface,
and the coefficient n"(a)) corresponds with loss. The normal dispersion corresponds to
relation on'(@)/0w >0 and 6vp(ca)/ 0w <0, whereas the anomalous one occurs when

on'(w)/ 0w <0 and 8vp(a))/ 0w >0 [30]. Two last velocities are not in keeping with

movement of any physical substances and are only opportune mathematical conception
attached to wave descriptions [14-16,31-41], although frequently v, (a)) is frequently

identified with v, (a)), that is incorrectly for dissipative media [14-16,33—-35,39—40]. As all
real media are dissipative in some way, the relation vg(ca):ve(a)) is fulfilled only for

several ideal models, for example, in the ideal collisionless plasma. The dispersion in
ideally conducting waveguides, including the periodic waveguides or slow-wave systems,
presents the quite another matter: for harmonic wave there are not the frequency spectral
wave train, and the dispersion law arises owing to spectral series of partial waves, which
are moving on-the-mitre @ to the waveguide axis with the phase velocity equal to velocity
of light. The mentioned wave series in general case depends on two angles, one of which
defines the energy transfer velocity along the axis, and another may has the continuous
spectrum of meanings [16]. Under this we have the geometric relationsv, =c/ cos(@),

v, =ccos(@) , and v,v, =c’ . This case is trivial; it corresponds to electromagnetic

structures, but not to media, and here is not considered. In a number of works, for example,
in [41] it is asserted that always fulfillsv, =v, <c¢, though this is not true [14-16,39,40].
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But ibidem for waves with negative energy may fulfill v, — oo [41]. Strictly speaking, one

can introduce infinite number of values having the dimension of a quantity as velocity in
the problem of electromagnetic wave train propagation. For example, we can consider

following values: v, :(a)”_lfi” ,B(a))/éa)" )_1. For mathematical description the appropriate
complex velocities often have been used. In this case the value f is replaced by complex
propagation constant }/(co): ﬂ(a))— Jj a(a)) [15,37] and correspondingly the complex
refractive index n(w)=n'(w)— jn"(®) is introduced [17]. The complex phase velocity of
signal may has the mathematical sense, as against to complex v,, which may be introduces

only for complex signal. The group velocity 4-vector proposed in the paper [42], which has
the meaning only for self-adjoint Hamiltonian when the Lagrangian is the quadratic
function of generalized coordinates and impulses. In literature there is well-known the
Leontovich-Lighthill theorem for conservative (nondissipative) systems [27-29, 31, 43—
45], according to which under the indicated Hamiltonian the relation v, =v, takes place. In

our case (and in general for dissipative media) the frameworks of this theorem are newer
implemented.
Traditionally the velocity v, is introduced by way of phase constant ,B(a))

decomposition in Taylor's series about any frequency (for example, carrying one) in the
spectral integral with the abandonment of zeroth-order and wu first-order terms (the first
approach of dispersion theory) [36-38]. Sometimes the inverse decomposition co(,b’) is
used [35]. The taking into account of high-order terms just leads to arising of mentioned
velocities. The second derivative 0°f3/0w” in that case is as a first approximation which
characterizes the velocity of wave train smearing as whole [33—37]. In dissipative media the
analogous complex velocities may be considered when they are also the functions of
attenuation constanta(a)). These decompositions are asymptotic [38,46], i.e. not obligatory
convergent. From the beginning we will consider not wave train propagation, but the
simple one-dimensional plane monochromatic wave case. In such wave there is no
frequency wave group, and so no reason to introduce the group velocity (although formally
for dispersion ,B(a)) it may be defined, that we do).

Often it is necessary to consider the conducting media at sufficiently low
frequencies, when the non-connected with conductivity dispersion may be neglected. For
example, these are the semi-conductors and metals at radio and microwave frequencies, the
see water in radio-frequency band, ionospheric plasma (such as Heaviside layer) under the
ultra low frequencies. The mentioned law, when the dispersion is determined only by

frequency nondependent conductivity o (i.e. by direct current conductivity), has the form
[35]

Blo)= (a)/c)\/g',u/2[l 1+ 0 ele @’ )J =aon'(w)/c , (25)

a(w)= (a)/c)\/g',u/2l— 1+ \/1 +o’ /(g(fg’za)z)J = on'"(w)/c . (26)
Already the direct application of formula (22) demonstrates that the group velocity may

exceed the value ¢/n, where the ' = \/&'u is the retardation coefficient or refractive index

in the medium without conductivity. Moreover, it may exceed the velocity of light in
vacuum c. Let us assume that # =1. Signifying @ = o/ (505), one has

diﬂ(a)):ﬂ(a)) . (@/ ) _0.8535..  ilc
w

= (27)
2[1+\/1+((T)/a))2 )\/1+(&3/a))2 v, (@)  1.0663..

D=0
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The mentioned excess comes at 7 <1.0663..., that may be, for example, in weakly ionized
air under the conditions @, >>®, and @, >> @ . The consideration of permittivity

dispersion in a number of cases allows one to make this excess still more essential [16]. We
refer to two works [39,40] which among the first register the fact that group velocity may
exceed the velocity of light in the region with anomalous dispersion (see also [17]), and at
the same time show that the signal at that time propagates with velocity v<c .
Consequently, in conducting medium the value v, certainly not characterizes the energy

transportation velocity. On the contrary, the phase velocity in such medium with anomalous
positive dispersion always letter than velocity of light: v, (a)) =c/ n'(a)) <c.

The main goal of this paper is the proof the relations v, =v, and v,=v,  for
considerable case. Let observe that in the paper [16] the relation v, =v, has been proved

for the media with anomalous positive dispersion which permittivity is described by
Debye’s formula (i.e. for the polar dielectrics with hard dipoles). This has been proved
using two independent methods. We will regard that the process of wave propagation is
quasi-equilibrium, i.e. existent without a heating and under a constant temperature.

4. Electromagnetic energy density in monochromatic wave

Let the plane linearly polarized monochromatic wave with the electric filed
component E_ propagates in conducting medium. The indicated wave creates the

conductivity current density J _ =oF_ , which leads to wave energy dissipation. This

dissipation has the exponential distribution along z-axis in form exp(—2a(w)z) and creates

inhomogeneous along z heating of infinite space. Such heating, for one's turn, generates the
thermal radiation in both directions + z with all spectral components. Hence, the process
primordially is nonequilibrium. It may be considered approximately as equilibrium and
single-frequency, if the amplitude of wave is small (or infinitely small), or if the thermal
capacity of medium is infinitely large.

The undamped harmonic wave in infinite dissipative media may propagate only due
to the distributed incident source energy which compensates the loss on dissipative heat O
[17]. We propose that such sources are outside the zone of wave consideration (usually at
the infinity). The energy of plane wave is infinite even for lossless case that characterizes
this wave as convenient mathematical abstraction (the solution of homogeneous Maxwell
equations). Formally mathematically the plane wave is excited in both directions by the
electrical current sheet with the density (23), which operates infinitely long in time. If the
finite sources are at the infinity then the plane wave is the limit case of spherical wave.

The permittivity (22) is obtained by exponential filed dependencies substitution
direct to Maxwell equations with taking into account of conductivity current. One may get
another derivation of this value. Namely, it is necessary to count the average over a period
polarization of unite volume and use the relation

D, (a),t, z) = D(a),t, z) = gog(a))E(a),t,z) = goE(aJ,t,z)+ Px(co,t,z) . (28)
Here E(w,t,z)=E (0,0,0)exp(jot — jy(®)z) is denoted. Let symbolize E, = E, (,0,0) .
The relation (28) must be averaged over the oscillation period. In our case it is
<Px(a),t,z)>:(1<1 +K2(a)))<E(a),t,z)>. It may be written for the introduced receptivities

Kk, =& —1 andx,(w)=—jo /(g,0). Indeed, the unite volume polarization in this medium is

creating by proper matter polarization and by the movement of free charges, which are
scattering on matter atoms, molecules, and one on another. The first polarization happens
instantly without any delay owing to our assumption that the characteristic matter
frequencies are extremely high. The charge motion is described by the equation
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%(t)= o(Ne) " E (@,t,z) and occurs in such a way that their potential energy is equal to
zero, and the average kinetic energy has the form (U, )=mo’E; /(4Ne2)exp(— a(w)z),

where o = Ne? /(mew,), N is the number of charged particles of unite volume. This result

also may be gotten from the plasma dielectric receptivity
2

[0}
K, (0)= ———2— (29)
g olo- jo,)

in the supposition that ® <<, and @ <<®, , i.e. that the plasmic frequency and the
collision frequency are highly large, and at the same time o = 500); /@, 1s the conductivity

on zero frequency. In other words, the conductive medium may be viewed as the plasma at
very low frequencies. The averaged electrical part of energy density and the permittivity for
gas of oscillators with the self-resonant frequency @, have been obtained in the work [15]

and have the forms
(U,(t.2))= £k {H }exp( 2o(w)z) . (30)
4 (a, 2

a)p(a) -, +ja)a)c)

(a) +a)§)

2
a)o) +o. o

glw)=1-

(a)2 - )2 +0 @ D
It must put @ << @, (or @=0) for nonconductive medium without the dissipation, that
gives

élw)=1+, /o; =1+Kx =& = const . (32)

<UE() > (1/4)50E2(1+ ! a)o)exd 2a( )) (1/4)50<0E§ eX}{—Za(a))z). (33)

Here the index 1 denotes the plasmic frequency connected with the matter dipole
concentration. In such medium the energy at the frequencies lower than @_, propagates

with phase velocity. For conducting medium with plasma it is necessary to add the terms
from the formulas (30), (31), in which @, =0 (free charges). In this case we have

®,, >> @, therefore

2
<U -, z)> = g"f‘) (1 + a);1 | &} + a);2 | & )exp(— 20z) , (34)

do)=1+0, /& — j&7, w.0)=1+K +x, . (35)

5. Velocity of energy movement

For any wave process the transfer velocity of some substance is determined
according to [21] by its density and by vector of flow density in unit time. In our case for

the energy it is the Pointing vector S(z,¢)=Z,5(z,¢), and at that:
V.(z,0)=Zv,(z,t) = S(z,0)/ u(z,t) = Z,E(z,t)H (z,1)/ u(z,1). (36)
This leads from the energy conservation law (4) under the general suppositions. The real

physical fields are used in (36) and further. For harmonic fields in homogeneous medium
averaging the (36) over the time with consideration of (30) and also taking the magnetic

part of energy, we get
V2 1S
v, (@)= <v,(@).

_C@l+g+5

(37)
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Here 5 =+/1+¢”, ¢ =o/(g,6'w). If the conditions @ << @, and & >> &,'w, are fulfilled,
then one can neglect of second term in denominator of (37) and get
V2
v o)xc——F——=v, (o).
)= T )

Under the indicated approximations we also may neglect of unit under the square root, and

then
c |2¢@ 20
o)y lo) - RS 20 () )

The group velocity may exceed the velocity of light in vacuum for the dispersion (39) and
for 4=1 at small decelerations. Namely, from the demand v, > ¢ we have the condition

(38)

o <8we,. Using the conditions of formula (39), we have we¢,¢ << o <8we, . For the
media with ¢~ I it may regard such when the conductivity o is closed to 8wsg, from
below. But for the frequencies of order O'/(880) one couldn’t fully neglect the bias current

as compared with conductivity current, and so should consider the rigorous relation (25).
There is another wave to obtain the result (38). This is limit transfer from quasi-

stationary process to stationary one [16]. Let the plane surface current source has been

arisen at z=0and the time =0 (23). The field was absent for timesz < 0. The source

creates the plane wave in the region |z| > 0. Then we can write its work (energy) density w

spend on the field creation (5) in our case for the clearness as:
t

w(z.t)= [{E(z.0)8,D(z.t')+ H(z.0),B(z.1 ldt' =

0

_&kE (z t)-;,uOH (Z t +j~ O z)Ez(z £')+ pok (O,F)Hz(z,t')+ (40)

" J'[gOE(z,t')ﬁtz%e (¢ =" 2)Ee" )+ o H (2.0 Y07 (¢ — ", 2 ) (20" e '
0

Here the kernels of permittivity and permeability integral operators £° u K" have been
symbolized. Further on account of homogeneity the dependence on z is omitted, and the
fields are exponential-dependent on z. Note, that low limit in (40) may be taken as — . For

the considered dispersion law we have £”(¢)=(x—1)5(¢), and the operator of permittivity
has the presentation

:—J w)exp(jot)do=(s'-1)5(t)+ ¥(t)o/ &, ,

where ;((t) is the Heaviside step function. In order to find the energy density there is need
to subtract the dissipative energy density or heat ¢ from (40) [15-17]. Detecting these
values at big times ¢t >>1/6 and ¢ >>1/w, one can get mentioned parameters for quasi-
monochromatic process. Averaging over the oscillation period 27/ and taking the limit
t —> o, we can find the energy of such process. Substituting all incoming value expressions
into integrals like (40) over the respective spectral integrals, extracting the proper delta-
functions and integrating with them over the time, and then calculating the spectral integral

by the method of residuals, we get the formula (30). Note, that the result <U E> = 505"E ‘2 /4

for the conducting medium (@, =0) at the low frequencies just follows from Pointing

theorem in complex form [34,35]. This result also is obtained from the explicit field
representations by the equations (24) [35]:
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E, =E = E,cos(awt — fiz)exp(-az), H, =H=H, cos(wt — fz — p)exp(—az) . (41)
Here ¢ = arctan(a/ ) is the phase angle (shift), which is given by the formula (6.32) from
the work [35], and the ratio of amplitudes in (18) gives the real impedance

Z=E,/H,=wupu/\Ja’ +B . At the same time Z=ZO\/,u/\/g’2+c72 /(a)zg(f) ,
Z, =41,/ &, (formula (6.31) from [35]). This implies
<S> ) Elcoslp)/z 2 B

Ve = = 2 2,52 , , >
<U> & Ey + popky 1 Z LM g, + €, \/1 +¢

P 0]

2
o 808'/10#(1 + 5) E "

6. Momentum transfer velocity

Let examine the question about the electromagnetic momentum transfer velocity. In

vacuum the momentum density is unambiguously determined by the Abraham vector

g'(t,z)=2,5(t,z)/c* . In the electromagnetic of continuity there are traditionally two

forms: the Abraham g” and the Minkowski g" (t,z)z EOEZS(I,Z)/C2 = ﬁng(t,z) ones, at

that up to now the question for benefit of choice one from them has not solved yet [3—
13,41]. This fact even is reflected in the physical encyclopedia. Both definitions lead to
identical conservation laws for Minkowski and Abraham energy-momentum tensors (EMT)
in dispersionless media [3]. It is considered that the chose of form for momentum density
impossible without the solution of equations of substance motion in the filed and before the
definition of substance EMT. However, without the momentum density and its flow
definitions and also even one from them it is impossible to define the momentum transfer
velocity also. Such ambiguities are generally typical for electromagnetics of continuum.
Thus, the introduction of electromagnetic potentials in media is also ambiguous or
polysemantic [47] that is connected not only with calibration transformations. In our case of

plane wave g"(z,z) and g”(t,z) have the forms

g'(t,z)=2,g"(t,2)= Zc%—EZ‘)cos(wt — B(w)z)cos(ot — f@)z — @)exp(-2a(w)z) , (42)

- ~2

g¥(t,2)=2,¢"(t,z)= %cos(a)t — B(@)z)cos(ot — Blo)z — p)exp(-2a(w)z) . (43)
c
Now we introduce one more definition, which more closer to Minkowski one: § =z,g¥,

where g =S/v’ =n"*(w)g”. At c=0 we have g" =g", =0, B=w\eu/c, and in

this case the momentum on average is not transmitted to matter (with the exception of
reflections from the boundaries), because the Lorentz force and the electric polarization

current density J¢=g,(¢'~1)0E/ot are phase-shifted on 7/2 , and the momentum
propagates with phase velocity v, =v, =c/n [29]. It also is related to the Lorentz force
gog’Ex J » for magnetic polarization current density J =M, (,u —1)6]31 /ot.

In dissipative media due to photon absorption the momentum is transferred to

matter, its flow is directed along z, therefore the balance equation for momentum density
vector may be written as [19,29]

-0,[g(t.2)+ g, (t.2)]=0.]v,(1.2)g (e, 2)] = v, (1. 2)0.8(t.2). (44)
where the transmitted to matter momentum g_(z,z) has been designated. By virtue of
medium homogeneity the velocity v, here is not dependent on z. For any of three forms one

has the functional dependence g(z,z)= G(wt — fz)exp(~2az). The velocity of momentum
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change transferred to matter for thickness layer dz with unite square is the difference
between the flows of g through the sections z and z +dz, so

atgo(t,z): 2avl.(t,z)g(t,z) . (45)

The value (45) is equal to field pressure on the unite thickness layer. In order to get the

pressure on some finite thickness layer one must integrate the expression (45) over its

coordinates. If the layer is infinite then all momentum is transferred to the matter.

Substituting the (45) into (44), we get that the momentum transfer velocity is constant and
equal to phase velocity:

v(t,2)=-0,g(t.2)/[0.8(t.2) + 2a(@)g(1.2)] = 0/ Ble) = v, () . (46)

Here we do not concretize the momentum form. One may get this relation from the

following reasoning. The Maxwell equations are taken form (24). Hence the balance

equation is
0.le, e B> 12+ o 12) = -0,8" — p, j1oEH . (47)

As 0S/ 6t:—vp(6S / 62+2aS), that the unique form g =7S/c> which compensates the
acting on the charges Lorentz force 1,408 is obtaining under the form g". Indeed, we
demand the fulfillment of balance equation 2anSv, /c* = p,uoS . This balance is written
for matter charges, from which n:cza),uo,uoﬂ/@aa)z):cz/ v> . Therefore we do the

replacement dg™ /or =88 /6t + f in the right part of (47), where [ =c (ﬁz —n'" )6S /0t .
The average energy density in (47) has the presentation
(uy=(S)/v,=E, cos(go)/(2va): E; /(2v§ yo,u). In a similar way for the third momentum
form one has <§M > = n'2<S >/ ct =n"E;/ (2vp s y) . Therefore the transfer momentum

velocity for g¥is

= (E ) =€ )=, o). @
The additional term f appears in this case in balance equation. It is similar to Abraham
force and acts on the medium. But the appearance of indicated force (as and Abraham
force) must not lead to any objections on balance equations nonfulfillment, as <8S / 6t> =0
for any phase shift ¢ . Therefore, the mentioned force, as well as the Abraham force, does

not transmit the momentum to the matter on average. In non-conducting medium]N” =0,
~M

g" =g, and the energy and the momentum both propagate with the phase frequency
independent velocity v, =@/ =c/n . Carrying the divergent part of g™ into the left part

of equality (47), one get the another balance equation <u -5/ vp> =0 which is the identity.

The residuary before averaging term in its right part 7‘ is the force acting on the matter but

is not transferring the momentum on average over a period. Notice, that usage of traditional
Minkowski momentum density does not lead to any physical clear expression for its
velocity in conductive medium. But if we have the localized initial electric current and

o =0, then the usage g is more convenient than g and leads to the full momentum
transportation with the velocity v,=v, =v, =v,=c/n , that is trivial as there is no

dispersion. Essentially thus the EMT is traditionally introduced for media [3—5].
In big number of papers the “correct” momentum density is defined as Abraham one

g'(t,z)=S(t,z)/c*> [3-5]. As the result, the additional volume Abraham force

ft=c? (g',u - 1)8S /ot arises. Such definitions is supposed more rigorous, though the
Minkowski definition is frequently more convenient for continuum [3,5] and corresponds to
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experimental data for light pressure. The balance equation (47) may be written in such
manner

0.6, B> 12+ upH* 12)=-8,8" — £ — u,pi0S | (49)
Now the momentum density change per second acting on the matter is (Zaa)g',u/ p )S /c?.
This is the first and the second terms in the right part of (49) result of contribution. But it
does not compensate the last term as 7 # n’ . Evidently, the usage of first or second terms in
the right part of (49) separately always does not lead to any such compensation. Using the
value g” as the momentum density one does not succeed to get any rational determination
of its rate of movement which is not exceeding ¢ for the dissipative media. The exception is
the nonconductive nondispersive medium with n=n' . As
¢ (eu-1)0,8 =—v,c(eu—1)0,S , then, introducting the divergent part of f* into the
flow density, we have
P <u —vp(g',u - I)S/cz>

—ry

Consequently, in this case the filed momentum also is carrying with the phase velocity
which is smaller than velocity of light and coincides with the energy velocity in

nondispersive medium.
Let consider the momentum transferred to matter per unit time (second). For this we

write the balance as

(32[(~;"0E2 12+ pu,H? /2]= ~0,8" — S + uy(u —1)S — (&' —=1)HO,E — *(u —1)Ed,H .
(50)
This equation also has been obtained from the Maxwell equations when the medium is
taken into account as the electric J5 =&,(s'~1)0,E and magnetic Jp, = wo(u—1)0,H

=28y, —v (1)) EJUS) = cii—v (7 ~1)=v, = /7.

polarization current densities. This approach more peculiar to microscopic electrodynamics
[7,8], but for all of that the description is more complicated. It is well known, that the
Abraham force does not fully characterize the effect on the matter [5]. The three last terms

in the (50) correctly reflect such effect. Namely, f.* = u,uoS = oEB is the Lorentz force
acting on conductivity current, f- =c(¢'—~1)Ho,E = J: B is the Lorentz force acting on
electric polarization current of medium, and f}- =c(u—1)E6,H = D.J py 18 the Lorentz
force acting on the magnetic one (here B = y,uH ). For the first force we had obtain the
following averaged meaning < fgL> = u,uc(S)= o, /20 =n'cE, /(2c) . For the second
and  third ones we accordingly have < f PLL> =—(&'-1)Elc/(4n'c)  and
< f,fm> =(u—1)E2c/(4n'c). As usually n' >> 1, the first term plays the determinative role in

momentum transfer to mobile charges. They, scattering on the molecules and atoms of
matter, transmit the momentum. The energy S =v,u is the one transferring per unit time

through unit surface. The lost in unit volume power here is o, cos’(wt — fz), and its
averaged over the period value is oF; /2. On the other hand, this value may be determined
by such a way: (Ou,/0r)=v,'(0S,/0r) , that is equal to the
expression 2a<S > =ak; cos((o)/ Z =oE; /2. The lost energy corresponds to the transmitted

momentum <6g0 / 8t>. For the three momentum definitions we have correspondingly:

<8,gf> =2ai*v E, cos((o)/(czZ): on’Eyv, /(2c2),
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<8,g;> =2av E; cos((p)/(czZ) = on’Eyv, /(2(:2),
<8t§é”> =2aon"*v E; cos((p)/(czZ): oE; /(ZVP).

As the free charges satisfy the equation of motion
Nex(t) = oF, cos(wt — f(w)z)exp(- a(w)z), it may come into view that the matter has the

oscillatory x-component of momentum. But this is not so. As long as we have assumed the
matter is electrically neutral, there are the charges, which is deposing into opposite side and
they have the opposite momentum (for example, in metal this is the lattice). Such question
may arise: from what the filed has the momentum when it is exciting by dipole or by dipole
system (by the dipole plane in our case) as soon as the sources had not them? Here the
answer is trivial: each source excites two waves in opposite positive and negative directions
of z—axis with opposite momentums having the equal modules.

It must be mark that the elementary momentum filed quanta are transferred in
matter by photons between the acts of its scattering on the particles with the velocity of
light ¢. The momentum transportation with phase velocity is the collective effect of these
elementary acts with taking into account the phase delays and the interferences. Formally
the taking into consideration of matter influence may be carried out by polarization currents
introduction. For nondissipative media (i.e. for dispersionless &' and x ) the phase shift

between the filed is 7/2, and the momentum in not transferable by this currents to matter.
It is transferring only by conductivity current. The balance equation (50) (and the analogous

one for power) with the density u, :(goE2 + u,H 2)/ 2 is also not convenient for the

determination of the transfer phenomena in media.

The balance relations with incident and polarization currents introduction are highly
productive under the nonstationary excitation [16]. In this case the energy accumulated in
any volume and the momentum is dependent on filed creation process prehistory. For
example, in plasma one must consider the energy and momentum of field-matter system.
For plasma it means the taking into consideration of charge particles kinetic oscillation
energy and its momentum. Solving the motion equations for filed-matter system, we can in
principle define the EMT of field and matter in any time and the correspondingly the values
v,(7,¢) and ¥,(7,¢). In macroscopic electrodynamics of continuum the averaging over the
physical infinitesimal volume (or homogenization) leads to material conditions which are
the analogue of motion equations. For example, we write the one-dimensional
nonstationary equations (24) in homogeneous medium with taking only the time
(frequency) dispersion:

—0H/oz=0D/ot+J° —0E/0z=0B/ot+J" . (51

All values in (51) are the functions of time and one coordinate z that simplifies the analysis.

The dispersive material conditions will be taking in the Landau-Lifshitz forms
t

D(z,t)= ¢ [e(z.t—t)E(z.t)dt',  Blz.t)=p [ ulest —t)H (2, )t . (52)
0 0
Without lack of generality we will consider that the field was absent at # = 0. If the sources

are located at the plane z =0, then for the time 7 the field will be located within the
bounds |z|£ct. The conductivity corresponds to pole at zero in the spectral complex

permittivity

&(z,0)= Te(z,t)exp(— jot)dt = jg(z,t')exp(— jor')dt' .

o0

Here we have &(z,¢)=0 at £ <0. The plasma model is more convenient here. The wave in

plasma has the Landau attenuation, and this pole may be eliminated. Writing the balance
equations for the momentum, one can get such form
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0.uy(z,t) = ~[14yHO,D(z,t)+ £,E0, B(z,t)| - oy HI¢ — £, EJ" . (53)
The last two terms here create the field and matter momentum. They correspond to Lorentz
force in vacuum but not in matter. Meaning that in the square bracket must stay the value
like the 0, g(z, t), we get after the integration the following relation

g(z,t)=0."(e,E(2,)0,B(z,t' )+ p,H (2,¢')0,D(z,t')) =
= £,6(2,0)E(z,1)+ po14(2,0)H (2,0)+ 6, (&,0,&(z.¢ — £ )E(z,1') + 14,0,1(z, = )H (2,1)) = (54)
= u,H (z,t)D(z,t)+ &,E(z,t)B(z,t) - 8} (,uoat,H(Z, t')D(z,t')+ £,0, E(z, t')By (Z,t'))
From this follows that the z-component (54) at time ¢ depends not only on filed values in
given present moment, but on all their previous values. For homogeneous plasma we have
wulz,t)=06() , &lz.t)=05(t)+ (a)f, /@, Xl —exp(— a,t))exp(—w,t) . The last exponent here
determines the Landau attenuation, and in the final results one may take the limit @, — 0.

Then g(a))=1+a); /(a)2 - ja)a)c) . Setting the electrical current density as

J=1 [1 - exp(— t/ z')]sin(a)t) , the equation (51) may be solved and the density (54)
determined at grate times ¢, when the process is almost stationary. But the relation (54) does
not agree with momentum in continuum. For vacuum it is trivial: g =g” =5/c”. The value

more agreed with continuum is the Minkowski density g = g¢" = DB . The Corresponding
to it and to equations (51) momentum balance equation has the form
0.x+0,g" = -BJ;-DJ . (55)

Here 6.> =B0_.H+D0_E, g = DB, ¥ is the z-direction momentum flow density, and
the real Lorentz forces are in the right part of (55) taking into account the collective
influence of all charges motion in the continuum. Evidently, the relation (55) more
acceptably for continuum as without the dispersion i.e. at the material relations D = g ¢E ,

B=uuH we have g" =cuS/c’ Z=u=(8ogE2+,u,uH2)/2 , vW=c/\eu =V, .
Therefore we have got the generalization of Minkowski momentum density. The difficulty

for nonstationary case is in calculation of g = DB and ¥ that demands the knowledge of

all process prehistory, and the flow X must be found as the solution of differential equation
yet. For the one-dimensional case of plane wave diffraction on the plate it is sufficient to
fulfill the integration over z. The Abraham force introduction in (55) (as the makeweight to
Abraham momentum density in order actually to get the Minkowski one) only confuses the
consideration.  Let get the  corresponding to (51) power  balance

equation p =d,w=29,(u+q): d,w+0.S=—EJ - HJ . Here q(z,t) is the dissipated source
work or heat which always may be calculated. For the simplest case of conducting medium
itis g(z,t)= 00’ (E 2(z,t’)>. From here the field-matter energy density follows as:

t
t

u(z,t)= J‘(E(Z,t')ﬁl,D(Z, ')+ H(z,0)0,B(z,t"))dt' - g(z,t). (56)

0
7. Conclusions

The presentations for plane monochromatic wave energy and momentum densities
have been obtained for the dispersion determined only by conductivity. It had been shown
that in this case the transport energy and momentum velocities are identical and equal to
phase one which always is smaller than the velocity of light in vacuum, whereas the group
velocity may exceed the light velocity. The several forms of momentum densities have
been considered and it had been shown that the Minkowski form in this case is more rather
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than the Abraham one. The result for mentioned energy transportation velocity has been
received by several independent ways, in particular, by using the dispersion law for gas of
oscillators. These conclusions are generalized for media with several resonant frequencies
and also for the inner field availability. The essential here is the calculation of polarizability
with the use of particle motion equation which has the first order. In this case the matter
potential energy is not accumulated, and its characteristic oscillations (or kinetic energy)
are absent. This result may be generalized for conducting polar dielectrics such as see or
water, which contains the conductivity ions. The retardation in ideally distillated water
changes from 9 about to 1 (without the influence of infra-red and ultra-violet resonances),
and the energy velocity coincides with phase one. The retardation and loss coefficients in
water with ions for ultra low frequencies tend to infinity. In see water (o =4 C/m) at the
frequency about 900 MHz the displacement current is equal to conductivity current, and for
the essentially low frequencies the water is likewise a metal. The energy and momentum
transportation velocities knowledge is important for communication. For example, the
communication with submarines is realized at extremely low frequency, and the signal hare
is transmitted with about the phase velocity. The group velocity in see water is
approximately in two times greater. For example, the pulse with the carrier frequency 1
kHz and with the duration 2 ms (or two periods) reaches the submarine located at the depth
of 100 m during 2 ms and its envelope maximum is detected at that time (without the
detector delay time consideration), whereas the strongly diffused and degraded front of
pulse belled in several times comes during 1 ms must and is not be detected [38].

The question about EMT and corresponding densities forms in electromagnetics of
continuum which is known as Abraham-Minkowski contravention is still open and
discussion (see additionally [48—53]). There are different papers with model examples pro
and contra of appointed EMT forms which often contain the inaccuracies. We have not
opportunity to analyze it in this paper (see [12]). In overwhelming number of works the

static material conditions D = g,6E , B = u,uH are used for the analysis of this question.

The main objection against the Minkowski EMT states in fact that it is asymmetrical and
the momentum conservation law has not fulfilled for it [4]. The component 7,, for both

EMT forms is defined as in static, i.e. in form 7, =u = (&‘OEE 2 4 g uH’ )/ 2, whereas there

is the interaction between filed and matter in dynamics, i.e. one must use the expressions
like (56) [15,16]. It is not clear why the energy density in media should be depended on its

parameters, but the momentum density g* is nondependent like as in vacuum. It is clear,

that the filed-matter interaction may leads to full EMT asymmetry [13]. It had been shown
above that the momentum density depends on the process prehistory and is determined by
it. Evidently, we can speak about the concrete EMT form as algebraic relations only for
harmonic process in the media with definite dispersion laws when this process is gotten as
the limit transition from quasi-monochromatic one and when the averaged over the period

components of T came out to stationary levels. The general full filed-matter system EMT
does not construct for arbitrary (time and spatial) dispersion and the question of its
symmetry is open yet. If the field and matter tensors are symmetrical separately, it is means
that there in no field-matter interaction from the viewpoint of energy and momentum
exchanges.

As the example we now will demonstrate the Minkowski momentum conservation
law fulfillment. Let the plane quasi-monochromatic hence long wave pocket with length
size | with the rectangular envelope and carrier frequency @ (the pulse in sense of
nonstationary wave) at the moment ¢, =0 had approached to the boundary of layer with the

thickness d and the permittivity and permeability ¢, g . The quasi-stationary means that
[>> A, =2r/ky=2mc/®.Itis required in order to one may use the monochromatic values.
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The wave-length in the layer is A=4,/n, n= \/; . Let for simplicity the thickness d is
matched so that at the time ¢ all wave train came into the layer and fully filled it. As the
wave pocket velocity is v, =c/n, we get t, =d /v, =nd/c . In order to it will be, we must
impose [ =nd . We select the big length / so that it contains the integer number M of wave-
lengths: / = MA,, M >>1, and for this d/A =M . There is the reflected wave also. At the
time ¢ it is located in the same region —/<z <0 as the incident wave at the time
moment?,. The electric field reflection coefficient for normal dip plane monochromatic

wave is R=(p, —1)/(p, +1), where p, = m is the normalized to Z; impedance, and
for the transmission coefficient we have 7'=2p,/ (po + 1). The incident wave has the form
(41) under ¢ =0 and @ =0. Further we will consider the balance for unit square and
averaged momentum densities. At the time ¢, the field had the momentum

G,' =g"1=(S,)l/c’ in z-direction, and the plate momentum was zero. At first let consider

the ideal case of matched (stealth) plate: £ = 1. In this case the reflection is absent, and the
momentum is not transferred to the plate. The factor %2 arises at the amplitudes after the
integration over z or averaging over the period.
Correspondingly g" = Zn’E; /(2cz)z<u>n/ ¢, where (u)=¢yE;/2 . At the moment
t,=1/c of  full plate filling the field momentum is equal
oG =g"d =dn’*(S,)/c* =dn(u,)/c = nG," . After the wave train completely went out

from the plate, i.. in the time ¢, = 2¢, and after we again have G = G,". The Minkowski

momentum as though is not conserved as the plate is motionless. Such “nonconservation of
Minkowski momentum” raises in the work [4] as the basic argument against Minkowski
and for Abraham momentum. Let see what will be with the Abraham momentum. At 7, we

have: Gy =G, =(S)l/c* =(uy)l/c , and at t, accordingly
G'=(S,)d/c* =(uy)d/c =G /n*. We have got the paradox: neither Minkowski and

Abraham momentums are conserved, and under this for the first one the additional
momentum arises from the beginning and then disappears, and for the second one the part
of momentum disappears from the beginning and then it again appears! What is the matter?
Always when any paradox arises, one must seek where he did the exchange of conceptions
or illegal used theirs. In the work the similar reasoning had been proved for plate with
u=1,n= e , in which connection it is assumed that the plate is ideally matched by help
of antireflecting coating. Though the plate can not be ideally matched, it is possible to get
the sufficiently small reflection for monochromatic process by multilayered of
inhomogeneous antireflecting coating. Naturally this coating must be considered. But we
have the rectangular wave pockets having all frequencies, and the process is nonstationary!
No doubt that the main spectral intensity is concentrated nearby the carrier frequency, but
nevertheless, the plate will get any small momentum. For unreflecting plate the condition
& = u may be fulfilled only for artificial highly dispersive media in very narrow frequency
band, and in this loss case these parameters are also complex. It means that the real stealth
plate also will get some momentum. We will abstract one's mind from this further. Notice,
that the formula (1.13) from [4], supposedly showing the Abraham momentum
conservation, in reality shows its violation: G =e/nc. Here e is the full wave energy. It is

unified at any wave pocket position. In the vacuum we have e = <u0>l , and in the media

correspondingly e = <u>d . And as the train is squeezed in last case in # times, <u> = n<u0> ,

that one can see directly from (41). The full momentum for both cases is G =e¢/c.
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So, how to resolve the paradox? It is clear, that for our case without the Lorentz
force the local balance equation is

ou/oz =-og" /o, (57)
that directly follows from (41). If the local balance fulfills then the global (integral) balance
fulfills also, and it must be fairly calculated. We notice for this that u(z,¢) has the steps
uy(0,t)n—1) at 0<t<¢ and u,(d,t)I-n) at t,<t<t,. Correspondingly there are the
delta-function terms u,(0,)n—1)5(z) and U,(d,t)1-n)5(z—d) in (57) at the indicated

time moments. The momentum at the time # must be calculated in the following way:
t d
G =~ [ulz.0)dz + 1, (0,6)n - 1)}& —nGY —(n-1)G" =G .
0L0

The mentioned conclusion about G* “nonconservation” in [4] has been made on the mass
center velocity constancy for the system: the motionless plate — moving electromagnetic
wave train (photon). The first one has not a velocity, and the second one has not a mass
[40,41]! Meantime the “mass of photon” has been introduced in [4] from the relation

m=e/c’ and also its momentum has been designated as G = my, =e/ (cn)! Speaking about

the wave pocket or photon in the medium it is necessary take into account that the energy
density increases in n times, consequently the number of photons rises so, and the energy
transportation velocity declines. This is means that there are the both direction photons in
the plate moving with the velocity ¢ between the elementary interaction acts with the
particles, and the photon with the momentum nZ®/c is, as a matter of fact, the quasi-
photon [3]. The full interference result for macroscopic wave with big energy and many
photons is the consequence of cancellation theorem, according to which the wave in
medium goes in direct direction with phase velocity. For general case of reflection from

non-absorptive plate at ¢>¢, one has the energy balance: 1:|R|2 +|T |2 . Here
R :(,002 —1)‘[%(9)/((,002 +1)tan(¢9)—2 jpo) is the full reflection coefficient and
T = (cos(@)+ Jj sin(@)(Z S 1)/(22 ))71 1s the transmission coefficient, @ = ¥/ =271/ 4, and so
the reflected momentum is G :e|R|2/ ¢ , and transmitted one — correspondingly

GY = e|T|2 /c, i.e. the plate gets the momentum e(l+|R|2 —|T|2)/c. If we take R =0, then

T =1, and the plate is immovable. If ever o #0, then the value y is complex, and the
energy balance is such: |R|2 + |T |2 < 1. For this some part of momentum in the any layer is

transferred to it. When the |R| is extremely small and the thickness is extremely large then

the plate gets all momentum. At the limit & — o we have R - -1, T'— 0, and the plate
gets the doubled momentum. We again have applied the stationary formulas to quasi-
stationary processes instead of the solution more complicated nonstationary problem that is
justified for long wave train. For the stationary case it means to say only about the light

pressure <u>(1+|R|2 —|T |2 )/ ¢ or about the transferred to matter per the second momentum,

and at the same time the formulas already are exact. As regards to momentum G, that it is
conserved only if the additional momentum conditioned by Abraham force is added to it.
The mention force for nondispersive medium arises only at the train entrance into the plate
and at the exit from it [5]. Exactly, the necessity of adding G* with some momentum to
provide the conservation law is the main argument against. The other such argument
against the Abraham momentum in the media is based on the fact that the Abraham force is
not precisely equal to Lorentz forces acting on polarization medium current.
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For example let consider two atoms with the masses m, and m, motionless in
laboratory system at the times #<0. The system energy here is e=¢ +e,, e, =m,’,
e, =m,c” . The first atom is excited with the excitation energy %@ and is located at z =0,
and the second one — at the point (0,0,z), z>0. The excited atom is immovable (as

quantum particle) from the viewpoint that its wave function is time-independent (precisely
has the factor exp(— ielt/h), i=—j). And at the same time the probability to disclose the

atom at z =0 is maximal, and the indeterminancy principle here fulfills: AzAp_ >7/2. All

of these are regarded to the second atom. As there is no interaction, the full wave function
is the product of atomic functions and is the time-independent until the time 7, =0. In the

time moment #, =0 the first atom radiates the photon with the energy 7@ and the
momentum p =Z,p = Z,iw/c. The atom gets the momentum — p and moves to the left,

that means the dependence of its wave function on the time. This wave function gets the
wave pocket presentation as the eigen-function of momentum operator. The wave pocket

displaces to the left with the velocity satisfy the relation (v,/c)//1-(v,/c)’ = p/(m/c), and
under this m| = \/(el ~ho) /' —p*/c* =mJ1-2p/(mc) is the mass change due to

interaction. The atom excitation energy #w@ plays the role of incident inner
nonelectromagnetic energy which creates the field. Let at the time ¢, the photon at the point

z =ct, is absorbed by other atom. This atom gets the momentum p and turns into excited

state with the energy e, + iw = m}c® /A[1-(v,/c) . And so its mass n} = m,/1+ 2p/(m,c)

is changed. The atom velocity is also determined by the relation
2 I} . . . .
(v,/c)/\1=(v,/c) = p/(m}c). Until the time ¢, the system of noninteracting atoms had
the null momentum, mass m, + m, and the energy (m, +m, )c*. In the period ¢, <t <t, the
mass is m, + m, and smaller than the initial, and the photon mass is zero, but the full system
filed-matte mass does not change and is equal to m + m,, as full system momentum is zero.
The energy and momentum are conserved here, and the photon position is non-designated.
The photon is localized and the filed disappears at the time of interaction at the point z. the
all system mass again is equal m, +m, and is conserved during all time. The full
momentum is also conserved and is zero. The full energy is

e=mlc?/\[1-(v,/c)f +mic?/\[1-(v,/c)’ and conserved also. The total atomic mass is

equal to m, + m; <m, + m,. There is the mass defect due to the fact that the atoms have got

the opposite momentums. The full energy, momentum and mass values of this closed
system had not changed. If 2p/ (ml.c) <<1, i=1,2, then one may use the decomposition on

small parameter. Evidently, to a first approximation there is no mass defect. This qualitative
example based on nonstationary interaction replacement by stationary processes with two
point interactions is given here in order to show the necessity of taking into account the
incident sources in the balance, including if the field has the angular momentum. It is also
useful in connection with the example from [4]. The wave propagation in the continuum on
microscopic level is based on similar numerous interaction acts, and the transport velocity
depends on atomic life times, i.e. on scattering character: how much it is elastic. There is
the preferred flow of photons in energy propagation direction in such waves always, but the
backward photons are possible. The macroscopic level of consideration shows that the
wave creates the polarization currents which are supporting the wave from the other hand.
It is follows from the stated that the photon exchange processes are always nonstationary
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and at least quasi-stationary. Therefore the monochromatic wave is in a certain sense the
convenient abstraction which never experimentally in principle may be obtained.

In conclusion it is useful to notice that the concrete dispersion laws of real media are
highly complicated. It is necessary to use the inner molecular or crystalline structure, the
inner molecular field, several eigen-resonant frequencies, the spatial dispersion (if it exists),
and also the nonstationary approach. It means that the EMT for filed-matter is not
determined only by the field values in the present time, i.e. the process prehistory must be
taken into account. If there are no any sources in the volume, one must consider such
prehistory from the time of entering the before created field into this volume. Therefore the

momentum density should be taken in the form g" = D x B with the calculation of (1), and

the energy density must be calculated using the relations like (56) [15,16]. The full field-
matter EMT for this is asymmetrical. For dispersionless case it turns to the Minkowski
EMT. The value 0_u determined by the relation (56) does not give the momentum flow

density for plane wave. The usage only the material conditions in general case allows one
to separate the filed and matter momentums and its flows. Such separation for energy
density flow apparently has no place without of solution of motion equations. It is
connected with the fact that the polarization current power density in right part of (9),
which is containing the time derivatives, is rather corresponded to full power density, than
is the divergence of any vector. What is more the mentioned vector is ambiguously
determined. Besides the system interaction energy in general case is not separable on field
energy and matter energy. The main remaining objection contra the Minkowski EMT
consists of its dissymmetry. The demand of symmetry arises from the requirement of EMT
uniqueness and the condition that the angular momentum tensor must be determined via the
EMT using the standard formulas. In this case the connection of momentum components
with EMT components is such like in vacuum ([52], page 107). It is obvious that such EMT
is the filed tensor in vacuum or Abraham tensor. The EMT for media in our nonstationary
excitation case is determined unambiguously without any additional condition. The angular
momentum for filed-matter system must be determined separately. Here it is necessary to
take into account the following facts. 1) Had the matter any angular momentum before the
creation of field, or not. 2) Had any angular momentum been transferred to the incident
sources of not in the process of filed generation.

The obtained EMT expressions depend on material condition. If one takes other
material conditions, for example, the Casimir conditions [18], he gets other ones. Recently
the question about the EMT and corresponding densities (and velocities) arises for artificial
media (metamaterials) with spatial dispersion including the bianisotropic and left-handed
media (see for example mogoOHEIH such lame attempt in [53]). Similar media have the very
complicated rigorous models. However in several cases the dispersion laws for certain
frequency bands may be described by more simple relations or models that had been used
in this paper.

REFERENCES

1. Minkowski H. Die Grungleichungen fiir die electromagmetischen Vorgénge in bewegten
Korpern // Nachrichten von der Gesellschaft der Wissenschaften zu Géttingen. 1908. P.
53-11.

2. Abraham M. Zur Electrodynamik bewegter Korper // Rendiconti Circolo Matematico di

Palermo. 1909. V. 28. P. 1-28.

Ginzburg V.L. // Sov. Phys. Uspekhi. 1973 . V. 16. P. 434-439.

Scobeltsyn D.V. // Sov. Phys. Uspekhi. 1973 . V. 16. P. 381-401.

5. Ginzburg V.L., Ugarov V.A. // Sov. Phys. Uspekhi. 1976 . V. 19. P. 94-101.

P w

78



6. Brevik 1. Electromagnetic energy-momentum tensor within material media. II.
Discussion of various tensor forms // Mat.Phys. Medd. Dan. Vid. Selsc. 1970. V. 37. No.
13. P. 1-79.

7. de Groot S., Suttorp L. Physica. 1968. V. 38. P. 84.

8. de Groot S.R., Suttorp L.G. Foundation of electrodynamics. North-Holland Publishing
Company. Amsterdam. 1972.

9. Scobeltsyn D.V. // Sov. Phys. Uspekhi. 1977. V. 20. P. 528-545.

10.Ginzburg V.L. // Sov. Phys. Uspekhi. 1977. V. 20. P. 546.

11.Leonhardt U. Momentum in an uncertain light // Nature. 2006. V. 444. P. 823-824.

12.Robert N. Pfeifer, Timo A. Nieminen, Norman R. Heckenberg, Halina Rubinsztein-
Dunlop. // Rev. Mod. Phys. 2007. V. 79. P. 197.

13.0bukhov Yu. N. Electromagnetic energy and momentum in moving media // Annalen
der Physik. 2008. Ne 8. P.1-22.

14.Davidovich M.V. // Physics - Uspekhi. 2009. V. 52. No. 4. P. 415-418.

15.Akhiezer A.l., Akhiezer I.A. Electromagnetism and electromagnetic waves. Moscow:
Vysshaya shkola. 1985. 504 p.

16.Davidovich M.V. // Technical Physics Letters. 2006. V. 32. No.11. P. 982-986.

17.Landau L.D., Lifshitz E.M. Electrodynamics of continuous media. Pergamon Press.
Oxford, 1988.

18.Vinogradov A.P. // Physics - Uspekhi. 2002. T. 172. Ne 3. C. 363-370.

19.Feynman R.P., Leightone R.B., Sandsc M. The Feynman lectures on physics. V. 2.
Addison-Wesley Publishing. Company. Reading MA. 1964.

20.Heitler W. Tthe quantum theory of radiation. Clarendon Press. Oxford. 1954.

21.Umov N.F. Beweg-Gleich. Energie in contin. Kopern. Zeitschrif d. Math. und Phys. V.
19, Slomilch, 1874.

22.0Okun L.B. // Sov. Phys. Uspekhi. 1989. V. 32. No. 3. P. 511-530.

23.0kun L.B. // Physics - Uspekhi. 2000. V. 43. No. 12. P. 1366-1371.

24 Kotelnikov I.A. // Technical Physics. 2004. V. 49. No. 9. P. 91-96.

25.0rdal M.A., Long L.L., Bell R.J., et al. // Applied Optics. 1983. V. 22. No. 7. P. 1099—
1120.

26.Markov G.T., Chaplin A.F. Excitation of electromagnetic waves. Moscow: Radio I
Svyaz, 1983. 296 p. (In Russian).

27.Zilbergleit A.S., Kopilevich Yu.l. // Journal of Technical Physics. 1980. V. 50. Ne 2. P.
241-251.

28.Zilbergleit A.S., Kopilevich Yu.l. // Journal of Technical Physics. 1980. V. 50. Ne 2. P.
241-251.

29.Gureev A.V. // Journal of Technical Physics. 1990. V. 61. Ne 1. P. 23-28.

30.Silin R.A. Periodic waveguides. Moscow: Fazis. 2002. 438 p.

31.Mandelstam L.I. Lections on optics, theory of relativity and quantum mechanics.
Moscow: Nauka, 1972. 438 p. (In Russian).

32.Bkhatnagar P. Nonlinear waves in one-dimensional dispersive media. Moscow: Mir.
1983. 136 p. (In Russian).

33.Ginzburg V.L. Electromagnetic wave propagation in plasma. Moscow: Fizmatlit. 1960.
550 p. (In Russian).

34.Weinstein L.A. Electromagnetic waves. Moscow: Radio i Svyaz, 1988. 440 p. (In
Russian).

35.Goldstein L.D., Zernov N.V. Electromagnetic fields and waves. Moscow: Sovetskoe
Radio, 1971. 654 p. (In Russian).

36.Vinogradova M.B., Rudenko O.V., Sukhorukov A.P. Wave theory. Moscow: Nauka.
1979. 384 p. (In Russian).

37.Weinstein L.A. Pacnpoctpanenue ummynbscoB // YOH. 1976. T. 118. Bem. 2. C. 339—
367.

79



38.Weinstein L.A., Vakman D.E. Frequencies separation in theory of oscillations and
waves. Moscow: Nauka. 1983. 288 p. (In Russian).

39.Stratton J.A. Electromagnetic theory. McGraw-Hill Book Company, Inc. New York and
London, 1941.

40.Schulz-DuBois E.O. // Proceedings of the IEEE. 1969. Vol. 57. No. 10. P.1748-1757.

41.0strovsky L.A., Potapov A.l. Introduction in theory of modulated waves. Moscow:
Fizmatlit, 2003. 400 p. (In Russian).

42 Polevoy V.G., Rytov S.M. // Sov. Phys. Uspekhi. 1978. V. 21. No. 3. P. 540-565.

43 Rytov S.M. // Journal of Theoretical and Experimental Physics. 1947. V. 17(10). P. 930.
(In Russian).

44 Lighthill M.J. Group Velocity // J. Inst. Math. and its Appl. 1965. V. 1. P. 1-28.

45.Biot V.A. General theorems on the equivalence of group velocity and energy transport //
Phys. Rev. 1957. V. 105. P. 1129-1137.

46.0lver F. Introduction in asymptotic methods and the special functions. Academic Press.
1974.

47 Mayergoyz 1.D. Some remarks concerning electromagnetic potentials // IEEE Trans.
1993. V. Magn.-29, No. 2. P. 1301-1305.

48.Hinds E.A., Barnett S.M. Momentum exchange between light and single atom: Abraham
or Minkowski? // Phys Rev Lett. 2009. V. 102 (5). P. 050403.

49 Marklund M. Radiation transport in diffractive media // J. Phys. A, Math. Gen. 2005. V.
38, No.19. P. 4265-4273.

50.Garrison J.C., Chiao R.Y. Canonical and kinetic forms of the electromagnetic
momentum in ad hoc quantization scheme for a dispersive dielectric / Phys. Rev. A.
2004. V. 70, No. 5. P. 053826.

51.Leonhardt U. Energy-momentum balance in quantum dielectrics // Phys. Rev. A. 2006.
V. 73.P.032108.

52.Brevik 1. Electromagnetic energy-momentum tensor within material media. I
Minkovski tensor // Mat. Phys. Medd. Dan. Vid. Selsc. 1970. V. 37. No. 11. P. 1-52.

53.Brevik 1. Electromagnetic energy-momentum tensor within material media / Mat. Phys.
Medd. Dan. Vid. Selsc. 1970. V. 37. No. 13. P. 1-52.

54.Landau L.D., Lifshitz E.M. Field theory. Pergamon Press. Oxford. 1982.

55.Veselago V.G. // http://zhurnal.ape.relarn.ru/articles/2009/028.pdf .

80



MICROSRUCTURED OPTICAL FIBER WITH ULTRA-LOW DISPERSION
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Abstract — We report the control of dispersion in the optical fiber with photonic crystal cladding.
The specific type of fiber is considered. The structure of fiber cladding is comprised of the
hexagonal lattice of rods with finite wall thickness. The Finite-Element method and the Plane Wave
method with a supercell modification is applied to compute the dispersion. We have demonstrated
that dispersion slope and absolute value of dispersion coefficient can be controlled with a variation
of geometrical parameters of fiber cladding.

1. Introduction

The optical fiber with photonic crystal cladding provide new approaches for
achieving single transverse mode guiding in large core fibers. Such fiber often is named [1]
microstructured fibers (MF). There are many applications of MF in fiber-optic
communications, fiber lasers, nonlinear devices, high-power transmission devices, ultra-
broad supercontinuum generation and broadband dispersion compensation. MF with a solid
core, which has a higher average index than the microstructured cladding, can operate on
the same index-guiding principle as an ordinary optical fiber. Such fiber exhibit novel
dispersion properties such as ultra-flat dispersion over broad wavelength range [2]. We
considered the MF with the hexagonal lattice of rods with finite wall thickness in the fiber
cladding. Thereby we assumed the complicated triangle-form area in the transverse section
of MF that usually appears during the manufacture of such fiber. The control of dispersion
in fiber has been demonstrated by variation of geometrical parameters of fiber such as size
of an air-hole defect in the fiber core and distance between holes. The effect of varying
cladding parameters is estimated to find the trends of the decrease of dispersion slope and
control of absolute value of dispersion coefficient and then applied to the design of an ultra-
low, ultra-flattened chromatic dispersion photonic-crystal fiber.

2. Simulation description

We consider the MF that has a transverse section consisting of a hexagonal lattice of
rods with finite wall thickness (Figure 1a). The number of rings of rods is assumed to be 3.
The radius of the air-holes is 7 and the lattice pitch (the distance between air-holes) is A .

Fig. 1. a) The transverse section of fiber that has produced of rods with finite wall thickness.
b) The intensity distribution of transverse electric field for £ -mode in the core of fiber
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The numerical modeling of microstructured fiber was performed using two methods,
namely finite-element method (FEM) and the plane-wave method (PWM). The former
assumed the explicit frequency or wavelength dependence of the refractive index. The latter
was applied with the supercell modification and the material dispersion wasn’t assumed

explicitly. However we summed the waveguide (geometrical) dispersion Dw(k) obtained
by PWM and the material dispersion D, (k) obtained by Sellmeier’s equation [2] and the

dispersion coefficient D(A) is then calculated as

D(X):Dw(}\')-i_Dm (7\')’ (1)
where  waveguide and material dispersion are calculated  with
2 2
D, (A)= —&dL}f&(x) and D, (1) = _&dns—igk) respectively, n,, (1) is the effective
c 2

refractive index of the fundamental mode in MF, n (A) is the refractive index of silica, ¢

is the speed of light in vacuum.

For the computation with finite-element method the program for calculation of
eigenmodes dispersion of the transmission line with complicated transverse section [4] was
applied. The plane-wave simulation was done by MPB (MIT Photonic Bands) package [5].
Simulation was conducted by these methods to investigate the effect of varying » and A.

The intensity distribution and polarization of electromagnetic field for fundamental
mode of the fiber are shown in Figure 1b. This mode is polarized along the horizontal axis
and the results for other mode that polarized along vertical axis is omitted because there is a
similarity between them. The electromagnetic field energy is localized in the fiber core. It
can be seen from Figure 1b, where the intensity of transverse electric field is depicted with
shades of gray.

Figure 2a shows the calculated dispersion curves for wavelength range from 0.8 to
1.7 pm for different values of distance between air-holes A . The dispersion curve of

A =1.84 um (bold curve 3 in Figure 2a) demonstrate that there is the wavelength range
0.9 <A <1.1um with the small change in the dispersion coefficient D and the absolute

value of D lies in the interval 0 <D <7 ps/(nm-km) . Figure 2b demonstrates that

dispersion coefficient decreases with decrease of air-hole radius » and that there is a flat
region offset in the range of shorter wavelengths.

D(%), ps/(nm-km) D(%), ps/(nm-km)

USLELE LD \ U L L

(b)

Fig. 2. Family of dispersion curves with various a) lattice pitch: 7 - A=3.68pum;2 - A=2.76 um
3 - A=1.84um and with r fixed at 0.4968 pm ; b) radius / - » =0.53475um; 2 - r =0.4968 um
3-r=0.4485um and A fixed at 2.76 um . Computational results obtained with plane-wave
method denoted with solid lines and finite-element method — with dashed lines
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However, using a MF with all of the same air-hole diameter in the fiber cladding, it is
difficult to control both the absolute value of dispersion coefficient and dispersion slope in
wide wavelength range. An recent publication by Saitoh et al. [2] have reported that there is
a new controlling technique of chromatic dispersion in MF. It is shown from numerical
results that it is possible to design MFs with both ultra-low dispersion and ultra-flattened
dispersion in a wide wavelength range. We have applied this method of dispersion
controlling for our system. The hole radius of each air-hole ring in the fiber cladding
increases 20% from hole ring to ring relative to the first one. Figure 3a shows the result of
calculation for the system with different air-hole radii of each air-hole ring: the dispersion
of the system with radius increases 20% from row to row denoted with dashed lines, for the
system without air-hole radius difference the dispersion curve denoted with solid lines. The
simulation was done for systems with different air-hole radius in the first ring. It was shown
(curve 4 in Figure 3a) that this method can be used for control the dispersion slope of MF.

The control of chromatic dispersion in optical microstructured fiber can be done with
doping the center part of the fiber with GeO, [6]. We have demonstarated that the increase

of mol fraction of GeO, [6] in the silica core of our type of MF shift down the dispersion

curve and it is possible therefore to design the MF with small value of dispersion
coefficient in the definite wavelength range (1.0 <A <1.05um ) as shown in Figure 3b

(bold curve 2).

D(X), ps/(nm-km) D(%), ps/(nm-km)

A, um
2 13 14 15

|
e}
o
LI UL BLELEL N

W=

(b)

Figure 3. a) Family of dispersion curves with various air-hole radius obtained with finite-element
method. 1 - »=0345um;2-r=02875wum;3-r=02um;4- r=0.1725um . The
computational result for the system with radius increase 20% from row to row denoted with dashed
lines, while solid lines denotes the system without such radius increase. A = 2.3 um . b) Family of
dispersion curves with various mol fraction of GeO, obtained with plane-wave method: 1 -x=0;
2-x=0.056;3-x=0.15. r=0.4968 um , A =1.84 um

3. Conclusion

We have shown that the variation of geometrical parameters of optical
microstructured fiber can modify the dispersion properties of such system. The Finite-
Element method and Plane-Wave method have been applied. We have considered the
structure of fiber cladding that is comprised of the triangular lattice of rods with finite wall
thickness. We have demonstrated that dispersion slope and absolute value of dispersion
coefficient of MFs can be controlled with a change of size of an air-hole defect in the fiber
core, with variation of interval between holes and with a doping the center part of the fiber
with GeO,. Simulations and estimations shows that one can construct a system based on

83



microstructured-fibers with minute difference of dispersion coefficient in the operating
range of wavelength and dispersion control can help to improve transmission speeds and
distances.
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LINEAR ANALYSIS OF A TRAVELING WAVE TUBE AMPLIFIER
WITH END REFLECTIONS
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Abstract — Linear theory of a traveling wave tube (TWT) amplifier with end reflections is
presented along with its further generalization for the case of multi-sectional tube. The method of
solution of the boundary problem using the Laplace transform is described. The results of gain
calculations for the different TWT structures and different matching conditions are presented.

1. Introduction

Calculation of small signal gain is an important stage of traveling wave tube (TWT)
theoretical analysis. Usually linear TWT analysis is performed by solving the dispersion
equation or by the method of successive approximations [1-4]. However, most theories
consider half-bounded systems when reflections of radiation from the ends are not taken
into account. On the other hand, end reflections may strongly affect the TWT performance
causing gain ripples and parasitic self-excitation [5,6]. In this paper, we develop the linear
theory for a finite-length TWT connected with input driver source and output load. In Sec.2
we review basic equations of the linear TWT theory with the boundary conditions proposed
in [7] which take into account end reflections. In Sec. 3 we describe solution of the TWT
boundary value problem using the Laplace transform and generalize the theory for the case
of multi-sectional tube. The method of solution is similar to [8] where TWT interaction
near the cutoff was considered. In Sec. 4 results of numerical calculations of TWT gain are
presented.

2. Basic Equations of Linear TWT Theory and Boundary Conditions

Let us start from the well-known of 1-D TWT linear equations [1-4] for
amplification of a single-tone signal with frequency :

d’E _
WJFB(%E:JB?)KI, (1)
d oY, o, JBI
— 4 [+B[=22F. 2
[dx Jﬁej B, 7 (2)

Here, E is electric field of the high-frequency wave, B, = co/ v, 1s the propagation constant
in the “cold” structure, /; and V, are the beam DC current and voltage respectively, I is
the first harmonic of the current, K is the coupling impedance, B, = ®/v, , B,=0, /v0 ,
and o, is the electron plasma frequency. Equations (1), (2) should be completed with

boundary conditions for the beam and the field. In particular, when the beam at the entrance
of the SWS is modulated neither by velocity nor by density

1(0)=29 . 6
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Fig. 1. Schematics of the SWS connected to input and output waveguides

Consider the finite length slow wave structure (SWS) located at 0 <x </ and
coupled with input driver source and the output load by dispersionless waveguides on the
left and right ends, respectively (Fig. 1). For that case, the following boundary conditions
were proposed by A.P. Kuznetsov [7]:

dE _ . . +
—F jo,E | =-2ja,kE;, 4)
dx

dE _ . e
—FjoyE | =2jo,E . (5)
dx

Here, o, are the parameters equal to propagation constants on the certain matching
frequency. The reflection factor equals zero at that frequency and grows with moving away
from the matching point. £, and E;" denote amplitudes of forward and backward waves in

the input and output coupling waveguide, respectively. Note that for reducing the
reflections o, and o, should be chosen different since the propagation constant of the
forward “hot” wave differs from that of the reflected backward wave [9].

Equations (1), (2) with boundary conditions (3)-(5) define TWT linear theory
boundary problem for finite length system with end reflections taken into account.

3. Solution of the TWT boundary problem

The equations of the TWT linear theory boundary problem is solved using the
Laplace transform similarly to [8] where the case of interaction near cutoff was considered.
Applying the Laplace transform to (1) and (2) results in

s’E—sE(0)-E'(0)+BoE = jBKI (6)
[(5+B2) +B3 7= (5+2/8,)1(0)-1'(0) = L2 £ )

Here, £, I are images of E(x), I(x), respectively. One can express / using (7):

ey gy 1(0)+(s+2/8.)1(0)
o | (8)
(s+2/B.) +B;

Substituting (8) into (6), after some manipulations we get
(E'(0)+3E(0))| (s+/B.) +B} |+ /BoK (1'(0)+(s+2,8,)1(0))
p(s) |

E= 9)
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Here p(s)= (32 +[3§)((s + JjB, )2 +B§))+2Be[3(3)C3 , C'=KI,/4V, is the Pierce gain
parameter [1-4]. The forth order polynomial p(s) has four complex roots s, =—jk

n?

n=1,...,4 and can be represented as
4

p(s) = (s+jk1)(s+jk2)(s+jk3)(s+jk4) = H(S-i—jkn). (10)
n=1
Substituting (10) into (9) and applying the inverse Laplace transform we obtain

4
E(x)=)ce’™". (11)

n=1

Here
(E () O)[ (k0 55 B Ot -)10)
c, = ,
n p:l
dp(—jk
P =PI o [k, B2 |25k, B (K- 82). (13)
Similarly the following expressions for E'(x), I(x), I'(x) can be obtained:

4
E'(x)==j> kc.e ™", (14)

n=1

j . —jk,x
1= 2k =Bi)ee ™ (15)
1< -

I! — k2 _R2 —jk,x ) 16
(x) BSK ;( n BO ncne ( )

Thus, the variables E(x), E'(x), I(x), I'(x) are expressed through four constants E(0),
E'(0), 1(0), I'(0). It is convenient to represent these expressions in matrix form

E(l) E(0)

E'(] R E'(0

| - 01 an

I(1) 1(0)

r(l) '(0)
where, f’TWT is the transmission matrix of the uniform TWT section, that could be
represented as

R 4 e—jknx
Tryr = A(K,) . (18)
n=1 n

Here, A(k,) is the 4x4 square matrix which elements are defined as follows
ay (k,) = jk, [ (k,~B.) =B} |.
a, (k,)= Bi ~(k, B, )2 ,
ay, (k,)=ByK (k, —2B,),
a, (k,) = jBK
a,, (k,)=—jk,a,(k,), n=1,..,4,
J(k: -B7)

a,, (k"):B3—Kal" (kn), n :1,...,4,
0
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k, (k2 —B:)

a,,(k,)= 5K a,(k,), n=1..4.
0

One can express the unknowns E(0), E'(0) through E; using the boundary

conditions (4):
E(0)=E, —E,,

E'(0)=—jo, (E; +E, ).
These expressions can be represented in the matrix form
E(0 1 -1 \(E,
,(){. j (19)
E (0) —J%y —JO )\ E,

Similarly, E(/), E'(I) are expressed through E;" using (5):

[ij i 2]'10@ (_JJ; D@'((lz))} (20)

Thus, the vector (E,+ JE LT (l),l’(l))T is expressed through the vector

(E:.E;.1(0),1'(0)) as

=T : 21
1|~ ”
I'(l) 1'(0)

Here, T = YA“OYA“TWTZA", is the transmission matrix of the whole system, YA“O,, are the transmission

matrices of the transitions between the SWS and the coupling input/output waveguides:

( 1 —1) 0
T, =|\~jo, —jo,) |, 22)
0 I
L
2 2aq
. ‘1o
L=\ 1 _Jj , (23)
2 20,
0 I

where / is the 2x2 unitary matrix. In (21) we know the values of E, , [ (0), 1 ’(O) and
E; . Thus one should express the unknowns E;, E;, I(I), I'(I). In particular, if the

electron beam is not modulated at the input, i.e. current satisfy the boundary conditions (3),
and the output waveguide is perfectly matched with the load, i.e. E; =0, from (21) one can
easily find the following equations
E =Tk, +T,E,,
0=T,E, +T,,E,.
Solving these equations we get
E, =(T,,/T,)E; = RE; , (24)
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N . I,T,-T1,1, ..
L, :(Tll-’_R];z)EO i— (25)

22
Here, R is the reflection factor from the finite length structure, T, are the elements of the

transmission matrix 7" . From (25) one can find the gain factor of the TWT amplifier
G = 1T, — 1,1, ) (26)
T,
Evidently, when
T, =0, (27)
the gain becomes infinite which means self-excitation of the amplifier. Analysis of the
equation (27) allows to find start-oscillation current and frequency.
The method of solution of the TWT boundary problem can be easily generalized for
the case of TWT consisting of several sections, for example, the TWT with local absorber.

In that case, the transmission matrix should be represented as fTWT = TAIYA"QT;, where f —

transmission matrix of i-th section.
4. Numerical results

A computer code for numerical solution is developed by means of the
«Mathematica 6.0» software package. We perform calculations for TWT with coupled-
cavity SWS (CC TWT). Using the results presented in [10-12] where nonstationary theory
of the CC TWT has been developed, we obtain the following equations for phase velocity
and coupling impedance dispersion

By (@) =0+ -

Yo Awd sin {arccos [—O)A_O)Oﬂ
®

K (o)

) 0—, '
sin| arccos| —
A®

Here, Aw and d denote the SWS bandwidth and period, respectively. It is
necessary to emphasize that the developed theory is not applicable near the cutoff
frequency, where group velocity becomes zero and coupling impedance becomes infinite.

First let us consider a single-section TWT with parameters listed in Table 1. The
parameters are chosen close to that of the TWT described in [13], which had been widely
used for satellite uplinks. Value K represented in Table 1 corresponds to the central
frequency of passband, chosen accelerating voltage value corresponds to synchronism at
the central frequency o, .

(28)

K(w)=

Table 1. TWT parameters

Beam current /;, A 0.025
Beam voltage V,, kV 15.32
Coupling impedance K, Ohm 38.93
Beam radius 7,, mm 1.25
Central frequency f,, GHz 6.49
System period d , mm 59
Plasma frequency reduction factor R 0.48
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In Fig.2 gain versus normalized frequency is plotted. Dash-dot curve shows
solution of the boundary value problem by method described above. The periodical
structure is matched with the input and output waveguides exactly in the center of the
passband, i.e. o, = ®,/v, .The maximum gain about 16dB is obtained at a frequency close

to synchronism. The results are in good agreement with the successive approximations
method (dashed line) and dispersion equation method (solid line). However, the method of
successive approximations agrees with the other methods only for the case of relatively
small gain, less than 20 dB.

20 G, dB H
16 1G,dB - '
_ 15
12 i
i 10
- _
- 5 ]
4 i 0
07— =5 T - | - 1
-2 - 09 ¥ 1.0 1.1 0.9 1.0 1.1
®/®, ®/®,
Fig. 2. TWT gain versus normalized frequency Fig. 3. TWT gain versus normalized frequency
calculated using the successive approximations for different values of a,, parameters:
method (dashes), dispersion equation method Oy, =0, /v, (solid), 1.8, /v, (dashes)

(solid), and solution of the boundary problem
(dash-dot)

When the match frequency moves off from the central frequency, the reflections
grow. Fig. 3 shows G (o) for o, =1.8w,/v, compared with the curve for o, = ®,/v,.
One can easily see strong gain ripples caused by the end reflections.

Fig. 4 shows field and beam current distributions along the system in case of
matching at the central frequency when the DC beam current is increased up to 0.25 A. One

can easily see the ripples on the curve E(x) caused by reflections. Despite the input signal
frequency is chosen equal to ®,, reflections arise since “hot” propagation constant of the
forward wave differs from the parameter o, that is chosen equal to “cold” propagation

constant ,/v,. To eliminate reflections o, should be chosen approximately equal to real

part of the propagation constant for the growing forward wave [9]. Fig. 5 shows field and
beam current distribution along the system in case of matching at the frequency different
from the input signal frequency. One can see considerable enhancement of reflections.

The main way to avoid TWT self-excitation caused by reflections is to introduce a
local absorber. In that case, we have to solve a boundary problem for a multisectional
TWT. Consider a TWT consisting of three sections where the second one is the absorber
with attenuation y =60 dB/cm (Fig. 6a). Fig. 7 shows field and beam current distributions

along the system for this case. Parameters a,,, are chosen as o, =, /v, , i.e. matching

frequency is equal to the central frequency, and the input signal frequency equals o, as
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well. One can see strong attenuation of the wave in the absorber section. Accordingly, in
that domain bunching process is interrupted and the amplitude of the first harmonic of the
beam current remains nearly constant. However, the rapid jump of the attenuation factor

causes considerable reflections from the absorber. As a result, the £ (x) curve still exhibits

strong ripples, especially in the first section located before the absorber.

L10°
SO—E 20—
40 15-
30
10—
20
10 S
/d x/d
0 Y T T = T 0 T T T T
0 10 20 30 40 0 10 20 30 40

Fig. 4. Field and beam current distributions along the system for the single-section TWT in
case of matching at the central frequency
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Fig. 5. Field and beam current distribution along the system for the single-section TWT in
case of matching at the frequency —0.9A®+ ®,. No losses
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Fig. 6. Absorber profiles for TWT consisting of three (a) and five (b) sections
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Fig. 7. Field and beam current distributions along the system for the TWT with absorber profile
shown in Fig. 6a
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Fig. 8. Field and beam current distributions along the system for the TWT with matched absorber
profile shown in Fig. 6b
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Fig. 9. Fields distributions for three forward waves (a) and backward wave (b) in the case of TWT
with matched absorber

To avoid the reflections from the absorber, one should use tapering i.e. y(x) should

be smoothly varying at the ends of the absorber. To simulate that case we add two matching
sections with y =10 dB/cm attenuation, as is shown in Fig. 6b. Thus, we are dealing with
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the TWT consisting of five sections. The field and beam current distributions along the tube
plotted in Fig. 8 show substantial decrease of reflections. The gain value decreases as well.

The developed code allows calculation of field distributions separately for the three
forward waves and the backward one. Such plots are shown in Fig. 9. From Fig. 9b one can
see damping of the backward wave the absorber and its rapid jumps at the ends of the
sections.

G G
40 50—
30 40

304
20
20
10
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0=+ T T 9 04
0.9 0.95 1.0 1.05 1.1 0.9

o/®,

a
Fig 10. Gain vs. normalized frequency for the TWT without absorber (solid line) and with
mismatched (dashes line) and matched absorber (dash-dot line). The match frequency is (a) equal

to ®, and (b) », —Aw/2

In Fig. 10a gain vs. frequency curves are is plotted for the case of matching exactly
at the central frequency o,. In the case of TWT without absorber (solid line) strong gain

ripples caused by reflections are observed. Introducing of the mismatched absorber that
corresponds to y(x) shown in Fig. 6a (dashed line) does not reduce the ripples and results

only in nearly 10 dB gain decrease. When the matching absorbing sections are added (dash-
dot line), the ripples disappear, i.e. the reflections from the absorber are suppressed. When
the match frequency is not equal to the central frequency the role of the absorber becomes
more evident. In Fig 10b the curves similar to Fig. 10a are shown, but for matching at

®, —Aw/2 frequency. The G(w) ripples are stronger than on Fig. 10a, but when the

absorber with matching sections is introduced, the gain ripples becomes suppressed and the
dashed curves in Fig. 10a and Fig. 10b are almost identical.

5. Conclusion

Linear theory of a TWT amplifier with end reflections taken into account is
developed in this article. The method for solution of the boundary problem using the
Laplace transform is described. A computer code for numerical solution is developed by
means of the «Mathematica 6.0» software package. The developed code plots both field and
beam current distributions along the system at the different frequencies, and calculates gain
versus frequency for TWT with arbitrary number of sections.
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