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ВВ  ВВ  ЕЕ  ДД  ЕЕ  НН  ИИ  ЕЕ    
 

  Компьютерное моделирование является основным мощнейшим инструментом исследования 
сложных систем и структур. Использование строгих компьютерных моделей позволяет адекватно 
производить их анализ, синтез или оптимизацию и зачастую вытесняет  натурный эксперимент. Для 
большого числа рассматриваемых задач проведение натурного эксперимента чрезвычайно сложно или 
невозможно вовсе, поэтому развитие методов математического моделирования является чрезвычайно 
важным и актуальным.  

В прикладной электронике  и электродинамике, включая и оптику, использование строгих 
методов анализа и синтеза при моделировании означает применение алгоритмов на основе уравнений 
Максвелла и строгих решений уравнений движения. Важным элементом, влияющим на адекватность 
моделирования, служит корректное введение материальных уравнений и уравнений движения частиц, 
а также учет нелинейных свойств.  

В последнее время все большее значение приобретают автоматизированные системы анализа 
и проектирования приборов, устройств и структур СВЧ, КВЧ и оптических диапазонов. Применение 
электродинамических методов происходит для всех частот используемых электромагнитных волн, 
включая и оптический диапазон, причем в оптике традиционные методы анализа вытесняются 
строгим электродинамическим рассмотрением. Наряду с традиционными частотными подходами к 
моделированию развиваются и пространственно-временные методы, что характеризует бурный 
прогресс прикладной нестационарной электродинамики и оптики. Другими актуальными 
современными направлениями, представленными в сборнике, являются моделирование наноструктур 
(включая квазипериодические структуры) и применение электродинамических методов к нелинейным 
задачам. 
 Десятый выпуск сборника продолжает серию публикаций трудов научных семинаров 
объединенной первичной ячейки (IEEE MTT/ED/AP/CPMT.PS Saratov–Penza Chapter) входящей в 
международную научную организацию Institute of Electrical and Electronic Engineers. Указанная ячейка 
создана летом 1995 г. в Саратове и Пензе. В сборник вошли труды, представленные в 2009 г. на 
очередном тринадцатом семинаре (Saratov–Penza Chapter Workshops), который являлся седьмым  
семинаром данной первичной ячейки под названием «Workshop on Electromagnetics of microwaves, 
submillimeter and optic waves». С 2003 года семинары под указанным названием проводятся ежегодно в 
сентябре в рамках международной конференции «Saratov Fall Meeting» в Саратовском 
государственном университете. 

________________________________ 
 
 

II  NN  TT  RR  OO  DD  UU  CC  TT  II  OO  NN  
 

 In recent time there was an increasing development of Computer Aid Design (CAD) methods and 
rigorous approaches for microwave electron devices, units and elements all over the world and in Russia 
particularly. These methods have been applied both for linear and nonlinear systems and structures in time 
and spectrum domains. There is growing interest in electromagnetic and optics to nanostructures and 
metamaterials.  
 The correct introduction of material and motion equations and using of strict electrodynamic models 
play important role in adequate numerical simulation of structures. Recently the nonstationary approach for 
electromagnetics and electronics stays more desirable and applicable. The nanostructures such as photonic 
crystals and metamaterials play the important role in modern science and cause the different methods of its 
simulation. These directions of modeling is also have mirrored in the present 9-th issue.   

In 1995 on July 11 the IEEE Joint MTT/ED Chapter has been formed in Saratov and Penza under the 
sponsorship and help of Electron Devices and Microwave Theory and Techniques Societies (ED–S and MTT–
S). Then it has been supported by Antennas and Propagation, Components, Packaging, and Manufacturing 
Technology and Nuclear and Plasma Science Societies (APS, CPMTS and NPSS), and now it is named as 
IEEE MTT/ED/AP/CPMT/NPSS Saratov–Penza Chapter included into the IEEE Russian Section. 
 This issue contains the papers presented at the 13-th IEEE MTT/ED/AP/CPMT Saratov–Penza 
Chapter Workshop named as “Electromagnetics of Microwaves, Submillimeter and Optic Waves”. This 
Workshop has been held in conjunction with the Saratov Fall Meeting at the Saratov State University in 
September 2009. 



 

 6 

WHY THE REFRACTIVE INDEX CAN NOT BE NEGATIVE 
 

M.V. Davidovich, Senior Member IEEE 

Saratov State University, 410012, Saratov, Russia 

E-mail DavidovichMV@info.sgu.ru 

 

Abstract – It has been shown that for left-handed metamaterials and generally for negative 
refraction media the refraction index cannot be entered unequivocally and cannot be considered as 
real, and especially as negative. This index for above referred media is not expedient. 
 
 

The refractive index (RI) n  (or retardation coefficient) was initially introduced in 
optics long before Maxwell has formulated the electrodynamics which interprets the optics 
as its own part. So, it has been transferred from the scalar optic problems to vector 
electromagnetic ones. At that time the dispersion was not considered. Recently the so-
called left-handed media (LHM) or metamaterials with negative refractions (NR) are under 
the intensive investigation. The widespread opinion dominates in literature that LHMs have 
the negative refraction index (NRI). In 1967 V.G. Veselago has published the paper [1], 
where he considered the medium (which he called left) with scalar real and simultaneously 
negative permittivityε  and permeability µ . He investigated the geometric (ray) diffraction 
theory for infinite in two directions (x,y) and finite in z-direction plate of thickness d with 
such LHM and has discovered the anomalous refraction Snell law. Also he has discovered 
some anomalous effects: Doppler effect, Vavilov-Cherenkov effect, negative light pressure. 
These effects are connected with NR phenomena (excepting negative pressure). It was well-
known long before the Veselago’s paper and considered in several publications (see 
references in the papers [2–9]). These considerations proceed from earlier Lamb (1904), 
Laue (1905), Mandelstam (1940) and others, from the papers corresponding with backward 
wave tubes and antennas. The history of this question one may find in Russian [2–9] and 
English [9] papers. The doubtless Veselago’s merit is that he drew attention of scientific 
community to necessity of search possible artificial media (AM) with such unusual 
properties. Since 80-th to 90-th the research direction of AM investigations is expansive 
developing. The researches have been begun early in 40 and 50th years and then was 
named as investigation of artificial dielectrics [9–12]. Next the more general name 
“metamaterials” was assigned to these AM later. Next the periodic AM with different forms 
of wire inclusions (wire media) began to be studied intensively in the beginning of 90th and 
were then are named as metallic photonic crystals (PC). 

In 2000 J. Pendry has published the article [13] in which he claimed that the 
Veselago lens (further in literature named as ideal Pendry lens) is overcoming the 
diffraction limit. But the Pendry’s consideration was based on gross errors (see, for 
example, the articles [3–6,14–22] and the discussion there). After the publication [13] and 
similar, including the experimental work [23], the such conceptions as Veselago medium, 
double negative materials (DNM, DNG), backward media, LHM, wire PCs, complex 
media, negative group velocity media (NGV), negative refraction index media and some 
others finally have been approved. And the number of publications on these questions 
increases avalanche-like. Although the term “negative refraction ” is the most general and it 
was well-known long before the paper [1], and this phenomenon takes place also in slow 
wave systems, nature crystals, dielectric PC, generally in optics when the energy transfer 
direction of monochromatic wave may constitute the obtuse angle with the direction of 
phase motion, the term “negative refraction index” on our opinion is not correct. We will 
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show further why the RI couldn't be negative, can not be such, and why it is not appropriate 
for NR media. Authors of some works (apparently, realising it) instead of NRI use the 
terms “negative refraction” [6] or “negative media” [8] along with NR. The big number of 
above abbreviations also indicates on the problem. In several such papers the NRI is not 
considered altogether, but in most of publications the NRI 0<n  nevertheless is considered. 
Thus, the NRI is the sufficiently established term (especially in English scientific 
literature), and the number of papers with its usage is highly large. The goal of this paper is 
to show that the question here is not only in terminology: the introduction of NRI 0<n  in 
the relations, in which it evidently couldn’t be introduced, often leads to incorrect physical 
results. 

There is prevailing common opinion in literature that for LHM with 0<ε  and 
0<µ  one must extract the root as follow: 0<−= εµn . And in the normalized 

impedance it is need to take the root branch as 0/ >= εµρ  [24]. These values one can 
insert in spectral form of Maxwell equations for harmonic plan wave (the equations (5) 
from [1]), that is indirectly assumed under such determination [24]. The energy flow and 
phase motion directions then are opposite, i.e. the wave is backward. The values n  and ρ  
are introduced in such manner in optics, But they there both positive (also together with 
positive ε  and µ ). To choose the branch of root one must set some physical condition. In 
optics there is the dissipation according to which ( ) 0~Im <n  and ( ) 0~Re >ρ  (for complex 
values with the time dependence ( )tiωexp ). It may seem that by introducing the complex 
RI, impedance, permittivity εεε ′′−−= i~  and permeability µµµ ′′−−= i~ , where all 
quantities are positive, one can from the conditions ( ) 0~Im <n  and ( ) 0~Re >ρ  get the 
unambiguously: ninn ′′−′=~ , 0<−=′ εµn , ( ) 0/ >′′+′′=′′ εµµεµεn , 

( )[ ]2///1/~ εεµµεµρ ′′−′′+= i . But the problem here that it is impossible to take the 

limits 0→′′ε  and 0→′′µ . It will be shown further. Furthermore, the value εµ  is 
polysemantic. Imposing these estimates and binding two roots (either of the two is double-
valued), we use only backward wave. But in the PC both backward and forward waves are 
possible for each dispersion branch. Let’s consider the simplest case of propagation along 
z-axis. For such wave the transition from forward to backward ones occurs under the 
replacement zzz amkk /2 π±−→  ( za  is the period along z ), and also by going over the 
passage from one dispersion branch (hypersurface) to another through any bandgap by 
changing the 0k . These propagation branches (bands) are separated by the bandgaps, and 
the waves in different directions are differed (for anisotropic or bianisotropic AM). The 
effective permittivity and permeability (and RI) are the even functions of zk  (and others 
components if any). Hence, the transfer from forward wave to backward one takes place not 
due to sign of n , but owing to sign of zk  (under π<zzak ), or due to sign of zdkdk /0  

(here we propose the absence of loss). In low frequency limit 00 →k  and for 0→k  (in 
our case for 0>zk ) the wave is forward-directed, i.e. the NR corresponds with the 
characteristic Bragg spatial 1~ak ⋅  ( a  is the translation vector) and frequency 

( ) 1~00 aefnk  resonances (scales). Here ( )0efn  is the effective RI in the low frequency limit 
which is produced by the homogenization. The exclusion here is the physically unrealizable 
and similar ideal plasma wire medium with infinite parallel wires, which has the low-
frequency cutoff. Accordingly all the RI efn , efε  and efµ  (without dependence from that 
tensors they or scalars) are depending of ω  and k . Usually the homogenization in optics 
(excepting crystal optics) leads to the isotropic RI, as the wavelength is sufficiently greater 



 

 8 

than the typical dimensions of natural substance. In the hard ultraviolet and in the X-ray 
diapasons it is not so. 

It is already well known from optics that in the regions with strong anomalous 
dispersion it may be negative i.e. the inverse waves may exist. In particular, under the large 
oscillator forces the NR in narrow band may exist (that runs up to this seldom), but 

( ) ( )( ) 0Re >=′ ωω nn (see formula 83.13 from [25]). In this case the phase and the energy 
move in opposite directions, and the losses are highly large, i.e. ( ) ( )( )ωω nn ~Im−=′′  may be 
of ( )ωn′  order. The group velocity does not characterize here anything. Usually in periodic 
waveguides (say, for microwaves) the losses are negligible small, therefore the NR is 
described by positive retardation n and negative group velocity [26]. These are the one-
dimensional-periodic (1-D-P) structures, therefore n is scalar. The losses lead to negative 
influence on NR media properties (in particular, they destruct the focusing capability of 
Pendry lens (PL) and Veselago-Pendry lens (VPL)), and the sufficiently big papers are 
devoted to that. But, as it is surprising, some losses are necessary are necessary for 
existence of NR. Namely, in the paper [27] it has been shown that in isotropic media with 
NR there is lower limit of electric and magnetic losses, and the NR does not exist lower this 
limit. The Kramers-Kronig relations [25] for ( )ω2n  have been used to proof this and the 
criterion has been obtained [27]: 

( ) ( ) ( ) ( )
( ) 1~~
~

~~~~2 3

0
22 −≤

−
′′′+′′′

∫
∞

ωω
ωω

ωεωµωµωε
π

d . 

At that the value ( )ω2n  (but not ( )ωn ) is the analytical functions in one of ω  semiplanes 
(depending on the sign choice in the ( )tiω±exp ). Nevertheless, to reduce the losses the 
several metamaterials different from DNG wire media are investigated in a number of 
papers [28–30]. In these papers the 1-D-P PCs with high-temperature superconductive and 
magnetic films [28], with superconductive and dielectric films [29], and also with 
additional inclusions of structures like “magnetic atom” in form of MgF2 film with golden 
plate [30] have been considered. Such superconductive magnetic structures are the uniaxial 
PCs. Thus, in [29] the transverse ||ε  and longitudinal ⊥ε  components of permittivity are 
introduced, and it is shown that even for superconductive state there are sufficiently 
considerable losses. They suppress the increase of damping (evanescent) mode amplitudes 
and put obstacles for superresolution, but, nevertheless, the NRI is introduced in [29] and 
the references to experiments concerning the figure of merit (FOM) in form nn ′′′ /  are 
given. This FOM for LHM in infra-red and optical diapasons lies in the region 5.31.0 − . 
But such anisotropic or bianisotropic structures couldn’t be described by one scalar RI. 
Moreover, the magnetic inclusions need the magnetic field which is proposed to control 
their properties [28]. Such PCs in magnetic field are the gyrotropic media.  

It is useful to remember how the n is introduced in optics. For transparent isotropic 
media in the disregard of dispersion (and therefore, neglecting of losses) we have ( ) 1>rε , 
and it is possible to determine the RI ε=n . In this case it is a simple constant for 
homogeneous medium. The taking into account of frequency dispersion for monochromatic 
waves already leads to complex frequency depended values ( )ωε ,r  и 

( ) ( ) ( )ωωω ,,, rrr njnn ′′−′= , where ( ) 0, ≥′′ ωε r , ( ) 0, ≥′′ ωrn , in which connection the 
equality is possible only if 0=ω  or ∞→ω  [25]. That is justly in any dissipative medium, 
and the complex number can’t be negative. In his paper [1] V.G. Veselago at first proceeds 
from the dispersion equation (DE) for anisotropic medium without dissipation [1]: 

0det =A ,    kiiklkilik kkkkA +−= δµε 22
0 ˆˆ ,                                (1) 
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where 222
0 / ck ω= and 22 k=k . Besides the equation (1) one may, as a matter of fact, use 

also the equation 
0det =B ,        kiiklkilik kkkkB +−= δεµ 22

0 ˆˆ ,                                 (2) 
i.e. the DE and n are ambiguously determined and introduced. Further in proposal of 
isotropy the equation (1) is rewrote in [1] as 

022
0

2 =− nkk , εµ=2n .                                              (3) 
That, as a matter of fact, means the scalarization of Maxwell equations, that generally it is 
not necessary to do and anyone shouldn’t to do, because of  only the values ε̂  and µ̂  are 
initially in these equations (or in the more complicated material equations which must be 
used there). The DE (1) and (2) are the equations to determine the dispersion, i.e. the 
dependence ( )0kkk =  or inverse dependence ( )k00 kk = . If plane wave spreads along z-

axis, i.e. zk0zk = , then the equation (3) gives two solutions εµ2
0

2 kkz =  and εµ0kkz ±= , 
that corresponds to forward and backward waves, in which connection one may take the 
arithmetic value for the root, i.e. if 0<ε  and 0<µ  then 0>= εµn . As it will be shown 
further, the values 0<ε  and 0<µ  is the exactly unreliazable abstraction. So, the choice of 
forward or backward waves is determined by the sign of zk , but not of n. This sign in 
general case of dissipative media must be chosen from the condition ( ) 0Im <zk  [8], i.e. the 
wave with the dependence ( )zikti z−ωexp  must damp in media along the direction z of 
energy transfer. This direction in dissipative media must be determined by the Pointing 
vector direction [8,31,32], but not by the group velocity vector (as it is made in the majority 
of works). Such root choice gives the backward wave if 0<′ε  and 0<′µ : ( ) 0Re <zk . 
Both considerations: the present form and the form from [1] are equivalent in isotropic 
case, but everyone should have in view and remember that the initial for DE is the 
dependence ( )0kkk = , but not the ( )0knn = . 

All real known LHM are bianisotropic with periodic metallic inclusions of 
complicated form (usually these elements are pins and split ring resonators, or Ω - 
elements, spirals, helixes and some similar configurations). The electrophysical 
(electromagnetic) parameters of metamaterials must be obtained by homogenization [6,33–
48]. It is fulfilled by inverse problem solutions and averaging based on full-wave analysis 
of periodic structure. It is necessary for this to solve many times the direct problems for 
dispersion and field determination using the rigorous methods (for example, integral 
equation method, or plane wave expansion method) [48]. The homogenization is also based 
on the models of media, for example, in the form [45–47] 

( ) ( )[ ]HEHEP ξεεξεε ˆˆˆˆˆˆ 00
1

0 ZIcIe +−=+−= −  , 

( ) ( )[ ]EHEHP ςµµςµµ ˆˆˆˆˆˆ 1
00

1
0

−− +−=+−= ZIcIm  , 
and then on the determination of parameters of such models by strict or approximate fitting 
to the boundary problem solution [45,47]. Here 000 / εµ=Z  is the vacuum impedance, 

eP  and mP  are averaged over the periodic cell dipole moments (electric and magnetic), the 
upper line means the field averaging. The higher averaged multipole moments in principle 
also must be included in polarization. The effective medium tensors ξςµε ˆ,ˆ,ˆ,ˆ  are resulted 
from the homogenization are dependent on averaging method and determined, at least, for 
wave length D>λ , where D is the characteristic dimension connected with the region of 
averaging (for example, the cell period). The homogenization procedure in addition to 
calculation of averaged cell dipole moments may be based on least-square analysis 
(minimization) of rigorous (full-wave) and model DE solutions, or least-square analysis 
(minimization) for corresponding plane wave diffraction results for structure vacuum-
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metamaterial with different angles of hade and polarizations to boundary [10,45,48]. It is so 
as the Ewald-Oseen extinction theorem [43] in this case may be proven. One of the first 
such publication in which the effective permittivity was determined by plane wave normal 
fall on plane boundary of media with periodically included small ferrite and metallic balls, 
and also air-bladders (halls) in dielectric was the monograph [10]. The effective parameters 
in general case must be fitted so that the least-square discrepancy has the minimum [45,48]. 
Let’s write down the averaged fields (denoted by the upper line) as 

( ),exp krAE iti mω=      ( ).exp krCH iti mω=                         (4) 
In general case one can extract from Maxwell equations not the relation (1) but the 
following matrix equation [47] 









=








⋅













−
+

0
0

C
A

00

0

ˆ/ˆˆ

ˆ/ˆˆ
Zkk

kk
µς

ξε , 

which is equivalent to two DEs in the forms 
( ) ( )[ ] 0ˆˆˆˆˆˆ 1

0
11

0 =+−+ −−− Aεςµξ kkkk ,        ( ) ( )[ ] 0ˆˆˆˆˆˆ 1
0

11
0 =++− −−− Cee kkkk µξες          (5) 

and to two DEs in the forms 
( ) ( )( ) 0ˆˆˆˆˆˆdet 1

0
11

0 =+−+ −−− εςµξ kkkk ,        ( ) ( )( ) 0ˆˆˆˆˆˆdet 1
0

11
0 =++− −−− µξες kkkk .       (6) 

Here we introduce the cross-polarization tensors ςξ ˆ,ˆ   and the matrixes: 

















−
−

−
=

0
0

0
ˆ

xy

xz

yz

kk
kk

kk
k ,     

















−−
−−

−−
=

22

22

22

2ˆ

xyyxzz

yxxzyx

zzyxyz

kkkkkk
kkkkkk
kkkkkk

k .              (7) 

From these equations after the homogenization one should determine the dispersion relation 
( )kfk =0 . The metamaterials in general are possessed of spatial dispersion, i.e. their 

effective spatial-depended parameters are not local and in the k -space they are the 
functions of k . Let us summarize the essence of homogenization. Many times setting the 
different values and directions of k  (the wave properties differ in different directions) and 
determining the corresponding values of 0k  from boundary problem solutions and from 
model of DE we are calculating the polarization and fitting the material parameters so that 
the wave properties in inhomogeneous structures would be on average equivalent to the 
plane wave properties in the model homogeneous anisotropic or bianisotropic medium. 
Correspondingly the material equations are equivalent on average to media particles 
motions under the wave influence. If there are two sorts of inclusions, and the first give the 
input mainly into electric polarization and the second ones for the most part into magnetic 
one, and in which connection they have weak electromagnetic correlations, that one may 
neglect the cross-polarization tensors: 0ˆˆ == ςξ . Then [ ] 0ˆˆˆˆ 2

0
1 =+− Aεµ kkk , 

[ ] 0ˆˆˆˆ 2
0

1 =+− Cµε kkk . If the matrixes (7) commute with the inverse tensor 1ˆ −µ , that there is 

[ ] [ ] 0ˆˆˆˆˆ 22
0

22
0

2 =+=+ AA nkkkk εµ , where 

( ) ( ) ( )[ ] 2/12/1 ˆˆˆˆˆˆˆˆˆˆˆˆˆ εµεµεµεµεµ ′′′+′′′−′′′′−′′=′′−′== ininn .                            (8) 
In the small loss case we have ( )[ ]2/ˆˆˆˆˆˆˆˆ 2−′⋅′′′+′′′−′= niInn εµεµ , and 

( ) 2/1ˆˆ)ˆRe(ˆ εµ ′′==′ nn ,    ( ) ( ) 1ˆ2ˆˆˆˆ)ˆIm(ˆ −′⋅′′′+′′′=−=′′ nnn εµεµ .                          (9) 
The problem arises here how one must extract the roots from matrixes. If ε ′ˆ  and µ′ˆ  are the 
diagonal tensors with all negative (or positive) components, then n′ˆ  is the positive definite 
matrix. But the components may have different signs. One may also to use the tensor 

( ) 2/1ˆˆ~̂ µε=n . The permittivity must commutate with permeability for coincidence of these 
two definitions. Generally we must introduce several impedances, propagation constants 
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and several constructions like RI in the considered bianisotropic media. The first two kinds 
of terms are possible and necessary. But for RI it is possible and it is better not to do this, 
otherwise it is connected with the troubles of root extraction from matrixes. If one directly 
uses the Maxwell equations (but not the wave equations) the similar problems are absent, 
and the different impedances and propagation constants (also several kinds) are turning out 
in correct forms. But the RI does not quite arise instead of this. If the Cartesian axis 
directions coincide with the cubic periodic cell verge directions and the metallic inclusions 
are symmetrically located, then we have the 
simplifications Îˆ εε = , Îˆ µµ = , εεε ′′−′= i , µµµ ′′−′= i , 0>′′ε , 0>′′µ . In general case 
one must take the sign in (4) in such a way that the fields damp along the direction 

( ) ∗∗ ++= ΠΠΠΠn /0  of energy movement. Here the 2/∗×= HEΠ  is the Pointing 

vector. If the tensor n̂  is diagonal and one puts 0== yx kk , then there are two solutions: 

xz nkk ˆ0±=  and yz nkk ˆ0±= . Here the sign in dissipative media must be taken in such 
manner that there was the damping along the energy propagation direction. For hypothetical 
medium 1−== µε  in the ideal Veselago-Pendry lens (VPL) which cannot be realized 
physically, one has nkkz 0−=  (the inverse backward wave), where the RI 

( )( ) 111 =−−=n . The mentioned exotic medium 1−== µε  (or anti-vacuum) can not be 
created in form of metallic PC contrary to the statement in [49] (essentially it is mentioned 
already in [1]). Formally it corresponds to hypothetical diluted collisionless plasma of 
electric and magnetic charges (monopoles) at extremely low frequency. The rarity is 
essential in order to neglect the collision losses and proper plasma fields which lead to 
gyrotropy and spatial dispersion. As some approach to this unti-vacuum one can consider 
the high-frequency lossless and not created at present time magnetic semiconductors (when 
the frequency is less than plasma frequency and the gyromagnetic resonance frequency) can 
serve yet. But such media must be anisotropic and gyrotropic. The listed below demands 
are contradictory, that causes the difficulties in such media creation even for narrow 
frequency band. For the electrical (denoted by index e) and magnetic (index m) polarization 
current densities in hypothetic media 1−== µε  we have EJ 02 ωεie

P −=  and 
HJ 02 ωµim

P −= . These currents support the wave and are in antiphase with the fields. If we 
apply the Pointing theorem in complex form with polarization currents as incident ones in 
vacuum (that is equivalent to taking into account the media), one can get the own field 
energy density EMU  in the following form 4/4/ 2

0
2

0 HE µε +=+= m
EM

e
EMEM UUU . And 

for stored (electric and magnetic) reactive powers in this medium one has 
2

02/ EEJ ωεiP e
P

e
r ==

∗  and 2
02/ HHJ ωµiP m

P
m

r −== ∗ . Therefore m
EM

e
EM UU = , and the 

reactive electric and magnetic powers are equal and counterphased.  As corresponding to 
this the equal averaged over the period stored electric and magnetic energy densities are the 
form EM

m
EM

e
EM

m
MED

e
MED UUUUU ==== 22  (as in such medium EH 00 / µε= ). 

This energy is not transferred to matter, and the full energy density for field and matter is 
EMUU 3= . Here the brackets ...  designate the time averaging. Correspondingly the 

energy transport velocity in three times less than the velocity of light: 3/cve = . The phase 
shift 2/π  testifies to oscillations similar to some resonator modes. If one uses the formula 
(10) in [49] which is connecting pv with gv  in such ideal collisionless plasma under the 

condition 1−== µε , he has for phase velocity cvp −= , 0>pv , and 3/cv gg == v , 

3/pg vv −=  for group velocity. Accordingly he gets 1=n  and the stored reactive matter 
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energy in two time greater than the transferred by field electromagnetic energy. Here the 
division of energy on matter and field part is possible as there is no any interaction energy 
(the photon scattering is perfectly elastic). The wave movement causes the media 
polarization currents and they in one's turn support the wave. Just these antiphases lead to 
backward wave. But the energy and the majority of its carriers - photons are moving 
forward (from the source). It does not give the negative light pressure as the field 
momentum moves from the source and along the Pointing vector direction (in our case 
along z-axis). It must be noted that in such exotic medium and in general case of media 
there are always the backward and the all directional photons having the some phase shifts 
from the wave. The resulting collective effect describes by quasi-photons (polaritons), and 
the resulting energy and momentum movement goes into positive direction i.e. from the 
source, but the phase in case of NR runs backward as the result of interference. In this 
connection there is the obvious mistake in the papers [49–52]. True, it is mentioned in [52] 
that the pressure is positive for vacuum-LHM plane boundary and the negative pressure 
disappears in low frequency limit. There has been shown in the paper [53] that the 
Minkowski energy-momentum tensor form in the nondispersive media is relativistic 
covariant, that once again testifies to Minkowski energy-momentum tensor and photon 
momentum in media BDp ×=M  benefit. But the introduction of RI in Mp  for anisotropic 
and bianisotropic dispersive media is incompetent, including the substantiation of negative 
pressure and mass transferring to source when one introduces the NRI 0<n  (see [54]). By 
the way, conclusions in [49,50] contradict work [53]. According to last, if  ε  and µ  are the 
negative constants (from impossibility of it here we abstract), then the electromagnetic field 
momentum density in medium is 222 // cnc SHEp =×= εµ . I.e. the pressure is positive 
even at the negative n . This density is quantized value and also consists of quasiphotons 
momentum [55]. In [50,51] it is told about “the formula kP h=  connecting the photon 
momentum value with its wave vector” (designations and citations are taken from [50]).  
Further the conclusion follows: “It is obvious that in case of an opposite orientation of 
phase and group speed when the wave vector k  is negative, the specified form gives 
negative value of an momentum of a photon, and, thereby, at absorption or reflexion of 
light in medium with a negative refraction index the light pressure should be replaced with 
a light attraction”. Without concerning of slip about "a negative" vector, we will notice that, 
speaking about a negative direction of a vector, it is necessary to specify, concerning what. 
In ideal (infinite-periodic and lossless) PC all directions are equivalent, and forward (direct) 
and backward (return) eigenwaves are indiscernible [48]. In finite (quasi-periodic) PC 
(plate) there are radiating losses because of periodicity infringement. Such PC layer is the 
multiband filter with strong attenuation in bandgap zones and with zones of a relative 
transparency. Here waves are forced, and it is important, where there is a source: at the left 
or on the right. If it is inside of a plate it is important as concerning how the observation 
point is located. The Pointing vector S  flow goes from a source, and the phase in LHM can 
move as from a source (a forward wave), and to it (a backward wave). If a source at the left, 
the photon (quasiphoton) momentum in medium has the form cnkn /000 hh ωzz =  [54,55] 
without dependence how the phase moves. Such approach is used in [1] for construction of 
a beam picture: there the direction of a stream of energy is defined by a direction of a beam 
falling from a source. 

Here it is appropriate to consider the question: wherefrom the backward wave 
arises? Let the source with carrier frequency ω  has started to operate (has arose) at the 
instant 00 =t . In the homogeneous medium at the big time t  it creates only forward (direct 
and inverse) quasi-monochromatic waves of both directions. In the inhomogeneous (for 
example, in periodic) medium there are the reflections from their elements. The reflections 
come to source from both directions with tardiness, in which connection as the delay 
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greater, the farther elements are located. As the interference result of multiple reflections at 
the instant ∞→t  it may be that the phase is moving to the source whereas the energy and 
momentum are always traveling from the source. Therefore the negative light pressure - 
that's impossible and misunderstanding.  

The radiated in both directions source loses the mass (see [51]), but its momentum 
is zero. The mass of all closed source-field-matter system is conserved and the constant, 
and the lost mass is also distributed in the field (the opposite momentum phonons have the 
mass), and, possibly, in the medium (the losses lead to heating, and the mass of warmed-up 
medium is greater) [54]. The energy and momentum flows go from the source, i.e. on the 
right side – to the right, and on the left side – to the left.  
 Let us consider a problem about pressure of light in the LHM with 1−== µε . In 
proposal that the constitutive (material) equations ED 0ε−= , HB 0µ−=  are true for 
nonstationary Maxwell equations (i.e. for any frequency) then we get 

2/ cM HEBDp ×=×= . So the pressure is such like in the vacuum and positive in 
accordance with the momentum direction (cf. with the reasoning in [51]). The 
monochromatic wave does not press on the boundary vacuum-anti-vacuum and does not 
transmit the momentum to such medium. Further we will show that such approach is 
incorrect even for monochromatic wave. Let’s note that all quantities here are 
unambiguously defined (no any roots). But the wave pulse of train will produce the 
pressure, as that such medium possessed the properties inherent in it, the very large (strictly 
speaking, infinitely large) time is necessary for accumulation of energy of its internal 
(intrinsic) oscillations. For more detailed consideration let’s introduce the model of rarefied 
plasma with electric and hypothetical magnetic charges [1]: ( ) ( )[ ]cepe jωωωωωε −−= /1 2 , 

( ) ( )[ ]cmpm jωωωωωµ −−= /1 2 . We regard that the harmonic plane wave propagates in this 
media with the electric field polarization along the axis x ( EEx = ), and the magnetic field 
directed along the y-axis ( HH y = ). As distinct from [1, 49] we have taken into account the 
collisions here. Further we consider ( )cmce ωωω ,max>>  and ppmpe ωωω == , from which 

we have ( ) ( )ωεσωωωε 0
22 //1 ep j−−= , ( ) ( )ωµσωωωµ 0

22 //1 mp j−−= . If 2/pωω ≈ , 

then ( ) ( )pej ωεσωε 0/1−−≈ , ( ) ( )pmj ωµσωµ 0/1−−= . Here cepe ωωεσ /2
0= , 

cmpm ωωµσ /2
0= . It may be seemed that this wave complies with Maxwell equations in the 

form EEH etz σε −∂=∂ 0 , HHE mtz σµ +∂=∂ 0 . If we get the balance equation for 
momentum from these equations using the well-known way (see [54,55]), that we find 

L
m

L
e

M
tz ffgU −−=∂+∂ 0 . Here the Lorentz forces acting on the charges are in the right 

part, and term in the left part 2/ cSg M =  is the momentum density, EHS =  is the z-
component of Pointing vector. The balance equation has the standard form, but the energy 
density of wave ( ) 2/2

0
2

00 HEU µε +−=  is negative (cf. with the argumentations in [1]). 
This density (by the implication of balance equation) is the momentum flow density in z -
direction, therefore it may seems, that the momentum is really carried back, and the wave 
pressure is negative. But this is not the case. The power balance in considered equation 
forms also leads to such negative energy density 0U . We have made the gross error in our 
considerations by introducing the constants into nonstationary equations. Here the strict and 
taking into account of frequency (time) dispersion consideration is necessary, though the 
wave is monochromatic. This was indicated also is [1,51]. Such analysis in quasi-mono-
chromatic approach gives the positive energy (see [32]) and the positive pressure. Here one 
must use the integral relations ([25], formula 77.3) between the inductions and the fields, 
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where the integral operator kernels ( )tε  and ( )tµ  are obtained from the Fourier-transforms 
of ( )ωε  and ( )ωµ . Particularly,  

( ) ( ) ( ) ( ) ( )[ ]tt
t

tt ceL
Lce

p ωω
ωω

χω
δε −−−

−
+= expexp

2

 . 

Here ( )tχ  is the Heaviside function and the Landau damping is introduced here to remove 
the pole from zero point in the spectral permittivity function ( )ωε . The plane wave may be 
presented here as ( ) ( )zztEE αβω −−= expcos0 , and ( ) ( )zztHH αϕβω −−−= expcos0 . If 

pmpe ωωω ==  then we have 0000 / EH µε= , and when the collision frequencies tend to 
zero, than 0k→β  and the phase shift ϕ  and attenuation constant α  also tend to zero. 
Correspondingly we get EMUUU 30 == , ( ) ED p

22
0 /1 ωωε += , 

( ) HB p
22

0 /1 ωωµ += , i.e. for the energy and momentum transfer velocities at the 

frequency 2/pω  we have 3/cvv me == , and the phase velocity is equal to c . 
As the Dirac monopoles until now are not discovered yet, and the linear 

collisionless plasma can’t be created in principle, the LHM with real and negative 0<ε  
and 0<µ  must be regarded as hypothetical. Also they do not satisfy causality principle 
[25,27]. From the equation (6) under the similar proposals one may extract the DEs in 
which there is the hermitian conjugated tensor ∗n̂ . The difficulties of NRI introduction is 
discussed in the paper [44], and there is the suggestion in the paper [56] to hold always 

0>n  taking the corresponding signs in the solutions of DE, in the Snell law formulas, and 
in others formulas. The present paper also uses this approach with that difference, that, even 
for isotropic media, it is would be better not to use the term n  quite. It is so as it isn't 
posses the required analytical properties, and in another cases it cannot be unambiguously 
introduced in general. 
 There are different metamaterial models in literature. One from them may be taken 
in form of [6] with the taking into account the excitation of excitons. Such model is 
convenient for natural crystals or for metamaterials with nanodimensional inclusions when 
the averaging over the physical infinitesimal volume does not work already, and their 
proper permittivities and permeabilities and surface impedances are incorrect for use. It is 
shown in [6] that in this case ( )ωε  and especially ( )ωµ  have restricted physical meaning. 
Thus, the model ( ) 0<ωn  is the very crude model which does not fully correspond to NR 
physics. But it is pictorial and allows one to do any qualitative conclusions using the 
geometrical optic approximation that has determined its spreading. The next footstep – it is 
the model ( ) 0<ωε , ( ) 0<ωµ . It is more rational here to consider the complex value with 

( ) 0<′ ωε , ( ) 0<′ ωµ  and ( ) 0>′′ ωε , ( ) 0>′′ ωµ  . For the LHM having weak cross-
polarization effects the next level model is the usage of complex tensor permittivity and 
permeability. And the general model is the bianisotropic PC [47]. There is the question 
arising here: somebody could create a material with NR and scalar terms ε  и and µ  
having the simultaneously negative its real parts?  It is obvious that such PC must be 3-D 
periodic with cubic sells and similar elements in its nodes having central and axis 
symmetry. The split-ring resonators in DNM have not such symmetry. Possible approach 
here is to use the embedded 3-D-P cubic cells with various elements (resonators) 
orientations. The usage of magnetic semiconductor 3-D-P PC lower of ferromagnetic 
resonance frequency for getting ( ) 0<′ ωµ  [1] demands the external magnetic field and 
leads to gyrotropia. Moreover, the losses in ferrites are quite high. Another and more useful 
approach is the creation of biisotripic (chiral and nonreciprocal) AM. They are described by 
the material equations 
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( )HED κχεε ic −+= −1
0 ,  ( )EHB κχµµ ic ++= −1

0                     (10) 
with four scalar values: permittivity, permeability, chirality κ  and nonreciprocity χ . 
Therefore one couldn’t use only n  and ρ  here [57]. We get the chiral AM if 0=χ  [58], 
and κ  may be of both signs. For example, the chaotic implantation of ideally conductive 
microhelixes in transparent dielectric background may serve as chiral media [58]. The sign 
of κ  depends from helix winding. As far back as in 1823 Fresnel has introduced for 
optically active media two (but not one) RIs: for right-polarized and left-polarized waves 
correspondingly Rn  and Ln  with specific rotation ( ) λπ /LR nn −  [58]. If the right-winding 
and left-winding helixes are chaotically located and equiprobable, that one can try to create 
the medium with 0=κ  and zero specific rotation. The problem here is to get the NR in 
such metamaterials. Here the RI is complex, and the real losses under the NR are quite high 
from behind the resonances.  
The losses are increasing with the increase of frequency and the decrease of dimensions. 
Let’s note that it is not necessarily to have ( ) 0<′ ωε  and ( ) 0<′ ωµ  for NR [9]. It is only 
necessarily to have the obtuse angle between ev  and pv . So the NRI is the big 
misunderstanding. 

Let us summarize the conclusions. There is no real scalar RI in the NR media. It 
corresponds only to isotropic lossless and nondispersive media models. The usage of such 
RI is the very simplified models will lead to some mistakes. Both terms n̂  and ∗n̂  which in 
customary meaning may correspond to n are complex and tensor (for anisotropic case). In 
general bianisotropic case even two tensors n̂  and ∗n̂  do not describe the LHM, and in 
addition one should use four complex tensors. For hypothetical case of negative terms 0<ε  
and 0<µ  we may introduce one real positive RI εµ=n , taking the sign of zk , 
corresponding to backward wave, as just  zk  (but not n) is the result of DE solution. Then 
this RI has the meaning of retardation ckkn pz // 0 v== . The Fermat principle in such 
hypothetic media is the same as in [59] with such difference that instead of negative n we 
use the negative light way distance as the phase moves back to energy. The Snell law is 
modified by change of sign [56]. The positive scalar retardation coefficient n  may be 
introduced for wave in any media and any directions pv  and ev . If the customary optic 
lens in the operating frequency range is absolute transparent (lossless), that the phase and 
group velocities are equal: gp vv =  [31,32]. Therefore all beams come to the lens focus in 

phase with equal group time of retardation [ ] 1
/1

−

∫∫ === ndlcdlppg vττ . But in the case 
of ideal VPL and focusing of normally located point dipole source all rays come to the 
focus in zero phase, but with different group times of retardation. These times lie in the 
infinite interval ∞<≤ gcd τ/8 . The time delay comes to infinity for ray angle near the 
angle 2/π  relatively of lens axis. This lens does not focus quasistationary and especially 
nonstationary source. Even more so it does not focus short pulse, that is particularly 
established in [59]. The normally located at the distance dl <  harmonic source must act 
infinitely long for focusing. In case of tangential located monochromatic point dipole the 
full focusing is absent as their fields is not azimuthally symmetric, and the dipole does not 
create the convergent to the focus point semispherical wave as it has been shown for 
normally located case [21]. Appositely, the only such simplest case of normally located 
dipole is considered in all papers concerning to VPL. Also let’s note that for finite lens 
thickness d and finite dipole location the Ewald-Oseen extinction theorem [43] is not 
proved for VLP, and, apparently, can’t be proved. So the dipole located at the distance 

dl <  to the “ideally matched” VPL creates the reflected quasi-spherical wave which 
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especially strong, than the distance l smaller (it is corresponded with the microstructure 
influence). It is need to remember that the quasi-periodic layer of finite thickness d has the 
radiation losses [48]. So, it is needs to solve the Maxwell equations for complicated 
microstructures. The rigorous wave picture of real object image must be given by the 
combination of 3-D vector spatial (volumetric) and/or surface spectral integral transforms 
from source distributions in its volume (or on its surface) over all spatial variables 

zyx kkk ,,  in the regions ( )∞∞− , . Here all modes are included: the propagated under all 
angles and the damped evanescent ones. Such integral transform gives the image, i.e. 
transfers the source value fields from the object point r′  to the point r  of its observation. 
And the kernel of this transform is the tensor Green’s function of the layer. In view of this 
there is always some resolution limit.  

It is not necessary to consider this paper as the criticism of well-known works and 
articles on problem of NR. The goal here is to accent on possibility to use the 
electromagnetic material equations which more exactly correspond to real physical 
processes into the media with NR. It allows one to predict their properties more precisely 
including the interpretation of experimental data. 
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Abstract – Mathematical model based on a coupled system of differential equations of 
electromagnetic and thermal fields is formulated. In general case of temperature-dependent lossy 
media this model allows analyzing microwave ablation processes of tumor in human body. Such 
analysis is simplified in modeling coaxial interstitial applicators or microwave hyperthermia 
therapy. Dielectric and thermal properties of some biological tissues taken in the literature are 
reviewed.    
 

1. Introduction 
 
     Electromagnetic (EM) therapy is one of the most rapidly developing medical 
technologies nowadays. Along with infrared, radiofrequency and laser radiation 
microwaves find wide practical application in such technologies. In particular microwave 
energy is successfully utilized for hyperthermia or ablation of tumor tissues. Microwave 
exposed tumor is heated up to 43÷45ºC (hyperthermia) or 60÷90ºC (ablation) by means of 
specially designed devices, like contact type waveguide applicators [1], coaxial slotted 
antennas [2], reentrant cavities [3], microstrip or spiral arrays [4,5] operating at ISM 
(industrial, scientific, medicine) frequencies 433 MHz, 915 MHz, 2.45 GHz.  
     Numerous mathematical models (MM) are employed for computer-aided design (CAD) 
of given microwave devices. Most of them are based on 3D numerical techniques: finite 
element method (FEM) or finite difference time-domain (FDTD) method. Further upgrade 
of microwave medical applicators requires more deep understanding of processes of EM 
waves interaction with biological tissues and development of new computer memory saving 
MM.  
     The generalized MM for the EM and thermal fields distribution in human body 
irradiated by microwaves is given by the system of coupled Maxwell’s and Pennes’s 
equations with corresponding boundary and initial conditions. And besides, these equations 
are formulated usually for temperature independent lossy media. Such formulation is valid 
mainly for hyperthermia processes. But during ablation therapy temperature of tumor is 
increased on 20÷40ºC leading to coagulative necrosis. That is the temperature dependent 
dielectric and thermal properties of human tissues must be taken into account in the coupled 
MM.  
     Then the EM source parameters are neglected very often in the first Maxwell’s equation 
despite on the fact that microwave heating takes place in the near antenna zone [6]. But as it 
is known [7] the source modulation influences on the EM field pattern and that is why the 
source term must be also considered in the coupled MM.  
     Accurate modeling of microwave ablation and hyperthermia processes is impossible 
without correct and complete information about all parameters included in EM and bio-heat 
equations at least at ambient temperature. But in most cases these data are incomplete and 
the influence of temperature is not known.  
     Different assumptions can be successfully employed in order to increase efficiency of 
simulation and CAD  of microwave medical applicators. Few of them are considered in 
present paper.       
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2. Governing equations 
 

     Consider propagation and dissipation of EM waves in lossy temperature dependent 
human tissue with complex dielectric permittivity  )()()( TjTT εεε ′′−′=&  and complex 
magnetic permeability 1=µ& , where ε´ is the dielectric permittivity; ε´´ is the loss factor; T 
is the temperature. EM fields for this case both for applicator and body zone are defined 
from Maxwell’s equations: 
 

                                                   se JETETrotH +
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                                                    00 =Hdivµ ,                                                                      (4) 
 

where Е   and  H are the vectors of electric and magnetic field; τ  is the time; σе is 

the electrical conductivity of biological media; sJ  is the density of source current; ρ is the 

specific charge density; ρs is the source charge density; ε0 , µ0 are the dielectric and 

magnetic constants respectively.  

     Equations (1) – (4) can be rewritten for complex amplitudes of EM field in order 

to exclude time as parameter: 
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Let's transform equation (7) as the following: 
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And now combining (5) and (6) we can derive inhomogeneous Helmholtz equation 

for temperature dependent media [8]: 
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If parameters of the source are not taken into account we obtain homogeneous Helmholtz 

equation for temperature dependent media which is well known [9]: 
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Solutions of both (11) and (12) must satisfy Neumann’s and Dirichlet’s boundary 

conditions at metal applicator walls and condition of continuity of tangential components 

( tt HE && , ) of EM field at dielectric interfaces.  Attenuation of EM waves in human body can 

be described by so-called absorbing boundary conditions: 

                                                          tnttt EjkEjkE &&& 2
00 2 ∇+−=∇ ,                         (13) 

where 00
22

0 µεω=k  is the free space wavenumber and ω  is the angular frequency. And 

besides complete damping of EM field is achieved if biological tissue boundary is shifted at 

some distance (L) from the antenna output port: 

                                                            L = 1.15129α-1.                                             (14)   

Here α is the attenuation coefficient determined as:  
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 In most cases medical applicators can be represented as single port microwave 

network with EM source in the input port [10]: 

                                       }1){exp()( RzjME input +−= β& ,                              (16) 

where  M  are the eigenvectors of input port; β is the phase constant of EM wave in the 

input port; |R| is the reflection coefficient; z is the coordinate.  

Specific absorption rate (SAR) and power density in the interaction zone: 
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where ρt is the density of biotissue.  

The thermal field distribution is defined by Pennes’s bioheat equation [11]: 

                                           vmbbbtttt QQTTFCTTC ++−−∇=
∂
∂ )(2 ρρλ

τ
ρ ,            (19)  

where ρt, ρb are the densities of the tissue and the blood correspondently; Сt, Сb   are the 

heat capacities of the tissue and the blood;  λt is the thermal conductivity of the tissue; F is 

the blood flow rate; Qm is the specific power density caused by biochemical processes 

inside human body; Tb is the blood temperature. In more generalized formulation thermal 

parameters of blood and tissue depend on temperature: ρt(T), ρb(T), Сt(T), Сb(T), λt(T).    
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Metabolic heat source is estimated about Qm = 4200 W/m3 [12] while Qv = 105÷106 

W/m3 that is Qv >> Qm  in many real situations. Blood flow rate values vary in the range 

4.2·10-7 ≤ F, m3/kg·s ≤ 1.67·10-5 [13].  

    Equation (19) must be completed by the initial condition: T0 = 37ºC at τ = 0 and 

the boundary conditions defining heat exchange between i and i+1 dielectric layers:  
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where n is the unit condition  

    So, the processes of microwave hyperthermia and ablation of human tissues are 
described by the coupled EM-bioheat problem which is formulated either for temperature 
dependent or independent parameters of biological media. Analytical solution of this 
problem is too complicated and that is why different numerical techniques are utilized for 
simulation of EM and temperature patterns. Computational resources used in such 
simulations can be essentially reduced when medical applicator design assumes 2D 
approximation. 
 

3. Axial-symmetrical modeling 
 

Coaxial-dipole or monopole antennas are widely employed in microwave interstitial 
hyperthermia systems [2, 6, 13, 14].  EM fields in such applicators can be successfully 
calculated in cylindrical coordinate system (r, φ, z) with the help of axial-symmetrical 2D 
models. Neglecting the source term in (1) – (4) we can write [15]:   
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where Hφ is the azimuthally component of H-field; Er and Ez are the radial and longitudinal 
components of the E-field respectively.  

Then the power density in lossy media is found by:  
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0 zrv EETQ +′′= εωε .                                         (24) 
 

Finally temperature pattern will be determined by 2D bio-heat equation:  
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Equations (21)-(25) must be completed by corresponding boundary conditions in 
cylindrical coordinates.  
     

4. Numerical algorithms 
 

Duration of EM processes (nanoseconds) is much shorter than thermal ones 
(seconds or minutes) and in order to overcome this discrepancy so-called time-scaling 
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factor (ξ = τt/τem) is introduced in bio-heat equation in FDTD algorithms of the coupled 
problem solution [16]: 
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where  at = (λt/Ctρt) is the thermal diffusitivity; Vs = ρtρbCbF.  

The discrete form of equations (21) -  (25) according to FDTD computational 
scheme is represented in [15,16]. Another approach: adiabatic approximation is used in 
frequency domain computational techniques like FEM. According to this assumption 
physical parameters of lossy media are not changed during several periods of EM field 
oscillation. Such approach allows avoiding employing two time scales. Then equation (11) 
is transformed to the matrix form: 
 
                                                       [ ]{ } [ ]{ } { }JXBXA ˆ=Λ− ,                                               (27) 
 
where [A] and [B] are the sparse nonsymmetrical global matrixes; Λ is the wavenumber 
which is known if Js ≠ 0 or the eigenvalue if  Js = 0; {X} are the EM field functions; {Ĵ} is 
the vector of  source current. Final matrixes [A] and [B] can be solved with GMRES and 
SPOOLES algorithms [10].  

Generalized numerical algorithm of the coupled problem solution for temperature 
dependent media can be found in [8,16,17]. EM part of the coupled problem is solved first 
and then results of this solution (power density values) are substituted in bio-heat equation. 
The most time consuming is the first stage.   
      When the coupling between EM and bio-heat equation is weak, that is human tissue 
parameters are taken temperature independent, modeling of EM and thermal patterns is 
simplified.  
  

5. Analytical approaches 
 

Sometimes simulation time can be essentially reduced with the help of analytical 
approaches implemented in computational procedures of the coupled problem solution. For 
example, as it has been proved in [6] the steady-state T(r) and transient T(r,τ´) temperature 
are defined in local heating area as: 
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where r is the radial coordinate, r0 is the source location point, τ´ is the time period, G is the 
Green’s function which can be formulated in cylindrical or spherical coordinates.   

One more important observation made in [6] for SAR distribution in the transverse 
plane for the coaxial interstitial antenna immersed into biological tissue shows that the 
power density pattern is approximated by exponential function:  

 
                                                           )exp()( 0 qzQrSAR −= ,                                            (30) 

 
where Q0 is the peak amplitude of power density, q is the response coefficient responsible 
for the SAR pattern. Then the tissue area near the radiating slot can be subdivided on thin 
layers inside which temperature is calculated using analytical expressions obtained in [18].   
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6. Dielectric and thermal properties of bio-tissues 
 

As it has been mentioned above correct estimation of dielectric and thermal 

parameters of human tissues is one of the key moments of mathematical modeling of 

microwave therapy processes. In most cases this information is available in the literature 

only for human body temperature about 37ºC [19]. Essentially less information is available 

about ε´(T)-jε´´(T).      

 Example of temperature dependent complex dielectric permittivity of human blood is 
given in Table 1. 

 

Table 1 

Dielectric properties of blood at 2.45 GHz [19] 

T°C ε΄ ε΄΄ σ, (Оhm·m)-

1 
15 59.9 19.9 2.71 
25 57.5 17.1 2.33 
35 56 15.9 2.166 

      
 Investigations of cancerous biological samples show [20] that both  ε΄  and  ε'' of 

tumor are higher than the normal tissue because of higher water content (Table 2).  
 

 Table 2 

Dielectric properties of breast tissue at room temperature and  2983 MHz [20] 

Sample Tissue ε΄ σ, (Ohm·m)-1 Bound water, % 
Normal 20.43 3.12 43 Patient 1 

(edge 47) Tumor 32.31 3.52 62 
Normal 18.85 2.71 42 Patient 2 

(edge 49) Tumor 38.73 4.12 65 
Normal 24.98 3.25 45 Patient 3 

(edge 51) 
 

Tumor 40.1 4.31 65 

 
Solution of the coupled EM-bioheat problem requires data at least about five main 

physical parameters of human tissue:  ε΄, ε´´, ρt, Ct, λt. (Table 3).  
 

Table 3 
Physical constants of some human tissues [13, 19] 

Parameters Blood Muscle Liver Skin Fat Brain 
Dielectric permittivity 

at 2.45 GHz 
60 49.6 44.04 40.4 5.3 42.5 

Loss factor at 2.45 GHz 15 18.8 13.14 11.23 0.734 11.09 
Density, kg/m3 1060 1020 1070 1100 916 1030 

Heat capacity, J/(kg·К) 3960 3500 3590 3500 2300 3640 
Thermal conductivity, 

W/(m·К) 
0.61 0.6 0.488 0.5 0.22 0.53 
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Table 4 
Dielectric properties of human tissues at 37°C [21] 

433 MHz 915 MHz  
Tissue 

ε΄ 
σ 

(Ohm·m)-1  ε΄ 
σ 

(Ohm·m)-1 
Blood 66 1.27 62 1.41 

Bone 5.2 0.11 4.9 0.15 

Brain 57 0.83 50 1.0 
Fat 15 0.26 15 0.35 
Kidney 60 1.22 55 1.41 
Liver 47 0.89 46 1.06 
Muscle 57 1.12 55.4 1.45 
Skin 47 0.84 45 0.97 
Eye 66 1.32 55 1.4 

 
     Operating frequency of some contact type waveguide applicators [1, 3, 4] is taken lower 
than conventional frequency 2.45 GHz  in order to increase penetration depth of EM field 
in lossy media. Two main ISM frequencies used for these purposes are 433 and 915 MHz. 
Dielectric properties of some body tissues (Table 3) at these frequencies can be found in 
[21] 

 
7. Conclusion 

 
     Represented coupled mathematical model describes processes of microwave heating of 
biological tissues in human body. This model can be employed for simulation of both 
temperature-dependent and independent lossy media interaction with EM waves during 
microwave hyperthermia or ablation therapy. Some numerical and analytical approaches to 
the coupled problem solution have been analyzed. Considered model is easily adapted to 
FDTD or FEM algorithms of EM and thermal patterns computation in the interaction zone.   
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Abstract  –  Using the method of Green functions we found the four-potential and 

electromagnetic field components for a pointlike charged macroparticle moving along an arbitrary 
path in a perfectly conducting circular cylindrical waveguide. Solutions are expressed analytically 
through the Green functions of the d’Alembert operator with Dirichlet and Neumann boundary 
conditions. It is shown that if the waveguide is excited only by a longitudinal current density 
component and/or non-zero charge density (transverse current components) the obtained solution 
reduces to the well-known expressions for TM (TE) circular cylindrical waveguide modes. If 
transverse and longitudinal current density components and non-zero charge density are present 
simultaneously in the waveguide, then the radial structure of the excited electromagnetic field 
coincides with that of the superposition of TM and TE circular cylindrical waveguide modes. The 
results thus obtained allow one an ab initio calculation of the forces acting on an arbitrarily moving 
relativistic charge from the self-induced charges and currents at the waveguide walls. They also 
provide a basis for solution of rigorous self-consistent problem on the non-stationary propagation of 
relativistic electron beams in perfectly conducting circular cylindrical drift tubes with the account 
for space-charge effects. 
 

1. Introduction 
 

Modeling of intense charged-particle beams is an important subject in beam physics 
and to the development of high-power microwave oscillators and amplifiers, which use 
them as the working media. 

The first task that arises at studies of charged beam dynamics in external and 
intrinsic (self) electromagnetic fields in waveguide structures is the beam equilibrium 
configurations. For axially-symmetric charged beams moving along the circular cylindrical 
drift tube axis, this problem has a sufficiently simple solution. For certain cases the use of 
conformal transformations and taking into account of particular symmetry properties of a 
problem could substantially assist in finding solution for beams, which do not move along 
with the symmetry axis of a guiding structure or drift tube. However, such methods cannot 
be generalized for charged beams moving in complicated electromagnetic fields and not 
possessing any symmetry or periodicity. Therefore, development of efficient three-
dimensional analytical, semi-analytical and/or numerical methods for finding 
electromagnetic fields induced by arbitrarily moving charges in waveguide structures 
becomes one of the principal objectives in vacuum electronics. 

Second, physics of weakly-relativistic and relativistic high-power microwave 
sources (such as klystrons, gyrotrons, free electron lasers, etc.) requires essential knowledge 
of space-charge influence on frequencies, start current and any other oscillation conditions, 
which cannot be satisfactory achieved without calculation of electromagnetic fields created 
by a moving charge. 

Third, the well-known restrictions of differential methods, i.e. particles in cells 
codes, as opposed to integral methods, i.e. methods involving Green functions (see, for 
example, [1]) when the relativistic dynamics of charged-particle beams is important, call 
for solution of completely three-dimensional problem on the vector-potential (and inclusion 
of relativistic corrections to the electric field and the magnetic field of the total space-
charge field of charged-particle beam). In generic (i.e. not only necessarily circular) 
cylindrical geometries such solutions are obstructed by coupling of transversal components 
of the sought four-potential and electromagnetic fields [2]. Therefore, finding of efficient 
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methods to solve coupled scalar partial differential equations analytically, could greatly 
assist with modeling of various state-of-the-art microwave vacuum electron devices. 

For these reasons, we calculate analytically the four-potential and electromagnetic 
field components induced by a pointlike charged macroparticle moving arbitrarily in an 
infinite perfectly conducting circular cylindrical waveguide. Our solution generalizes that 
of [3] to the non-stationary situation and, under particular conditions of paper [4], reduces 
to the results on the four-potential presented there. Given by equations (23), (24) and (27) 
for the four-potential and (47) and (51) for the electromagnetic fields together with Green 
functions expressions (36), (37) and (43), (44), results presented here provide the general 
solution to the problem under consideration. 

 
2. Problem setup 

 
Under the Lorentz gauge condition, Maxwell’s equations for the scalar and vector-

potentials ),( txrϕ  and ),( txA rr  in the circular cylindrical coordinate system take the form: 
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where ),( txj rr , ),( txrρ  are the current and charge density; r , θ , z , t  are the circular 
cylindrical coordinates and time; c  is the speed of light in vacuum. It should be noted that 
equations (1) and (2) are coupled one to another, while equations (3) and (4) are 
independent. 

Boundary conditions for the scalar potential ϕ  and vector-potential components φA  and 
zA  follow from those for electromagnetic fields on the perfectly conducting surface 

assuming that ),( txrρ  and ),( txj rr  vanish at the waveguide boundary. In particular, 0=× En
rr  

and 0=⋅ Bn
rr  at r  = a  ( a  is the waveguide radius) lead to the conditions 

 0===
=== ararzar

AA ϕθ  (5) 
(cf., [3]). Apparently, the easiest way to deduce the boundary condition for the remaining 
component of the vector-potential, rA , is to consider the gauge condition 
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and, restricting it to the boundary, derive 
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although, this result can be also obtained directly from Maxwell’s equations. It is naturally 
assumed here that the fulfillment of the boundary conditions is achieved through radial 
dependence of the components of four-vector potential. 

Source terms on the right-hand sides of Maxwell’s equations must satisfy the continuity 
equation 
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irrespectively of the chosen gauge condition. 
Coupling of equations (1) and (2) provides the major obstacle for finding general 

solutions for rA  and θA . 
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3. Coupled equations 
 

To solve the system of coupled equations (1) and (2) we propose the following 
procedure. We apply to the both sides of equation (1) operator rrr ∂⋅∂− /)(1  and )/( θ∂∂ r  to 
those of (2). Adding them up, we have 
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where we denoted 
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Accordingly to (5) and (7), unknown function (10) on the left hand side in (9) obeys the 
Dirichlet boundary condition 
 0|div ==⊥ arA

r . (11) 
Applying operator )/( θ∂∂ r  to both sides of (1), rrr ∂⋅∂− /)(1  to those of (2) and subtracting 

the obtained equations, we find 
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where 

 ( ) 





∂
∂

−
∂
∂

=
θθ

r
z

VrV
rr

V 1rot
r . (13) 

The unknown function zz BA ≡
r

rot  on the left hand side in (12) is subject to the Neumann 
boundary condition 
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To prove this boundary condition, we assume that 0| ==arjθ  as discussed earlier and apply 
the derivative r∂∂ /  to the right hand side of (13) written for A

r . We find 
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where the last summand on the right hand side of the equation above vanishes at the 
boundary because of (7). The rest of the right hand side vanishes on comparison with the 
restriction to the boundary of equation (2) and the use of (5). Thus, equations (9) and (12) 
can be solved for ),(div txA rr

⊥  and ),(rot txAz
rr  via the method of Green functions. 

To find solutions for rA  and θA  we additionally propose the following ansatz: let us 
introduce a pair of new scalar functions ),( txP r  and ),( txQ r  obeying the relations 
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with corresponding boundary conditions 
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Substitution of definitions (16) to (10) and (13) leads to Poisson equations in transversal 
coordinates for ),( txP r  and ),( txQ r : 
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Here the right hand sides are regarded as known functions. It can be proved that (16) and 
(17) are compatible with boundary conditions (5) and (7) for θA  and rA . For θA  the 
compatibility follows directly from definitions in (16) while the proof for rA  calls for a 
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more involved consideration. The boundary condition for the radial component of the 
vector-potential is given by expression (7) and to secure our assertion it is sufficient to 
prove that arar PrrPrr ==

− ∝∂∂∂∂ ||/)/(1 . First, one can check that such a relation holds for any 
function of the form )/( arJn ν  by virtue of the Bessel equation 
[ FrnarFrrFrrFrr )//(///)/( 22221221 −−=∂∂+∂∂≡∂∂∂∂ −− ν ; a/ν  is a constant of appropriate 
dimensions]. Second, the assumption that ),,,( tzrP θ  obeys the Bessel equation (or, more 
generally, that P  is expandable in Fourier and Fourier-Bessel series with the eigenfunctions 

]sin}[){cos//( θν narJ nqn  of the “transverse” Laplace operator ⊥∆  with appropriate nqν ) 
obviously does not restrict the generality of such a consideration. Following [5, Sec. 13.1] 
we are certain that separation of variables possible in circular cylindrical coordinates 
[ ),(),(),,,( 21 tzPrPtzrP θθ =  at least] and looking for the solution for ),(1 θrP  exactly among 
eigenfunctions of ⊥∆ . 

Thus, equations (9), (12), (18) and (19) can be solved for P  and Q  by the method of 
Green functions to provide [via definitions (16)] the analytical solutions of coupled 
equations (1) and (2) for the transversal components, rA  and θA , of the vector-potential. 

It should be also noted that in this approach the Lorentz gauge condition can be set aside 
while solving system of equations (1) – (4). The possibility of this omission lies not only in 
the fact that the system had been derived using it, but also because the gauge condition can 
be inferred from equations (1) – (4) using the continuity equation. The very existence of 
such an interrelation is a priori understandable because the four-potential components are 
connected by five differential conditions (1) – (4) and (6) one of which can be shown to be 
a corollary of the others, and it is at our disposal which four equations to take as a complete 
set. To demonstrate this, we observe that equations (3) and (4) lead to the following 
equalities: 
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Adding to equation (9) equations (20) and (21), we find 
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The right hand side of this equation must vanish by virtue of continuity equation (8), 
whereas the boundary condition for the unknown function on the left hand side is that of 
Dirichlet. It then follows that the unknown function on the left hand side of equation (22) 
vanishes identically. This shows that Lorentz gauge condition (6) holds. 
 

4. Representation of four-potential 
 

So far, we have reduced the problem of finding solutions of system (1) – (4) to the 
construction of appropriate Green functions ),;,(, txtxG ND ′′rr  and );(,

⊥⊥⊥ ′xxG ND rr  of the d’Alembert 
and ⊥∆  operators with the Dirichlet and Neumann boundary conditions, respectively, in 
cylindrical coordinates. Formally, we write the solutions of equations (1) – (4) as 
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and primes over operators show that they employ primed coordinates [for the definitions of 
involved operators see (10) and (13)]. 

For a pointlike macroparticle of charge q  
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where )(~ txr  is the position of the macroparticle at the moment of time t . 
Representations (23) exhibit certain symmetry between expressions for rA  and θA . In 

these representations one can immediately see that if θjjr = = 0 then θAAr = = 0, i.e. the 
transversal current induces an analogue of the TE -eigenmode of a circular waveguide [in 
fact, the second equation in (24) shows that this analogy is quite deep one]. If zj=ρ = 0 
then zA=ϕ = 0, i.e. the charge density and longitudinal current induce an analogue of the 
TM -eigenmode of a circular waveguide. It should be also noted that by virtue of continuity 
equation (8) A

r
⊥div  vanishes identically under such a condition. 

 
5. Green functions 

 
Having reduced the problem of finding solutions of system (1) – (4) to the construction 

of the appropriate Green functions, let us proceed to the task of their explicit finding. Since 
the cases of Dirichlet and Neumann boundary conditions turn out to be completely 
identical, we shall demonstrate the accomplishing of our task for the Green functions of the 
d’Alembert and ⊥∆  operators with the Dirichlet boundary condition. 

In the first case, we look for the solution ),;,( txtxGD ′′′′rr  to the equation 
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In the dimensionless coordinates ar /=ι , az /=ζ  and act /=τ , we write 
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First, we expand the Green function into the Fourier and Fourier-Bessel series with the use 
of eigenfunctions of the bounded part of d’Alembert operator, thus, separating the 
transversal functional dependence (cf. [6]): 
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where 
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and nqν  are the roots to the equation 0)( =xJn . Substituting these series and using the 
orthogonality relations for the involved eigenfunctions, we rewrite equation (27) in the 
form 
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Second, we observe that equation (30) is the (1+1)-dimensional Klein-Gordon equation 
with the roots nqν  playing the role of mass terms (cf. [7, p. 93]). Now, we use the integral 
Fourier transform (see, e.g., [8, p. 183]) 
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and the following representation for the delta-functions: 
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( akz≡ζκ  and caw /ω≡ ). Then, equation (30) results in the solutions for the coefficients 
1D
nqg  and 2D
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It turns out that integral (31) can be solved explicitly with the use of (33). As a first step, 
we find 

 
 

Fig. 1 Contour used for calculation of integral (34) 
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which is obtained by contour integration (see Fig. 1). On the second step, we calculate 

 =
+

′′−+
′′−=

+

′′−+
′′− ∫∫

+∞+∞

∞−
ζ

ζ

ζ
ζζ

ζ

ζ
ζ κ

νκ

ττνκ
ζζκκ

νκ

ττνκ
ζζκ ddi

nq

nq

nq

nq

22

22

0
22

22 )](sin[
)](cos[2

)](sin[
)](exp[  

 ≡








>′′−>′′−

′′−>′′−









′′−−′′−=
0||
||

0
1

))()(( 22
0 ττζζ

ζζττ
ζζττνπ nqJ  (35) 

  |],|[))()(( 22
0 ζζττϑζζττνπ ′′−−′′−′′−−′′−≡ nqJ  



 

 34 

where the penultimate equality is due to the known standard integral 
[9; Sec. 2.5.25, Eq. (9)]; ][xϑ  is the Heaviside step function. Finally, the Green function of 
the d’Alembert operator with the Dirichlet boundary condition takes the form: 

 
]./|)|)([()/)()(()](cos[

)(
)/()/(

)/)()((
)(

)/()/(
2
12),;,(

1
1

222
02

1

1

222
00

0
2

1

0000
2

azzttcazzttcJn
J

arJarJ

azzttcJ
J

arJarJ
a

txtxG

n
q

nq
nqn

nqnnqn

q
q

q

qqD

′′−−′′−






′′−−′′−′′−
′′

+






′′−−′′−
′′

=′′′′

∑

∑
∞+

=
= +

+∞

=

ϑνθθ
ν

νν

ν
ν

ννrr

 (36) 

An analogous calculation with the Neumann boundary condition 0|/ =∂∂ =ar
N rG  yields: 
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where nqν ′  are the roots to the equation 0/)( =dxxdJ n . 
In the second case, we look for the solution );( ⊥⊥⊥ ′xxG D rr  to the equation 
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obeying the boundary condition 0|);( =′ =⊥⊥⊥ ar
D xxG rr . In the dimensionless coordinates ar /=ι  

and θ , we write 
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Note that Green function );( ⊥⊥⊥ ′xxG D rr  does not carry any dimensions. Again, let us expand the 
Green function into the Fourier and Fourier-Bessel series with the use of eigenfunctions of 
the bounded part of the d’Alembert operator: 
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where 
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and nqν  are the roots to the equation 0)( =xJn . Substituting these series and using the 
orthogonality relations for the involved eigenfunctions, we find from equation (39) 
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Finally, the Green function of the operator ⊥∆  with the Dirichlet boundary condition takes 
the form: 
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An analogous calculation with the Neumann boundary condition 0|/ =∂∂ =⊥ ar
N rG  yields: 
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where nqν ′  are the roots to the equation 0/)( =dxxdJ n . 
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6. Expressions for electromagnetic fields 
 

Having found expressions for the four-potential, we can obtain the corresponding 
electromagnetic fields by direct differentiation via formulas: 
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In performing these calculations, it is important to keep in mind the commutation 
property of the d’Alembert operator with the derivatives 
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This property allows one to shift the aforementioned derivatives from the Green functions 
to sources in the final formulas [cf. (20) and (21)]. 

It also should be mentioned that we have effectively found the z -component of the 
magnetic field [see (26)]. We, therefore, can write 

 
.),(tro),;,(),(

,),(),(),;,(),(

""
∫∫

∫∫
′′′′′′′′′′′′′′=

′′′′





′′∂
′′′′∂

+
′′∂

′′′′∂′′′′−=
′′′′

tV
z

N
z

tV

zD
z

tdVdtxjtxtxGtxB

tdVd
tc

txj
z

txctxtxGtxE

rrrrr

rr
rrr ρ

 (47) 

Moreover, we shall also need other auxiliary relations involving Green functions. First, 
using the definition of Green function );( ⊥⊥⊥ ′xxG D rr , one can write the following identities 
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Second, observing that obviously the d’Alembert and ⊥∆  operators commute with one 
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Results (48) and (49) (note the positions of arguments of F  in both lines of the equality 
above) are extremely useful in transforming representations for ),( txAz

r  and ),( txrϕ  in (23) to 
the form 
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Using (45), the first two relations in (23) and (50), we finally obtain 
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Expressions (47) and (51) can also be derived directly from Maxwell’s equations for the 
electromagnetic fields [cf. (57), (62) & (65) and (66) & (69)]. 
 

7.  Direct derivation of electromagnetic fields 
 

Let us derive expressions for the components of electromagnetic field directly from 
Maxwell’s equations using technique described in Section III. Maxwell’s equations read: 

 
.14rot,1rot

,0div,4div

t
E

c
j

c
B

t
B

c
E

BE

∂
∂

+=
∂
∂

−=

==
r

rr
r

r

rr

π
πρ

 (52) 

Using relations 
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obtained by differentiation of the second line in (52), we find 
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Taking into account the known relation VVV
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rotrotdiv∆ −∇=  and the first line in (52), one 
can rewrite (49) as 
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Boundary conditions for the field components are 
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and finiteness at 0=r . 
For zE  and zB , we obtain 
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These equations can be solved by the method of Green functions. The solutions read 
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where ),;,( txtxG D ′′′′rr and ),;,( txtxG N ′′′′rr  are the Green functions of the d’Alembert operator 
with the Dirichlet and Neumann boundary conditions. These expressions obviously 
coincide with those obtained from the four-potential [cf. (47)]. 

As to the transversal components, we rewrite some of Maxwell’s equations in the form 
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the right hand sides in (58) can be regarded as known functions given by ρ , j
r  and (57). 

Partial derivatives of zE  and zB  can be calculated using commutation relations with the 
d’Alembert operator. In particular, we have 

 

.),(tro),;,(

,),(tro),;,(1

,),(),(vdi),;,(1

,),(),(),;,(

""

""

22

2

2

2

2

∫∫

∫∫

∫∫

∫∫

′′′′′′′′′′
′′∂

∂′′′′=
∂

∂

′′′′′′′′′′
′′∂

∂′′′′=
∂

∂

′′′′







′′∂

′′′′∂
−′′′′′′

′′∂
∂′′′′=

∂
∂

′′′′







′′∂′′∂
′′′′∂

+
′′∂

′′′′∂′′′′−=
∂

∂

′′′′

′′′′

tV
z

Nz

tV
z

Nz

tV

zDz

tV

zDz

tdVdtxj
z

txtxG
z

B

tdVdtxj
tc

txtxG
t

B
c

tdVd
tc

txjtxj
z

txtxG
t

E
c

tdVd
tzc
txj

z
txctxtxG

z
E

rrrr

rrrr

r
rrrr

rr
rr ρ

 (59) 

Here in the second line continuity equation (8) has been used. Using relations, which follow 
from the definition of Green function (26), one can write the obvious identities: 
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For further convenience, we then calculate (using again the continuity equation) 
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Representations (61) not only provide a concise form of two right hand sides of (58) but 
also effectively dispose off singularities of the point-charge-type [delta-functions in ),( txrρ  
and ),( txjz

r ]. Summarizing, the last two expressions of (59) and expressions (61) provide 
the right hand sides to equations (58). To continue with equations (58), we employ the 
following ansatz. 
1. Electric field. Let us introduce a pair of scalar functions ),( txPE

r  and ),( txQE
r  obeying the 

relations 
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with boundary conditions 
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Substitution of (62) to the first pair of equations of system (58) leads to Poisson equations 
in transversal coordinates 
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It can be verified that if radial parts of ),( txPE
r  and ),( txQE

r  are given by Bessel functions 
then (62) and (63) are compatible with (53). The solutions to (64) with boundary conditions 
(63) read 
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The transversal components of electric field are then obtained via formulas (62). 
2. Magnetic induction. Again, we introduce a pair of scalar functions ),( txPB

r  and ),( txQB
r  

obeying the relations 
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(note the order of auxiliary scalar functions) with boundary conditions 
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Substitution of (66) to the second pair of equations of system (58) leads to Poisson 
equations in transversal coordinates 
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It can be again checked that if radial parts of ),( txPB
r  and ),( txQB

r  are given by Bessel 
functions then (66) and (67) are compatible with (53). The solutions to (68) with boundary 
conditions (67) read 
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The transversal components of magnetic induction are then obtained via formulas (66). 
Thus obtained electromagnetic field obviously coincides with that one found in the 

preceding Section. 
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Abstract - The structured mathematical description and algorithm of theoretical research of 

effect Поккельса in crystals of barium titanate and strontium-barium niobate on the basis of wave 
equations is offered. The appropriate conclusions about the optimal use of the Pockels effect for 
process control of the optical modulation devices on the given crystals are performed. 

 
 

Introduction 
 

For the selection of optimum modes of modulation of light on the concrete crystal it 
is necessary to carry out research of electro-optical properties of this crystal. Traditionally, 
at studying of propagation of electromagnetic waves in anisotropic mediums, including the 
presence of an external electric field, the method of an ellipsoid of refractive exponents (or 
an optical indicatrix) is used [1-11]. The given method, though is a consequence of the 
electromagnetic theory of light, however it is not always convenient and evident for 
quantitative assessment of the effect in anisotropic mediums, in particular in electro-optical 
crystals. 

The purpose of the present work is the theoretical description of the Pockels effect 
in electro-optical crystals (barium titanate 3BaTiO , strontium-barium niobate 

620,250,75 ONbBaSr ), realized on the basis of the electromagnetic theory. Problem statement 
about the Pockels effect [12] in the form of Maxwell equations has allowed us to transfer 
directly to wave equations and to find their solutions, i.e. to gain the expressions 
determining phase velocities and polarization of the optical plane waves, propagating in the 
given crystals in any direction for various cases of influence of external static electric field. 

The appropriate conclusions about the optimal use of the Pockels effect for process 
control of the optical modulation device based on the given crystals are performed on the 
basis of the carried out research and the analysis of the gained results. 
 

1. Problem statement about the Pockels effect in crystals of barium titanate 
and strontium-barium niobate  

 
Using general statement of the problem about the Pockels effect in the form of Maxwell 

equations presented earlier in work [12] we made following operations: 
1. the expressions defining the additives to components of the impermeability tensor, 

caused by the linear electro-optical effect, are gained in a general view; 
2. the expressions for components of the electric intensity vector of the optical plane 

wave propagating in considered electro-optical crystals are obtained; 
3. the Maxwell equations which have been written down concerning required 

components of the electric inductance vector and the magnetic intensity vector of the 
optical plane wave, taking into account the Pockels effect for the considered crystals, are 
obtained. 
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Now we will be turned to system of the homogeneous Maxwell equations, which 
completely describe an electromagnetic field of optical wave propagating in a crystal. 
Substituting in them expressions for the components of the electric intensity of the wave 
propagating in crystal 3BaTiO  or 620,250,75 ONbBaSr  taking into account the Pockels effect, 
we obtain following equations: 
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These Maxwell equations are written concerning required the components of the electric 
inductance xD , yD , zD  and magnetic intensity xH , yH , zH  of the optical plane wave, 
taking into account the Pockels effect, for crystals of 3BaTiO  and 620,250,75 ONbBaSr . Then 
we will obtain wave equations, having excluded xH , yH , zH  by substitution (2) in (1), 
and we will find their solutions for the optical plane wave propagating in considered 
crystals taking into account the Pockels effect. The obtained results are represented below. 
 
 

2. The wave equations for research of the Pockels effect 
in crystals of barium titanate and strontium-barium niobate  

 
Let's define influence of external electric field стE

r
 on propagation of the beam of 

light in crystals of barium titanate and strontium-barium niobate. Depending on a direction 
of intensity of the applied enclosed electric field its influence on propagating of the beam of 
light will be different. 

1.1) Let the electric field is applied along the optical axis z, and the beam of light is 
propagating along the axis x (or y), i.e. 
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In this case from Maxwell equations (1)-(2) two combined equations follow: 
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where 
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Such configuration (in the conditions of the transverse Pockels effect) can be used 
for making of the modulation device of laser beam with the low control voltage. 

1.2) Let the electric field is applied along the optical axis z, and the beam of light is 
propagating also along the axis z, i.e. 
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In this case Maxwell equations (1)-(2) will be transformed into the following wave 
equations: 
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From here follows that at propagating of light wave along the optical axis z the double 
refraction will not be observed also as in case of absence of the Pockels effect. For waves 
of initial polarization along the axis x or y, or any polarization in the plane (xy) phase 
velocity will be defined by following expression: 
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where  00
yyxx ηη = . 

Thus, if the modulating electric field is applied along the axis z, then beam of light 
propagating along the axis z, will have the same phase incursion irrespective of its 
polarization. Such modulation device can modulate the phase of the nonpolarized laser 
beam. 

2.1) Let the electric field is applied along the axis x, and the beam of light is 

propagating also along the optical axis z , i.e. 0ст ≠xE , 0≠
∂
∂
z

. In this case Maxwell 

equations will be transformed into the following equations: 
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2.2) Let the electric field is applied along the axis x, and the beam of light is 

propagating also along the axis x, i.e. 0ст ≠xE , 0≠
∂
∂
x

. Then Maxwell equations will be 

transformed into the following equations: 
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2.3) Let the electric field is applied along the axis x, and the beam of light is 

propagating also along the axis y, i.e. 0ст ≠xE , 0≠
∂
∂
y

. Equations (1)-(2) will be 

transformed into the following equations: 
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polarized along the axis x or z accordingly, in case of absence of the Pockels effect. These 
equations are not independent from each other, therefore we use Euler's substitution and we 
obtain following set of the algebraic equations: 
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Equating the determinant of the considered combined equations to zero, we obtain the 
quadratic concerning the quadrate of required velocity ( )2υ : 
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Then the expression (16) defining required velocity, will assume the final form: 
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From corresponding calculation [13] follows that 12 2 <<∆ , then it is possible to consider 
that 22 12   1 ∆+≈∆+ , and in this case we obtain expressions for phase velocities in the 
form: 
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The polarization directions x′  and z′ of the light waves propagating in the crystal along the 
axis y under the influence of external electric field ст

xE  with velocities 1υ  and 2υ  
accordingly, are obtained from the equations (14), (15), taking into account solutions (19), 
(20), as following expression: 
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where γ  - the corner defining induced polarization directions x′ and z′ , relative to crystal-
physics directions  x and z. The calculations show that, value γ  is very small, even for 
moderately strong electric fields and consequently is physically inessential demonstration 
of electro-optical effect in the considered crystal. 

3.1) Let the electric field is applied along the axis y, and the beam of light is 

propagating along the optical axis z, i.e. 0ст ≠yE , 0≠
∂
∂
z

. In this case Maxwell equations 

will be transformed into the following equations: 
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3.2) Let the electric field is applied along the axis y, and the beam of light is 

propagating along the axis y, i.e. 0ст ≠yE , 0≠
∂
∂
y

. Then we have the following equations: 
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3.3) Let the electric field is applied along the axis y, and the beam of light is 

propagating along the axis x, i.e. 0ст ≠yE , 0≠
∂
∂
x

. In this case Maxwell equations will be 

transformed into the following equations: 
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3. The analysis of wave equations 

 
On the basis of results of the analysis of the obtained wave equations for crystals of 

barium titanate 3BaTiO  and strontium-barium niobate 620,250,75 ONbBaSr  following 
generalizations are made. 

1) If for the considered crystals the modulating electric field is applied along the 
optical axis z ( zE ),then the beam of light propagating along the axis z, will have the same 
phase incursion irrespective of its polarization, according to the obtained expressions:  
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Ernnnn −== ,   klErn z
oyx 2

ст

13
3=∆=∆ ϕϕ ,  (28) 

where at light wave length 633,0=λ ( mµ ) value of electro-optical coefficient 
)m/V( 108 12

13
−⋅=r  – for 3BaTiO ; )m/V( 1067 12

13
−⋅=r  – for 620,250,75 ONbBaSr   [13]. 

Therefore, such modulation device (on the longitudinal Pockels effect) can modulate 
the phase of the nonpolarized laser beam.  

2) If for the considered crystals the modulating electric field is applied along the 
axis z ( zE ),and the beam of light polarized along the axis z, is propagating along the axis x 
or y, or in any direction in the plane xy, then as result of  double refraction the extraordinary 
wave will appear. This wave will have the maximum induced phase incursion which is 
proportional to length of crystal, according to expressions: 
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ст
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3 z
eez

Ernnn −= ,   klErn z
ez 2

ст

33
3=∆ϕ ,   (29) 

where at light wave length 633,0=λ ( mµ ) value of electro-optical coefficient 
)m/V( 1028 12

33
−⋅=r  – for 3BaTiO ; )m/V( 101640 12

33
−⋅=r  – for 620,250,75 ONbBaSr  [13].  

 Hence, such configuration (in the conditions of the transverse Pockels effect) can 
be used for making of the modulation device of laser beam with the low control voltage. 
Obviously, the most perspective is the linear electro-optical crystal with structure of 
tetragonal barium titanate – strontium-barium niobate 620,250,75 ONbBaSr , possessing the 
highest measured value of coefficient 33r . 
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 3) In crystals of barium titanate 3BaTiO  and strontium-barium niobate 

620,250,75 ONbBaSr  in case of the electric field is applied along the axis x or y, the linear 
electro-optical effect at any direction of propagation of the beam of light is actually 
insignificant small. 

Thus, for providing with phase modulation, the maximum change of the refractive 
index for the given linear polarization is necessary. This is optimal reached in the 
conditions of realization of the transverse Pockels effect (the electric field is applied along 
the optical axis) for the crystal of strontium-barium niobate 620,250,75 ONbBaSr . 
 

Conclusions 
 

Thus, in the present work by the example of crystals of barium titanate and 
strontium-barium, the structured mathematical description and also algorithm of research of 
the Pockels effect in arbitrary electro-optical crystal for various cases of propagating of the 
plane light waves are composed. Using the method of transformation of coordinates, it is 
possible to obtain the expressions defining phase velocities of light waves, propagating in 
electro-optical crystals in any direction. This is not represented in the present work.  

As result of analysis of wave equations corresponding conclusions about the optimal 
use of the linear electro-optical effect for control of operation of light modulators are 
drawn.  
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Abstract – The dispersion equation for open periodic helix with thin wire has been obtained 
and the dispersion dependences have been investigated numerically using the periodic Green’s 
function and the integral equation approach.  

 

Introduction 
 

Since 1943 as R. Kompfner for the first time has used the helix in the slow wave 
system, many attempts have been undertaken for approximate and accurate descriptions of 
periodic helix dispersion. Among approximate approaches, for example, one can mention 
the helix-conductive (anisotropic-conductive) cylinder model [1-4]. Its disadvantages 
reveals when the wavelength is compared with the helix period, as the model does not 
obviously consider the periodicity of helix winding (correspondingly the periodicity of 
fields) and the finiteness of wire radius (the mode matching technique is applied on the 
infinite thin cylindrical surface) [1,4]. The rigorous models even for most simple open helix 
case still have not realized that corresponds with sufficiently complicated conductor 
configurations. As the exception, on must point to the papers in which the thin wire 
conductor approximation for helix has been used (see. [5], Chapter 6 in the monograph [4], 
and the references there). The same approach has been used in the papers [6-8] for 
modeling of thin finite length helix in the cylindrical screens. Such approximation (the 
surface current replacement by the linear wire axis one) for thin helix is highly precise and 
allows one to bring the problem to one-dimensional integral equation. At the same time we 
neglects the transverse current on the wire and the longitudinal current change depending 
on transverse conductor coordinates, that is completely defensible claim. In present paper 
this approach was used with the application of different (more convenient in our opinion) 
analysis as in [4,5]. It is based on the periodical Green’s function (GF). The methods of 
more precise taking into account of conductor configuration also have been considered. 
Though the modern electromagnetic simulation program complexes (such as HFSS, for 
example) allow one to modeling also the helix [9], the construction of particularized 
mathematical models for helix structures simulation is still relevant [10.11]. 

 
1. The approximate helix dispersion equation 

 
The equations for central helix curve for one winding period in parametric form are 

0ρρ =   ,        tΩ=ϕ   ,      htz =   ,  tLs = ,    22
0

2 hL +Ω= ρ ,      10 ≤≤ t   .    (1) 
Here π2=Ω  is the full azimuth angle, h   is the helix period (step), 0ρ   is the winding 
radius, L   is the arc length per period, t   is the non-dimensional variable. Let us go from 
surface current density to axis wire current ( )I s , which is the function of arc length s of 
helix curve. We count off it from begin of helix period ( 0=t ) along the wire axis. For the 
current components we have 
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( ) ( ) LsIsI /0ρϕ Ω=      ,      ( ) ( ) LshIsI z /=    ,                          (4) 
where the full curve linear current is 

( ) ( ) ( )sIsIsI z
22 += ϕ .                                                 (5) 

The helix current density at that describes by the relations  
( ) ( ) ( ) ( )htzsIzJ −−= δρρδϕρ ϕϕ 0,,        ,                                (6) 
( ) ( ) ( ) ( ) 00 /,, ρϕδρρδϕρ tsIzJ zz Ω−−=  .                               (7) 

Here we use the scalar one-dimensional periodic GF form in the cylindrical coordinate 
system from the paper [12]: 

( ) ( ) ( )( )( ) ( )∑ ∑
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−∞=

∞
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′Φ′−+−′−−=′′′
m n

mnz zzhmkiin
ih

zzG ρρπϕϕϕρϕρ ,/2exp
4
1,,|,,~  .     (8) 

Here the time dependence ( )tiωexp  is omitted and the following functions are introduced: 
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mn JH
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,                                   (9) 

in which the ( ) 2
0

2/2 khmki zm −+−= πκ  is transverse component. The GF (8) satisfies 
the inhomogeneous Helmholtz equation [12] 

( ) ( ) ( )( ) ( ) ( ) ( )( )hzz
h

zzikzzGk z /~~exp,,|,,~2
0

2 ′−Ω′−′−
′

′−−Ω
−=′′′+∇ δϕϕδρρδ

ρ
ϕρϕρ .  (10) 

Here the tilde denotes the periodic Dirac delta-functions with the period Ω , which are 
defined by the second relation from the formulas (2.23) in [13]. This follows from the fact 
that GF (8) is obtained from satisfying (10) initial periodic GF by residue integration 
method. This fact also may be proved directly. Just, at ρρ ′≠  GF (8) satisfies 
homogeneous Helmholtz equation (10). The functions (9) are continuous at ρρ ′≠ , but they 
have the step of derivatives. Under the second differentiation on ρ  from this step and 
owing to well-known relation for cylindrical functions 
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mnmnmnmnmnmnmnmn i
HJJHHJJH

ρκπ
ρκρκρκρκρκρκρκρκ 22
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22 =−=′−

′
−−  

we have additionly the delta-function ( ) ρρρδ ′′− /  which is proportional to the step. After 
the reduction on this delta-function in (10) and on the factor ( )( )zzikz ′−−exp  one get the 
identity 

( )( ) ( )( ) ( ) ( )∑ ∑
∞

−∞=

∞
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′−′−=′−−′−−
n n

zzhzzmiin
h

δϕϕδπϕϕ
π

~~/2expexp
2
1 , 

in which the second delta-function has the period h .  
Let us further consider only the slow waves. For these 22

0 zkk < , at that there are 

the solutions zk±  where hkz /π≤ . By virtue of periodicity on zk  these solutions may be 

continued on all values hkz /π> . Therefore, always ( ) 2
0

2/2 khmkz >+ π  and  mm iχκ −= , 

0>mχ  are fulfilled  for slow wave. Correspondingly if 22
0 zkk >  (fast wave) the value mκ  

may be both real and imaginary (under big m ). In the first case we have the radiation 

(leakage) for lower number spatial harmonics owing to Hankel functions ( )2
nH  asymptotic 

behavior. Whereas for slow wave ( 2
0

2 kkz >  ) the radial damping always takes place, as the 

Hankel function argument is imaginary and ( ) ( ) ( )( ) ( ) ( )ρχπρκ mn
n

mn KiiH 12 /2 +−−=− . 

Similarly for Bessel functions one has ( ) ( ) ( )ρχρκ mn
n

mn IiiJ −=− .  
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In the loss case the attenuation in the energy leakage form is always present, but for 
slow wave it is low. The electric vector-potential according to relations (6), (7) has the 
components 

( ) ( ) ( ) ( )( )( ) ( )∫ ∑ ∑
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The usage of periodically located source GF (periodic GF) straight away leads to expanded 
in spatial harmonics vector-potential and the fields. The resulting integral equation (IE) 
may be solved only on the one period. We need further only two electrical field 
components: 
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Here  000 /εµ=Z  is the vacuum wave impedance. Let us take two helix curves like (1) 
with the winding radiuses r±= 0ρρ . Here  r   is the wire radius, and we consider 0ρ<<r . 

Obviously, these curves lie on the helix conductor surface. Both unit tangential vectors ±l
r

  

to these curves have the components ( )( )±±±Ω LhLr /,/,0 0ρ . Here  ( ) 22
0

2 hrL +±Ω=± ρ  
are the lengths per period for corresponding helix curves. If we consider the electric field 
on these curves, we must demand the boundary conditions ( ) ( ) ( ) 0=+= ±±±±±

zz ltEltEtE ϕϕτ  for 
tangential electric field. Accordingly on the helix surface we have  
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Here r±== ± 0ρρρ , tΩ=ϕ , htz =  and the designated values are introduced as: 
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Now the tangential electric field takes the form: 

( ) ( ) [ ] ( ) ( )[ ]( )( )∫ ∑ ∑
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The boundary conditions ( ) 0=± tEτ , 10 ≤≤ t  are, as a matter of fact, the IE for the unknown 
current. Since 0ρ<<r , the boundary conditions may be applied on any helix curve 
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belonging to the surface. Of course, there are infinitely many such curves and one can draw 
its beginning at any point on the wire circle cross section of radius r . Then the averaging 
over such conditions can be fulfilled [12]. For the lossless helix it is convenient to take the 
boundary conditions as arithmetical mean (omitting the factor 1/2): 

( ) ( ) 0=+ −+ tEtE ττ  .                                             (17) 
Imposing the slow wave condition one has 
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. 
Let us proceed from IE (17) to quadratic functional 

( ) ( ) ( ) ( )[ ]∫ −+ +=Λ
1

0
0 ,, dttEtEtIIkk z ττ  .                                     (18) 

Setting the approximate wire axis current distribution ( )tI , we get the dispersion equation 
(DE) ( ) 0,,0 =Λ Ikk z . Fore example, it is well known, that the current distribution in form 
of traveling wave with the speed of light along the helix curve is the sufficiently good 
approximation in the frequency wide band [5]: ( ) ( ) ( )tiLkAsikAsI 00 expexp −=−= . But the 
question of current approximation chouse is highly not simple. Such investigation will be 
performed further. At first we take the real current ( ) ( )tLkAtI 0cos=  for functional (18). It 
is convenient to put 1=A . For complex current amplitudes one can use, as a matter of fact, 
the weight functions both ( )tI ∗  and ( )tI  in generally. In the first case the real functional 
part is zero. Putting the imaginary part to zero, we have the DE 

( ) ( ) ( ) 0,,, 000 =Λ+Λ=Λ −+
zzz kkkkkk ,                                      (19) 
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0
0

cos12cos,
Lkhkmn

LkhkdttdttkkI
z

z
mnzmn −+Ω+

−−
=′′−−= ∫ ∫ βα ,            (21) 

( ) hkmn zmn +Ω+=α ,   Lk0=β  .                                      (22) 
Further  the DE will have the form (19), (20) with different relations like (21). The form 
(21) does not satisfy the symmetry condition ( ) ( )zz kkkk ,, 00

±± Λ=−Λ . This incorrectness 
corresponds with the fact that we initially set the positive direction for current wave 
propagation. In this approach all complex power is zero. If the weight function is 

( ) ( )tiLktI 0exp −=  then we get the complex value of (18). Taking zero real part, we find 

( ) ( ) ( ) ( )
220

2sinsinsin,
βα

ββαβα
−

−−−+
=

mn

mnmn
zmn kkI .                             (23) 

If we use the function ( ) ( )tLktI 0cos=  as weight, then 
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                        (24) 

The approximation ( ) ( )tLktI 0cos=  and nonconjugated weight function both determine the 
forward and backward waves. But the cosine describes the standing current wave that does 
not correspond to current distribution in helix. The expression (23) turns into zero at 0=β  
(with respect to Ωk ). In case βα ±=mn , that ( ) ( ) mnmnzmn kkI αα /sin, 2

0 m= . The expression 
(21) at βα =mn  turns into unit. Let Ω±= khkz , ,...2,1,0=k и 00 =k .  At the same time 
 (23) turns into zero, i.e. indicated values are the points (initial and terminal) of dispersion 
branches. Let Ω+±= kLkhkz 0 , ,...2,1,0 ±±=k  Then the value 0=k  corresponds to 
geometric retardation hLN g /= . Substituting this value into (19), (20), we get the equation 
for resonant frequencies determination. If one uses (21), that under Lkhkz 0=  the nonzero 
and equal to unit terms in the series are keeping for mn −= , that gives 
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Let hkkkz /0 Ω+±= . Evidently (23) now is always zero if 00 =k , i.e. the limit  
retardation for main branch is 1/ 0 == kkN z . If we take only azimuthally symmetric term 
in (19) ( 0=n ), then, using (21) and  Lkkz 0= ,  we essentially have 0=m . Then 
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Functional (19) turns into zero for any frequency, but only if 2≈gN , that says about 
highly  approximate character of  azimuthally symmetric model (21) and taken approach for 
current. 

Let us investigate the possibility of geomantic retardation achievement for relation 
(23). It is equal to zero always, if only mn −≠ , or ( ) 02 0 ≠+Ω+ Lkmn . Let 
( ) 02 0 ≠+Ω+ Lkmn . The equality mn −=  corresponds to the case βα =mn  (with the 
accurate within κπ ), i.e. ( ) ( ) ( )LkLkI nn 00

2 /sin−=− . Consequently, we have the equation 
(25), which is distinct by multiplier ( )nnI −  having the additional roots Lkk /0 π= . Such 
roots are realized under the condition ( ) 02 0 =+Ω+ Lkmn . It is clear that the values 

π=Lk0  at any integer k  determine the zeros of relation (23). For the first dispersion 
branch the value hkz /π=  corresponds to Lk /0 π= . This point is the beginning of 
bandgap, at that the corresponding group velocity equal to zero and the retardation achieves 
the value gN . The correlation (24) has need of numerical investigation.  

Thus, the taken approach of helix current wave moving with the speed of light along 
wire for quadratic functional gives the correct extreme results. Namely, for small 0k  and  

zk  the waves are moving with the phase velocity c  in both directions along z-axis, the 
dispersion branches are even and periodic on zk  with the inverse lattice period h/2π , and 
for Lkk /0 π=  there are the extremums of dispersion branches in the points 

( ) hlkz /12 π−= , ,...2,1=l  For the first branch the maximal retardation is equal to 
geometric one. The extreme points of dispersion branches do not depend on value r . 
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2. The constructions of rigorous models 

 
The used current representations give approximate results (within the framework of 

applied approach 0ρ<<r ) and need in several explanations, though as (23), so (24) give 
the correct results for πkhkz =  ( ,..1,0 ±=k ). To solve the DE (18) correctly, it is need to 
expand the current ( )tI  into series using some basis functions 

( ) ( )∑
=

=
K

k
kk tuItI

1
                                                      (26) 

and taking the extremum of quadratic form (18). For real functions  ku  one has for the 
integrals  

( ) ( ) ( ) ( )∫ ∫ ′′−== ′
∗′′

1

0

1

0

expexp dttutidttutiII kmnkmn
kk

mn
kk

mn αα ,                       (27) 

i.e. gets the hermitian matrix elements and correspondingly the real DE roots. For such 
bases one can use, fore example, the trigonometric of finite element (FE) function, in 
particulars, the simplest piecewise constant FEs [5]. For complex functions in (26) one 
must use the conjugate weight functions (the another wave is to take the real part of 
functional). If we take ( ) ( )htiktI z−= exp , then we get ( )nmmnI −= δ  and the functional (25) 
in which we have the 0k  and zk  as the unknown parameters of  seeking. But the numerical 
investigation of such DE does not lead to correct results. Let therefore consider he possible 
current representations. 

By virtue of G. Floquet’s theorem one can approximately (by truncation of series) 
write the complex current as  

( ) ( )( ) ( ) ( )tIhtiktkhkiItI z

K

Kk
zk −=Ω+−= ∑

−=

expexp&  .                         (28) 

Here the periodic complex function has the form 

( ) ( ) ( ) ( ) ( ) ( )∑
=

−
−









Ω−−Ω

+
+

=−=
K

k
kk

k

kk
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0 0
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1 δ

. 

The conjugated to (28) weight function leads to independent on zk  integrals kk
mnI ′  and not 

well numerical results. If one gives the weight function in the same form (28), then the 
good result will be obtained by putting the real part of functionals to zero. The reason of 
these misunderstandings consists in as follows. The used in the IE and in the functional GF 
is the source function of phasing and periodically located sources. Therefore the factors 

( )( )ψmhtki z +−exp  are already are contained in the GF and we must not include they into 
the current. Here for zero sell 0=m , and the term hkz=ψ  is the phase shift per sell. The 
current (28) must be used with the customary nonperiodic GF: 

( ) ( ) ( )rrjkrrrrG ′−−′−=′− − rrrrrr
0

1 exp4π  (its representations in cylindrical system are in 
[13]). Therefore for real current (26) with taking into account the relation (28) we must use 
the expansion 

( ) ( )∑
=

Ω
+

=
K

k k

k tkItI
0 0

cos
1

2
δ

  .                                              (29) 

Such periodic current has not any jumps at  0=t  and 1=t , as distinction from function 
( )htkzcos . The sufficiently simple approximation (29) with 1=K  has the 

form ( ) ( )tIItI Ω+= cos2/ 10 . It is convenient to put 20 =I . The DE is derived from the 
quadratic form extremum as zero of determinant: 
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( ) ( ) ( ) ( ) 0,,,, 2
00101100000 =Λ−ΛΛ=Λ zzzz kkkkkkkk .                        (30) 

All terms in the left part of (30) have the form of (19), (20), in with instead of (21) one 
must replace the matrix elements (27): 

( ) ( )[ ]( )( )∫ ∫ ′′−+Ω+=
1

0

1

0

0,0 cos dttdtthkmnI zmn ,                              (31) 

( ) ( ) ( )[ ]( )( ) ( ) ( )∫ ∫ ′′Ω′′−+Ω+−==
∗
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0,11,0 coscosexp dttdtthktthkmniII zzmnmn ,              (32) 

( ) ( ) ( )[ ]( )( ) ( )∫ ∫ ′′Ω′−+Ω+Ω=
1

0

1

0

1,1 cossincos dttdttthkmntI zmn .                    (33) 

The integral (31) leads from (21), if we put 0=β . The remanding integrals are also simply 
calculated and therefore not presented. In general case the rigorous K  order model leads to 
the necessity to find the roots of K  order determinant. The losses and the impedance 
boundary conditions on helix demand to use the complex current expansion and 
correspondingly the seeking of complex roots zk  for complex determinant. In this case the 
direct and backward lower and upper (corresponded to frequency) dispersion branches are 
closed in the bandgap where now the wave propagation is possible with large attenuation 
[12]. 

 
3. The simulation results 

 
We search the DE (19) roots by the besection method on 0k  with usage of relations 

(21), (23) and (24). The simulation results for relation (23) with 7.1/0 =hr ( 7766.10=gN ) 
are presented in the fig. 1 and 2. Fig. 1 demonstrates the normalized wavenumber and 
inverse retardation versus the phase shift per sell (helix) period, and fig, 2 – the frequency 
dependence of retardation. The bold lines 1 correspond to 1.0/ >hr . There is no any 
dependence from wire radius for lower r  values. The used approach has not applied for 

1.0/ >hr . The series in (19) is fast convergent by virtue of well-known relation for large 
arguments [14]: 
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Here 24n=µ is fixed. But the separately calculation of the second kind cylindrical 
functions in (20) at large arguments and indexes leads to ill-conditioned algorithms. In the 
presented results we have used the 7 azimuth and 101 index m  terms in the series. One can 
get practically the same accuracy by restriction of 21-31 m-terms. Also we have 
investigated the cases of usage 5, 9, 11 and 13 of azimuth members. Even so the results 
differ only insignificantly. The modified Bessel functions are obtained by calculation if 
integrals with the accuracy of 6-7 significant digits in their integral expressions [14]. The 
numerical exploration of formula (24) shows that it is not very good as the dispersion in 
this case is strongly nonlinear with the anomalous zone that not corresponds to helix. 
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Fig. 1. Normalized dispersion and inverse retardation for helix with 7.1/0 =hρ , 001.0/ =hr  
versus phase shift per cell hkz=ψ . The line 1, 2, 3 correspond to 001.0/ =hr , 05.0  and 1.0  
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Fig. 2. The retardation frequency dependence for the case of fig. 1 
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The DE  ( ) 0,000 =Λ zkk , which is corresponded to the case 01 =I  in (30), is also has been 
investigated numerically. The simulation gives the understated retardation coefficient N 
values. That says that zero-order approximation of constant along helix current also is not 
good. 

 
Conclusions 

 
The cylindrical coordinate system periodic GF form efficiency has been shown for 

simulation of infinite periodic helix slow wave system dispersion.  The results also may be 
used for fast wave leakage analysis in long helix antennas. This method leads to solving 
one-dimensional IE for wire axis current. It allows one to simulate the conductors with 
arbitrary cross-sections and multiple-start winding helixes. Here the several helix current 
curves arise instead one helix current and correspondingly the several coupled linear (one-
dimensional) IEs. In particular, it is convenient to analyze the ribbon helixes by setting 
several multiple-thread helix currents, uniformly located on ribbon helix surface. In any 
respect such approach is equivalent to the auxiliary sources method. The only essential 
approximation here is the absence of transverse currents on helix conductors.  

In this paper the approximate closed relations for helix DE are obtained. Their 
examination by numerical simulation shows that the relations (23) in (19) and (20) 
sufficiently well describes the helix dispersion. Evidently, appropriately to use the 
continuous real finite elements for current expansion and to construct the high order 
algorithms. One of possible low-order and convenient complex current approximations may 
be taken in the form ( ) ( ) ( )htikILtikItI z−+−= expexp 100 , which also leads to closed 
explicit DE. 
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      Abstarct - Given paper is focused on analytical and numerical modeling of cylindrical reentrant 
cavity resonator. Analytical model taken in the literature is based on the equivalent network 
method. It can be used only for approximate calculation of resonant wavelengths of such devices. 
Results of calculations can be improved if analytical model is completed with additional closed 
form expression obtained in present study using finite element method. Proposed simplified 
analytical approach can be a useful tool in computer-aided design of various microwave 
components on reentrant cavity resonator.  
 

1. Introduction 

Cylindrical reentrant cavity resonators (RCR) are used nowadays in klystron and solid 
state generators, dielectrometers, medicine applicators, particle accelerators, microwave 
filters, telecommunication antennas and etc. Electrodynamic properties of such resonators 
are defined mainly by sizes of capacitance gap formed by one or two metal posts in 
cylindrical cavity. And besides double post resonator (Fig.1) can be considered as 
combination of two single post cavities with XY symmetry plane. Geometrical model of 
RCR is completely described by aspect ratio (a×b) and sizes of capacitance gap (d×t), but 
number of freedom degrees can be reduced from four to three using normalized parameters: 
b/a, t/a, d/b.  

 
 

 

   a 

 b  d 

   t 

z 
x 

  y 

 
 

Fig.1. Cylindrical reentrant cavity 
 

 
     Such properties of RCR as quasi-uniform distribution of dominant mode electric field in 
capacitance gap and smaller aspect ratio sizes in comparison with convenient cylindrical 
resonators at fixed frequency can be successfully utilized for design of laboratory scaled 
microwave heating chambers, intended for investigations of processes of electromagnetic 
(EM) waves interaction with different substances, for example, in microwave chemistry [1], 
microwave biology and etc. Low impedance makes RCR easily compatible with coaxial 
lines which play role of feeders. That is RCR with one input port and respectively one 
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excitation element (coaxial probe or loop) is usually analyzed in the literature [2-4]. 
Significantly rarely RCR with two input ports is designed for special purposes [5].  
     Despite on a wide practical application analytical theory of RCR is absent up to now and 
it is usually simulated numerically employing finite element method (FEM) [2], finite 
difference time domain method [6], mode matching method [7], method of moments and 
finite integration method [8]. All these algorithms require serious computational resources 
and corresponding software.  
     If capacitance gap height (d) of RCR is small enough simple analytical expressions 
based on equivalent network method [9] or theoretical function [10] can be derived. Given 
simplified approaches are quite useful in engineering practice but good accuracy of these 
methods is achieved only for the dominant mode and limited range of cavity dimensions 
variation.  

The main objective of this study was to improve equivalent network method using the 
results of 3D numerical simulations.  

 
2. Simplified analytical model 

 
     It is known that the electric field of the lowest mode in reentrant cavity is mainly 
concentrated in the central part of the cavity (capacitance gap) and the magnetic field is 
distributed in peripheral region closer to the side cavity walls.  According to equivalent 
network method we can introduce quasi-static approximation and analyze both fields 
separately neglecting penetration of the E-field in peripheral region and the H-field in 
capacitance gap.  Then resonant wavelength will be determined as: 
 
                                                            eeCLсπλ 2= ,                                                        (1) 
 
where c is the velocity of light;  Le is the equivalent inductance; Ce  is the equivalent 
capacity.  Using approach proposed in [9] and cavity sizes labeling (Fig.1) two main 
parameters of equivalent circuit can be expressed as: 
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where ε0,µ0  are the dielectric and magnetic constants respectively; ε΄ is the dielectric 
permittivity; µ΄ is the magnetic permeability of media inside cavity.     
     Substituting (2) and (3) in (1) and assuming that for air ε΄ = µ΄ = 1 normalized resonant 
wavelength of the reentrant cavity [9]: 
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     As it was mentioned in [9] multiple testing of equation (4) derived for any aspect ratio 
b/a has shown that accuracy of  λ  calculation is nearby 10 ≤ ∆% ≤ 20 when  0.2 ≤ t/a ≤ 0.5; 
0.1 ≤ d/b ≤ 0.5.  
     When b/a = const formula (4) describes a function of two variables λ = f(t/a, d/b) 
geometrical interpretation of which is a surface. And now it is necessary to find intervals of 
both geometrical parameters variation ensuring minimal computational error.  
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3. FEM model and design equation 
 

     3D finite element model of the reentrant cavity (Fig.1) has been built using commercial 
software COMSOL V.3.5 (www.comsol.com). Symmetrical half of geometrical model 
shown in Fig.1 with magnetic wall boundary conditions at the symmetry XZ-plane was 
analyzed. Mesh model included about 120,000 ÷ 160,000 tetrahedral edge elements.  
Variable density mesh was employed with denser mesh in capacitance gap region taking 
into account peculiarities of electric field distribution for dominant mode. Introduction of 
electric wall boundary condition at XY symmetry plane easily transforms double post RCR 
model in single post model with half reduced sizes along Z axis: b1 = 0.5b and d1 = 0.5d.   
      EM field in the cavity under study is described by Helmholtz equation which can be 
expressed in matrix form as [6]: 
 
                                                          [A]{X} = Λ[B]{X},                                                    (5)  
 
where [A] and [B] are the sparse symmetrical matrixes; Λ are the eigenvalues; {X} are the 
eigenvectors of electromagnetic field.   
    General Minimal Residue (GMRES) algorithm was utilized for matrix equation (5) 
solution. Numerical model was tested both for single post and double post RCR using 
experimental data obtained in [6, 11]. Comparison of numerical and experimental 
approaches is given in Table I.  
 

Table 1 
RCR resonance wavelengths 

 
Single post RCR: a = 30 mm,  

b1 =  10 mm, t = 20 mm, d1 = 1.5 mm. 
Double post RCR: a = 1900 mm,  

b =1450 mm, t = 600 mm, d = 450 mm. 
Measured [11] Simulated Measured [6] Simulated 
λ/a = 2.87 λ/a = 2.95 λ/a = 2.09 λ/a = 2.1 

 
     Described numerical model was implemented for the calculation of the lowest mode 
resonant wavelengths (λ) of the double post RCR (Fig.1) as a function of two geometrical 
parameters t/a and d/b when  0.2 ≤ b/a  ≤ 1. Two examples of such functions for 0.1 ≤ t/a  ≤ 
0.8 and 0.1 ≤ d/b  ≤ 0.9 are represented in Fig.2.   
 
 

                 
                                           
                                          a)                                                                              b) 
 

Fig.2. Dominant mode resonant wavelengths in reentrant resonator with b/a = 0.2 (a); 0.8 (b) 
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     Intersection of each of these surfaces with function λ/a = f(t/a, d/b) obtained analytically 
by means of (4) has demonstrated that the maximum accuracy of analytical modeling is 
achieved for 0.2 ≤ b/a  ≤ 1 and 0.1 ≤ t/a  ≤ 0.8 only when capacitance gap height is 
described by approximate function: 
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 (6) 

 
where u1 ÷ u10 coefficients values are given in Table 2. Equation (6) has been derived with 
the help of surface fitting procedures and Table Curve 3D V.4 software 
(www.sigmaplot.com). Determination coefficient for expression (6): R2 = 0.9988. 
 

Table 2 
  Empirical coefficients for equation (6) 

 
u1 u2 u3 u4 u5 

0.528129 0.85474 1.45029 0.436696 -1.44782 
u6 u7 u8 u9 u10 

0.578403 0.073195 -0.056704 -0.6079025 -0.01729 
 
 
     In order to check equations (4) and (6) five RCR (Fig.1) designs with different arbitrary 
taken sizes were simulated employing FEM model described above. Results of comparison 
of numerical and analytical data are shown in Table 3.  
 

Table3 
Testing results of analytical model 

 
RCR 

design 
b/a t/a d/a λ/a, anal. λ/a, FEM 

1 0.25 0.78 0.072 1.9444 1.9383 
2 0.37 0.63 0.230 1.5705 1.5546 
3 0.58 0.51 0.459 1.4184 1.4284 
4 0.72 0.37 0.584 1.3866 1.4051 
5 0.93 0.24 0.725 1.4443 1.4141 

       
 
     Represented analytical model which includes equations (4) and (6) can be used for 
calculation in first approximation the eigenwavelengths of the dominant mode in RCR with 
0.2 ≤ b/a  ≤ 1 and 0.1 ≤ t/a  ≤ 0.8. And besides two steps approach is necessary here: 
1) determination of  capacitance gap height values according to (6); 
2) normalized wavelengths calculation by means of (4).  
     Main advantage of this model is it simplicity and main drawback is the limited range of 
capacitance gap height variations defined by condition (6) where basic equation (4) 
demonstrates best accuracy.  
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4. Conclusion 
 
     Analytical expression determining restrictions on known equivalent network model and 
allowing approximate calculating resonance wavelengths of RCR has been derived and 
tested.   
     The authors would like to thank Institut für Höchstfrequenztechnik und Elektronik 
(IHE), Universität Karlsruhe for technical assistance in using some software. This work 
was supported by Ministry of Education and Science of Russian Federation (project N 
2.1.1/575).  
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Abstract — The results of optimal Simplex-Sum Design of experiment development for the 
numerical or physical modeling are presented. Using developed method, design of experiments, that 
possess the properties of symmetry, orthogonality, rotatability, D-optimality and contains a small 
number of experiments, has been constructed. The third-order design of experiment was calculated 
for the Slow-Wave Structures (SWS) with coupled cavity chain electrodynamics characteristics 
modeling. The wide range of factors variation allows using this design for devices of different 
functionality. 

 

1. Introduction 

The development of high-power microwave devices supposes mathematic modeling 
of waveguide systems (WS) and processes of electron beams interaction with 
electromagnetic fields of the WS, computation of characteristics of individual parts using 
models as well as an optimization of the whole device in order to achieve the required 
output parameters [1]. 

At the modern stage of computer modeling techniques the development of 
simulation of electrodynamics characteristics (EDC) of WS can be done quite accurately by 
the field methods based on Maxwell's equations for boundary conditions presented. Due to 
it’s an awkward task to do the optimization of WS with loss and deterministic 
inhomogeneous, taking into account. Also, at the process of moving in the short-wave 
range it’s difficult to account the manufacture inaccuracies and quality of the surface of 
WS, that has a significant influence on their parameters.  

One of the ways of solving these problems is to use a polynomial regression models 
of EDC or parameters of equivalent circuit (for WS), constructed according to the 
numerical or physical designing experiments data and to take into account the implications 
of the above factors [2]. 

In this case a mathematical model can be represented by the following expression 
[3]: 

),...,( 21 kxxxf=η ,     (1) 
where kx  - independent variable (factor) – for example, the sizes of the WS,  
η  - simulated electrodynamics parameter of the WS, 

),...,( 21 kxxxf  - polynomial of required order. 
The problem of the adequate regression equation (1) construction using 

experimental data (i.e. solving of the task of coefficients determining in regression 
equation) is possible only under certain stringent requirements: design of the experiment 
should be symmetric, orthogonal, should ensure minimum error of the regression 
coefficients dispersion (D-optimal), etc. [4] 

The theory of design of experiments [4-8] offers different ways of optimal design 
searching by various criteria. Often, the complete factory experiment, in which all possible 
combinations of factor levels implemented, is used. Also its fractional replicates are widely 
used. But high complexity and unsuitability of this method is conditioned on a necessary 
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number of experiments increasing with the number of factors taken into account addition. 
Therefore, all efforts of the design theory of experiments aimed at improving its efficiency 
by reducing the number of experiments with the model adequacy saving. In [9] the methods 
for constructing second-order Design, that available to reduce the number of experiments 
and improve the dispersion characteristics of the experimental data, are presented. The 
experiment was done on the base of second-order Simplex-Sum Design. The error of 
dispersion characteristics calculation by this model does not exceed 3% and the coupling 
resistance - 10%. Further reduction of the error of models could be achieved by using data 
from experiments that were done using designs of higher orders. 

 
2. The Design of experiments on the base of a regular simplex 

 
The principle of many single-factor experiments replacing by one multiple-factor 

[4] suggests using the experimental data, which belong to different single-factor 
dependence in single-factor experiments, for cross-averaging. For that purpose the 
allocation of experiments in the factors space must be performed in a special way, called 
the optimal design of experiment. One of the optimal design properties is that it does not 
only reduce the number of experiments, but also provides less dispersion of averaged 
results variance than in separate single-factor experiments. 

Rotatable composite designs [5] are often used in the practice of the experiments 
designing and besides points of the first-order design contain extra "star" and central points. 
In [6] rotatable D-optimal designs on k -dimensional hyper sphere were suggested for a 
polynomial regression. 

In [7] correct simplex was proposed to use as a design of experiments, which is 
defined as the set of 1+k  equidistant points in a k -dimensional space. In one-dimensional 
space it is a line segment. For two factors the simplex is an equilateral triangle, for three - a 
tetrahedron (Fig. 1), etc. This design allows to approximate the required characteristics with 
the help of a first order polynomial. 

 

  
Fig. 1. The first-order simplex-design in the three 
dimensional factor space geometric interpretation 

Fig. 2. The third-order simplex-sum design of 
experiments geometric interpretation in the three-

dimensional factor space 
 

 
 
 
The matrix of a simplex in the k -dimensional space can be expressed by the follow 

equation: 
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where ( )12 +
=

j
jQ j  and ( )12

1
+

=
jj

q j  – radiuses of the round and inscribed in the j -

dimensional simplex spheres ( kj ,...,1= ), respectively. 
The matrix X  is the design of the 1+= km  initial experimental series. The rows of 

the matrix ( k -dimensional vector ixr , mi ,...,1= ) are the coordinates of vertices of the 
regular simplex in k -dimensional factor space. The columns presents the varied factors. 
This design allows to approximate the required characteristics using a first-order 
polynomial. 

The matrix X  of Simplex-Design of experiment has properties of symmetry, 
normalization, orthogonality, rotatability and D-optimality 

In [8] it was proposed to use a regular simplex (2) as a basis for development of 
composite designs for the second-order polynomial. In addition, these designs can satisfy 
the requirements of symmetry, normalization and orthogonality, and also possess the 
properties of rotatability and D-optimality. 

 
3. The Design of experiment for SWS with coupled-cavities-chains 

In this work the third-order Simplex-Sum Design of experiment for the physical 
modeling of coupled-cavities-chain type SWS with bean-shaped slits bond (Fig. 3) (which 
has eight independent dimensions) EDCs was constructed on the base of developed 
methodology. 
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Fig. 3. Longitudinal  and transverse sections of an SWS of coupled-cavities-chain 
type with bean-shaped coupling slots rotated through 1800 slot: (L) period, (d) gap, 
(t) diaphragm thickness, (r1,r2) inner and outer radius of the drift tube, (r3,r4) 
inner and outer radius of the coupling slot, (r5) radius of the cavity, and (α) flare 
angle of the coupling slot 

Regression equation of the response surface is represented as: 
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where kx  - independent variable factor; iβ  - coefficient of regression. 

Sufficiently wide range of factors, that needs to simulate the SWS of different 
functionality, was chosen (Table 1, 2). 
 

Table 1. 
Range of  factors variation used in the Design of experiment 

 
 Lt  Lr52  54 2rr  43 rr  πα  52 rr  21 rr  Ld  

min 0,1533 2,5800 0,4270 0,4670 23,5550 0,2082 0,5537 0,2133 
max 0,2867 3,5867 0,4830 0,6368 37,8790 0,3047 0,7226 0,4000 

 
Table 2. 

The normalized third-order Simplex-Sum Design for SWS 
 

№ Lt  Lr52  54 2rr  43 rr  πα  52 rr  21 rr  Ld  
1 0,2867 3,3667 0,4654 0,5787 0,58333 0,2693 0,6618 0,3467 
2 0,1533 3,3667 0,4654 0,5787 0,58333 0,2693 0,6618 0,3467 
3 0,2200 2,5800 0,4651 0,5778 0,58333 0,2687 0,6635 0,3467 
4 0,2200 3,1067 0,4270 0,5829 0,58333 0,2682 0,6640 0,3467 
5 0,2200 3,1067 0,4549 0,4670 0,58333 0,2682 0,6640 0,3467 
6 0,2200 3,1067 0,4549 0,5566 0,41111 0,2682 0,6640 0,3467 
7 0,2200 3,1067 0,4549 0,5566 0,55556 0,2082 0,6598 0,3467 
8 0,2200 3,1067 0,4549 0,5566 0,55556 0,2597 0,5537 0,3467 
9 0,2200 3,1067 0,4549 0,5566 0,55556 0,2597 0,6529 0,2133 
10 0,2200 3,1067 0,4549 0,5566 0,55556 0,2597 0,6529 0,3333 
11 0,2533 3,1333 0,4830 0,5595 0,51111 0,2638 0,6371 0,3333 
12 0,1867 3,5867 0,4498 0,5620 0,51111 0,2639 0,6268 0,3333 
13 0,1600 2,7067 0,4557 0,5622 0,51111 0,2636 0,6262 0,3333 
14 0,2800 2,9733 0,4372 0,5590 0,51111 0,2623 0,6325 0,3333 
15 0,2200 3,1067 0,4549 0,6179 0,66111 0,2597 0,6364 0,3333 
16 0,2200 3,1067 0,4549 0,4764 0,62222 0,2597 0,6364 0,3333 
17 0,2200 3,1067 0,4549 0,5566 0,55556 0,2940 0,7226 0,3333 
18 0,2200 3,1067 0,4549 0,5566 0,55556 0,2146 0,7000 0,3333 
19 0,2200 3,1067 0,4549 0,5566 0,55556 0,2597 0,6529 0,4000 
20 0,1867 3,1333 0,4830 0,5286 0,57056 0,2511 0,6525 0,3133 
21 0,2533 3,5867 0,4498 0,5289 0,57056 0,2547 0,6423 0,3133 
22 0,1600 2,9733 0,4372 0,5282 0,57056 0,2489 0,6577 0,3133 
23 0,2800 2,7067 0,4557 0,5297 0,57056 0,2512 0,6471 0,3133 
24 0,2200 3,1067 0,4549 0,5849 0,41111 0,2489 0,6552 0,3133 
25 0,2200 3,1067 0,4549 0,6368 0,62222 0,2489 0,6552 0,3133 
26 0,2200 3,1067 0,4549 0,5566 0,55556 0,2790 0,5615 0,3133 
27 0,2200 3,1067 0,4549 0,5566 0,55556 0,3047 0,6972 0,3133 
28 0,2200 3,1067 0,4549 0,5566 0,55556 0,2597 0,6529 0,3800 

 

As evident from the table 2 the Design contains 28 experiments that allows to 
construct a third-order polynomial model. 

The design of experiment in natural sizes, rounded taking into account technological 
tolerances for manufacturing, is presented in table 3. 
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Table 3. 
The third-order Simplex-Design of experiment for the SWS of coupled-cavities-chain type 

simulation  
 

№ mmL,  mmt,  mmr ,2 5  mmr ,4 mmr ,3 ,α degree mmr ,2 2  mmr ,2 1  mmd ,
1 15.0 4,3 50,5 23,5 13,6 105,0 13,6 9,0 5,2 
2 15.0 2,3 50,5 23,5 13,6 105,0 13,6 9,0 5,2 
3 15.0 3,3 38,7 18,0 10,4 105,0 10,4 6,9 5,2 
4 15.0 3,3 46,6 19,9 11,6 105,0 12,5 8,3 5,2 
5 15.0 3,3 46,6 21,2 9,9 105,0 12,5 8,3 5,2 
6 15.0 3,3 46,6 21,2 11,8 74,0 12,5 8,3 5,2 
7 15.0 3,3 46,6 21,2 11,8 100,0 9,7 6,4 5,2 
8 15.0 3,3 46,6 21,2 11,8 100,0 12,1 6,7 5,2 
9 15.0 3,3 46,6 21,2 11,8 100,0 12,1 7,9 3,2 

10 15.0 3,3 46,6 21,2 11,8 100,0 12,1 7,9 5,0 
11 15.0 3,8 47,0 22,7 12,7 92,0 12,4 7,9 5,0 
12 15.0 2,8 53,8 24,2 13,6 92,0 14,2 8,9 5,0 
13 15.0 2,4 40,6 18,5 10,4 92,0 10,7 6,7 5,0 
14 15.0 4,2 44,6 19,5 10,9 92,0 11,7 7,4 5,0 
15 15.0 3,3 46,6 21,2 13,1 119,0 12,1 7,7 5,0 
16 15.0 3,3 46,6 21,2 10,1 112,0 12,1 7,7 5,0 
17 15.0 3,3 46,6 21,2 11,8 100,0 13,7 9,9 5,0 
18 15.0 3,3 46,6 21,2 11,8 100,0 10,0 7,0 5,0 
19 15.0 3,3 46,6 21,2 11,8 100,0 12,1 7,9 6,0 
20 15.0 2,8 47,0 22,7 12,0 102,7 11,8 7,7 4,7 
21 15.0 3,8 53,8 24,2 12,8 102,7 13,7 8,8 4,7 
22 15.0 2,4 44,6 19,5 10,3 102,7 11,1 7,3 4,7 
23 15.0 4,2 40,6 18,5 9,8 102,7 10,2 6,6 4,7 
24 15.0 3,3 46,6 21,2 12,4 74,0 11,6 7,6 4,7 
25 15.0 3,3 46,6 21,2 13,5 112,0 11,6 7,6 4,7 
26 15.0 3,3 46,6 21,2 11,8 100,0 13,0 7,3 4,7 
27 15.0 3,3 46,6 21,2 11,8 100,0 14,2 9,9 4,7 
28 15.0 3,3 46,6 21,2 11,8 100,0 12,1 7,9 5,7 

Rounding leads to optimal properties modification, therefore its assessment was 
realized (results are presented in the table 4). 

 
Table 4. 

Comparison of design properties before and after rounding 
 

Properties of Design 
Design constructing 

with machine 
precision 

Design taking into 
account of machine's 

capabilities 

Symmetry ∑
=

n

i
ijx

1

 10-16÷10-17 0 

Orthogonality ∑
=

n

i
ilij xx

1

 10-17÷10-18 10-15÷10-3 

Rotatability i
T
i XMX 1−  0.2963±10-4 0.2963±10-3 

D-optimality ( ) 1det −XX T  0.0391 0.0393 
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Thus as it is shown in table. 4 properties of the experimental Design, taking into 
account technological tolerances, are close to optimum, i.e. it can be used for SWS EDCs 
modeling. 

 

4. Results 
 

As a result of this work the method of  n-th order Simplex-Sum Designs constructing 
for numerical or physical experiments on modeling EDCs of the SWS of coupled-cavities-
chain type using polynomials of higher order was developed. The algorithm of method is 
implemented in the graphical programming environment LabVIEW 8.5.  

The third order simplex-design for the SWS of coupled-cavities-chain type with bean-
shaped coupling slots rotated through 180° connection for the wide range of factors 
variation was constructed.  

The properties assessment of experimental design was done with taking into account 
technological tolerances for manufacturing measurements. Its suitability was demonstrated. 
Developed design is proposed to be used in SWS EDCs modeling. 
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Abstract - The main goal of this publication is computational modeling of operating 
conditions and determination of optimal parameters for four-gap resonator with cophased oscillation 
mode that provides maximum value of electronic efficiency for multibeam monotron. A monotron 
generator that has multibeam structure and common four-gap resonator be able to provide high 
efficiency and output power, small overall dimensions and weight. 
 

1. Introduction 
Nowadays the development of high power microwave devices with a small mass 

and simple structure is getting great attention due to their possible application as a high 
power RF generators for different technological process (drying, defrosting, vulcanization, 
pasteurization, caking, destruction of materials, baking), where required power of 
continuous operation is up hundreds kilowatts.  In addition they can be applied as a power 
generator in the charged particle accelerators. One kind of like devices is monotron - a 
high-power floating-drift generator with single cavity. Monotron may be utilized as high 
power microwave device for industrial and technological applications. 

The traditional monotron generator with homogenous RF field in cavity’s gap has 
low efficiency (2-5%) [1].  

In relevant publications that devoted monotron generators with single one-gap 
cavity and heterogeneous RF field we can reveal if the RF field has the optimal distribution 
function in interaction area the efficiency is around 20% [2]. This value is actually if 
multibeam or circular stream used. More value of monotron generators efficiency (up to 
50%) can be obtained if a two-gap cavity with different magnitude of electrical field in gaps 
is utilized [3].  The results of calculations are shown that like value of efficiency can be 
reached in the output gap cavity only at high magnitude of RF voltage. But this condition 
restricts a maximum output power such devices because of strong dependence of energy 
relations to signal level.  

Thereby the research of availability of a three-gap and a four-gap cavity with 2π-
mode, π-mode for applying in monotron generator with high efficiency is appropriately.  

 
2. Mathematical simulation 

The conditions of high efficiency are good grouping of beam, that is characterized 
by high magnitude of circulating current, effective magnitude RF field intensity in initial 
interaction area must be considerably less than field intensity in extraction of energy area 
(RF field must be increasing in direction of beam movement), low initial velocity spread 
and space charge in the beam. 

Hereby, the main tasks of research are: 
• Investigation of process interaction in different cavities types (three- and four- 

gaps); 
• Investigations of electrons interaction features with RF field at different field 

distribution function along interaction area; 
• Influence of space charge at the efficiency. 

As a result of this stage of research a mathematical simulation of electrodynamic 
system has been made. The object of research was a four-gap resonant system operating in 
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2π-mode. Method of investigation - mathematical simulation of a physical process in 
electrodynamic system with «AZIMUTH» code [4].  

Thereby the optimal construction of a four-gap cavity was found that has following 
parameters: resonance frequency 2450 GHz, characteristic impedance 83 Ohm, unloaded 
Q-factor- 3500, operation mode Е040. 

Following functions field distribution in a discrete gap cavity that was synthesized 
in code «AZIMUTH» shown at figures 1-3. 

 

  
Fig. 1. Homogenous field 

distribution: 
U1/U4=U2/U4=U3/U4=1.0 

Fig. 2. Heterogeneous field 
distribution: U1/U4=0.52, 
U2/U4=0.47, U3/U4=0.68 

Fig. 3. Optimal field 
distribution: 

U1/U4=0.22, U2/U4=0.6,  
U3/U4= 0.89 

 
For various values ξ (ξ=Ũ/U0, where Ũ- relative amplitude of RF voltage in cavity; 

U0-accelerating voltage) the dependences of a first harmonic normalized amplitude of 
convection current and a electron efficiency (ηe) against accelerating voltage was found 
using «DISKLY» code (fig.4,5) [5]. These curves correspond to field distributions (fig.1-3).  

 
 

Fig.4. The dependences of first harmonic normalized amplitude of convection current 
as function of the accelerating voltage  

 

The results of investigations shown that for homogenous field a maximum of a 

convection current I1max/I0 = 1.55 is reached for U0=15 Kv at ξ=0.8; with increasing ξ 

(ξ>0.8) a regrouping of electron beam is occurred accordingly maximum of convection 

Optimal field distribution, ξ=1.5

Heterogeneous field
distribution, ξ=1.1 

Heterogeneous field
distribution, ξ=1.2 

Homogenous field 
distribution, ξ=0.8 
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current shifts in side of third gap and extraction of energy occurred in the third gap. 

Therefore such field distribution is not effective.  

For heterogeneous field (Fig.2) a maximum of convection current I1max/I0 =1.6 is 

reached at U0=15.3 Kv, ξ=1.1; at ξ>1.2 and extraction of energy occurred in third gap. 

For optimal distribution function (Fig.3), maximum of convection current I1max/I0 

=1.8 is reached at U0=15.5 Kv, ξ=1.5; at ξ>1.5 and extraction of energy occurred in third 

gap. 

Therefore a numerical experiments shown that an optimal operating condition for 

this device is where additional grouping and energy extracting combine in two last gaps. 

The evidence of this supposition is dependence of normalized amplitude of first harmonic 

convection current (Fig.4). 

 

 
 

Fig. 5. Dependence of electron efficiency against accelerating voltage 
 
 

The maximum value of a electron efficiency that can be reached in such a four-gap 

cavity structure operating at 2π-mode for homogenous field is approximately 35%  and 

48% for heterogeneous field at U1/U4=0.52, U2/U4=0.47, U3/U4=0.68. For optimal field 

distribution with a relative voltage amplitude U1/U4=0.22, U2/U4=0.6, U3/U4=0.89 

efficiency is 60%. 
 

3. Conclusions 

The quality of investigated electrodynamic system is high efficiency that reached on 
condition that electrical strength of cavity doesn’t disturb. More cavity output power can be 
reached with using annular or a multibeam electron-optical system with a high summary 
perveance that allowed decreasing accelerating voltage, overall dimensions and mass of 
device. Utilizing one cavity will allowed making adjusting of device at resonance frequency 
more easy in comparison with multiple-cavity klystron.  

 

Optimal field distribution, ξ=1.5 

Heterogeneous field distribution, ξ=1.2 

Heterogeneous field distribution, 
ξ=1.1

Homogenous field 
distribution, ξ=0.8 
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Abstract — The features of envelope solitons formation in one-dimensional periodic 

ferromagnetic structure were considered. The model based on the coupled nonlinear Schrodinger 
equations was used for investigation. The parameter space showing the region, in which the solitons 
similar to Bragg solitons with different features can form, was calculated. The mechanisms of the 
formation of the solitons localized on the limited length of the structure were considered. 

 
1. Introduction 

 
At the present time investigation of the envelope solitons (localized wave packets) are 

of a great interest. This type of solitons can be formed from a pulses propagating in 
different medium with nonlinearity and dispersion [1]. A new type of solitons, called Bragg 
soliton, or the gap solitons can be formed in nonlinear media whose properties vary 
periodically in the definite direction with length [2]. The photonic crystals are an example 
of such media in optics. In this structure the refractive index is a periodic function of spatial 
coordinates [3]. The investigation of Bragg solitons are of interest not only from a 
fundamental point of view, but also have great potential for practical use of such structures 
in telecommunications systems, in optical communication lines [4]. 

In recent years, due to advances in the technology of thin-film magnetic materials 
raising and a new approaches to obtain periodic structures the production of crystals, based 
on the magnetic materials — magnon crystals (such as photonic crystal) represent a great 
interest. The magnon crystals where spin waves propagate are similar to the photonic 
crystal [5,6].The magnon crystals have a number of significant advantages compared to the 
photonic crystals: the ability to manage their properties by an external magnetic field and to 
use a planar technology, and 
moreover crystals creation with 
magnon band gap at microwave 
frequencies (the order of several 
millimeters). The nonlinear effects 
in ferromagnetic films appear at 
relatively low power levels [6].  

The magnon crystals by 
analogy with the photonic crystals 
demonstrate more interesting 
nonlinear phenomena in comparison 
with the effects observed in 
homogeneous ferromagnetic films. 
However, we can conclude that the 
nonlinear processes in such periodic structures, including those associated with the 
peculiarities of formation of solitons are investigated insufficiently. You can specify only 
some work in this direction [7-9], which shows the experimental and numerical simulation 
results based on a one-dimensional nonlinear Schrödinger equation (NSE). The coefficients 
of dispersion and nonlinearity, which were calculated based on the assumption that only 

Fig.1. The scheme of periodic ferromagnetic structure 
with the geometrical sizes: L – period;  1d  – thickness 
of a film; 1 2d d d∆ = −  – depth of a groove; 

2 1a L a= −  – width of a groove 
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one magnetostatic wave propagates in the ferromagnetic film. The dispersion of this wave 
depends on the parameters of the periodic structure. 

The coupled-mode theory was used for investigation fiber-optic gratings [3]. The 
essence of this method lies in the fact that the nonlinear wave processes in such structures, 
mainly due to a superposition of incident and reflected waves. The system of coupled NSE 
was used to describe this structure. In this case the use of one NLS is a simplified approach 
to describe a nonlinear dynamics of periodic structures. 

The aim of this work was to investigate the features of formation the solitons are 
similar to a Bragg solitons in the ferromagnetic one-dimensional periodic structure. The 
system of coupled nonlinear Schrödinger equations for the amplitude envelopee of the 
forward and backward waves was used for numerical simulation. We pay great attention to 
the conditions of formation of solitons, such as Bragg or gap solitons. 

 
2. Theoretical model 

 
A one-dimensional periodic ferromagnetic 
structure (magnon crystal) was considered. The 
structure is infinite in the direction of the x and 
y (Fig.1). The constant magnetic field is applied 
perpendicular to the film plane. The value of 
this field 0H

uur
 was chosen in such a way that the 

forward volume MSW (FVMSW) propagated 
in the y direction. The dispersion equation for 
FVMSW in a homogeneous ferromagnetic film, 
loaded with the two semi-infinite dielectric 
layers, can be written as [10]: 

( ) 2

2tg
1

kd ξ
ξ =

ξ −
,                                 (1) 

where ( )2
2

2 2
H H M

H

ω − ω ω + ω
ξ =

ω − ω
, ω  is a 

frequency of the signal, 0H Hω = γ , 

04M Mω = πγ , 0M  — saturation magnetization, 
γ  — gyromagnetic ratio, k — propagation 
constant for a FVMSW, d — film thickness. 

Following to [6,11], a dispersion relation for the one-dimensional system consisting 
of alternating layers of two media with different velocities of wave propagation can be 
written as: 

( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

2 2
1 2

1 1 2 2 1 1 2 2
1 2

cos cos cos sin sin
2

k k
KL k a k a k a k a

k k
ω + ω

= ω ω − ω ω
ω ω

,   (2) 

where k is wavenumber for a wave propagating in the structure with the period 1 2L a a= + , 

2a  — width of the groove, functions ( ) ( )1 2,k kω ω  is dispersion relations of FVMSW for 
films thicknesses 1d  and 2d , correspondingly. These functions were determined by the 
ratio (1). 

The results of numerical solution of equations (1) and (2) were shown in Fig. 2 (with 
determinate geometric dimensions of the one-dimensional periodic structure). It shows the 
behavior of the real and imaginary parts of KL in the FVMSW pass band with varying 
frequency HΩ = ω ω . The geometric dimensions of the structure are normalized to the 

Fig.2. The dispersive diagram 
( ( )Re ( )KLΩ - curves 1, ( )Im ( )KLΩ - 

curves 2, HΩ = ω ω ) of a periodic 
structure at 2MΩ = , 1 0.5a = , 1 0.1d = , 

2 0.08d =  
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period of the structure L=1. As seen in Fig. 2, the periodicity of the structure leads to the 
appearance of a band gaps on the dispersion characteristics for KL = π . From the last 

condition (Bragg condition) follow that 2
B

B

K
L
π π

= =
λ

, where BK  and Bλ  are the Bragg 

propagation constant and the wavelength, respectively.  
The Bragg condition provides the addition of a weak reflected wave on a phase along 

the entire length of the lattice. It leads to an effective reflection of the incident wave. To 
construct a nonlinear model of the periodic structure of the ferromagnetic use, similar to 
optical systems [3,4], coupled-wave approximation and represent the distribution of the 
magnetostatic potential near the gap as the sum of forward and backward waves: 

( ) ( ) ( )( ) ( ) ( )( ), , exp , expf B b By t y t i t K y y t i t K yψ = ϕ ω − + ϕ ω + ,  (3) 

where ( ),f y tϕ , ( ),b y tϕ  are slowly varying complex envelopes of the forward 
(incident) and backward (reflected) waves, respectively.  

Taking into account [3] in the approximation of weak nonlinearity the nonlinear 
equations for the envelopes of direct and reflected waves can be represented as: 

( )
( )

2
2 2

2

2 22
2

2 0

2 0

f f f
g f b f b f

b b b
g b f b f b

i V
t y y

i V
t y y

 ∂ϕ ∂ϕ ∂ ϕ 
+ −β + ηϕ + χϕ + γ ϕ + ϕ ϕ =  ∂ ∂ ∂  


 ∂ϕ ∂ϕ ∂ ϕ − −β + ηϕ + χϕ + γ ϕ + ϕ ϕ =  ∂ ∂ ∂ 

,  (3) 

where gV  — group velocity, 0 Bη = ω − ω  — detuning ( B B phK Vω = , phV  — MSW 
phase velocity in homogenous structure), β  — coefficient of dispersion, χ  — coefficient 
of coupling, γ  — nonlinear coefficient. 

Equations (4) are similar to the system of two coupled nonlinear Schrödinger 
equations describing the propagation of the direct and reflected waves in Bragg optical 
lattices [2-4]. It should be noted that the system (4) without taking into account the 
dispersion ( 0β = ), as shown in the [3], may have soliton solutions — the family of Bragg 
solitons. This type of soliton represents a combination of two waves moving together or 
remaining in place. If ( ) ( ), ,f by t y tϕ = ϕ  soliton does not move — a stationary gap soliton. 

In the case of excitation of magnetostatic waves with a carrier frequency near to the 
band gap, the dispersion medium plays more important role than the dispersion caused by 
the structure's periodicity. Moreover, the coupling parameter, the coefficient of dispersion 
and nonlinearity depend on the type of MSW excited in a ferromagnetic film (on the 
direction of the external magnetic field 0H

uur
) significantly. 

When FVMSW was excited in a periodic structure the coefficient 2 2kβ = ∂ ω ∂  and 
the group velocity gV k= ∂ω ∂  were calculated if the thickness of the lattice 

1 1 2 2
0

a d a dd d
L
+

= =  is the effective thickness. The nonlinear coefficient for FVMSW at 

kd <<<1 is 
22

2

1 1
4 2H

kd ω  γ = − +  ω   
 [10]. 

To calculate the coupling coefficient, we assume that the thickness of the film in the 
direction of wave propagation in periodic structure is described by the expression: 

( )2d d y= + δ ,     (5) 

where ( ) ( ) 1 2 1

1 1 2

, 0 ,
0, , .

d d d у а
y y L

а у L L а а
∆ = − ≤ ≤

δ = δ + =  ≤ ≤ = +
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The function ( )yδ  was expanded in a Fourier series and restricting the expansion 
coefficients with 0, 1,n = ±  the relation (5) can be represented as: 

0
21 cosd d d y
L

 π  = + δ     
,     (6) 

where 1

0

2 sin add
d L

π∆
δ =

π
. 

Taking into account the relation (6) the coupling parameter for a one-dimensional 
periodic lattice of 1-th order for 0kd <<1 can be written as: 

gV
d

π
χ = δ

λ
,     (7) 

where λ  is a wavelength of FVMSW at the frequency ω .  
 

3. Simulation results 
 

The results relating to the formation of solitons in this system were obtained based on 
the numerical solution of the coupled system of the NSE (4) using a SSFM method [3]. The 
coefficients in (4) were calculated taking into account the relations (1), (7) and were 
accepted as 42 10β = − ⋅  2 1cm s−⋅ , 10 13 10 s−γ = ⋅ , 61 10δ = ⋅ 1s− . The pulse was specified only 
on a forward wave as the initial conditions ( )2 2

0 0 expf impy yϕ = ϕ − , 0 0bϕ = , where impy  - 

pulse width, 0ϕ  — dimensionless pulse amplitude during the initial moment of time which 
got out above a soliton threshold [3]. 

We consider the features of the wave evolution at a fixed value gV  depending on the 
parameter χ . This parameter characterizes the geometrical parameters of the periodic 
structure and the relationship between the forward and backward waves, accordingly. The 
extreme case (when 0χ = ) corresponds to a homogeneous film ( 1 0а = ) and the backward 
wave is not excited in the structure. When 0χ ≠ , a linear relationship leads to the exchange 
of power between the waves. In this case the backward wave is excited and the solitons are 
formed, such as Bragg solitons. The parameter space ( gV , χ ) corresponding to the solitons 
formation with a different features 
is shown in Fig. 3. The parameter 
space corresponding to solitons, 
which move with some velocity 

c gV V< , is shown in white color. 
The parameter space corresponding 
to the solitons remained localized 
on the limited length of structure is 
shown in gray color on the Fig. 3. 
Figure 4 demonstrate the dynamic 
of the solitons formation for 
parameters values conformable to 
the point 1 on the Fig. 3. For small 
values χ  there  

Fig.3. The parameter space ( χ , gV ), corresponding to 
envelope soliton formation 
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is incomplete transfer of power of the forward wave 
2

0

l

f fP dy= ϕ∫  into the backward wave 

2

0

l

b bP dy= ϕ∫ , where l — length of a structure (Fig. 4 a). The forward wave dominates and 

solitons are moving in the positive direction of axe y at a velocity c gV V<  (Fig. 4 b). Figure 
5 demonstrate the dynamic of the solitons formation for parameters values conformable to 
the point 2 on the Fig. 3. The complete power swap between waves with period T was 
observed (Fig. 5a). Thus on a forward wave it is formed soliton, moving in a positive 
direction of axe y (Fig. 5c). Figure 5d demonstrates that its power proceed to the soliton on 
the forward wave, traveling to the same direction. After the time cell T/2 the power of these 
solitons turns equal and solitons moving decease. Thus the solitons change its propagation 
direction periodically in time, and move to the direction of the major power wave. Ones can 
notice some «kinking» of the solitons, but nevertheless it remains to be localized on the 
certain limited structure length. The period T decreases and «zigzags» become smooth with 
the increasing of χ , and solitons can exist without moving ( 0cV = ). In the parameter space 
situated on the right of the gray area (point 3 on the Fig. 3), solitons are not also localized 
in space and travels with the some velocity. This phenomenon can be explained by that the 
period T get minor in comparison with soliton period 1c oT ≈ ϕ  [4], it leads to the power 
swap periodicity disturb, and provokes the solitons moving. 

At increase in gV  power swapping gV  becomes less effective (period T decreases and 
swapping becomes incomplete), that leads to a pulling down of pulses at increase in gV . 

 
4. Conclusion 

 
In this paper with use of model in the form of coupled nonlinear Schrodinger 

equations for the envelope amplitude forward and backward waves are calculated the 
parameter spaces of periodic ferromagnetic structure corresponding to solitons, similar 
Bragg solitons, with different properties. In particular, the basic mechanism of formation of 
soliton, similar Bragg soliton, and localized on the limited length of structure, is mutual 
capture of pulses on forward and backward waves, which move with the cumulative 
velocity (velocity, in turn, it is defined by relative power of two waves), and presence of 
power swapping between forward  

 

 

 
(а) (b) 

Fig. 4. The power swap of a forward (dotted curve) and backward (continuous curve) waves 
eventually (a); lines of equal level of envelope amplitudes for fϕ  (it is shown by grey color) and 

bϕ  (is shown by black) (b) at χ = 1 106 s-1 ( gV =0.3 106 cm/s ) 
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(а) (b) 

  
(c) (d) 

Fig.5. The power swap of a forward (dotted curve) and backward (continuous curve) waves 
eventually (a); lines of equal level of envelope amplitudes for fϕ  (shown by grey color) and bϕ  

(shown by black) (b); the space-time evolution envelope amplitude fϕ  (c) and bϕ  (d) at χ = 2.5 

106 s-1 ( gV =0.3 106 cm/s) 

 
and backward waves which is defined by value coupling between waves. Features of wave 

evolution depending on coupling parameter and group velocity and the areas of parameters 

corresponding to formation of pulses, similar to Bragg solitons and localized on the limited 

length of structure, are investigated. 
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Abstract – The simplest wire metallic photonic crystals have been investigated using the 
electromagnetic simulations based on the periodic Green’s function and integral equation approach. 
The permittivity tensor has been obtained and explored by using the homogenization for the 
solutions which correspond to lowest dispersion branches. 

 

Introduction 
 

 The wire metallic photonic crystals (MPC) are widely investigated during recent 
three decades in connection with the availability of several their specific and unusual for 
natural media  properties, in connection with the possibility to get the artificial media 
(metamaterials) with magnetic characteristics, with negative real part of permittivity or both 
permittivity and permeability, and also because of  creation on its usage some filtering. 
waveguide, focusing, matching and others devices [1-28]. There are following unusual 
MPC properties: the strong spatial and time (frequency) dispersions, the negative 
refraction, bianisotropy. These properties take place from microwaves to optical waves. We 
understand any periodically located metallic objects or such objects periodically embedded 
into dielectric matrix (background) when we say about MPC.  We assume for simplicity 
that the background is the homogeneous dispersionless (so, the lossless) and with real 
scalar permittivityε . From numerous objects of research, which were earlier have been 
considered in a great number of works devoted to MPC, we choose the elementary simplest 
linear noncontacting wire inclusions. Such MPC are anisotropic, but they have not 
bianisotropy and the magnetic properties (in thin wire approach). The similar choice is 
caused by the fact that the rigorous electrodynamic analysis of similar structures is highly 
not simple. Most investigations of MPC are based on different approximate models, or by 
several software tools (which usually are constructed on finite difference or finite-elements 
methods).  

We have used the approach based on the periodic Green’s function (GF) and 
integrodifferential or integral equation methods (IE) (see [29,30]). We also use the thin wire 
approximation. This means that their radius r  much smaller of all structure dimensions. 
And, at the same time, the transverse (or azimuthal) current components (and 
correspondingly the magnetic properties) may be neglected and the problem may be 
reduced to one-dimensional IE. The one out from three homogenization methods earlier 
developed in [31-36] has been applied, that allows one to get the effective electrophysical 
parameters of structures. It is the effective permittivity tensor (EPT) in our case. The accent 
here has been made to receive the analytical results. The rigorous numerical models for any 
prescribed accuracy are also were considered. The paper results have been compared with 
the data of similar publications. 
 

1. Problem statement 
 

 Let's consider the three-dimensional (3-D) periodic MPC consisting from thin 
metallic wires of length l  and radius r , which are periodically embedded in dielectric 
background with permittivity ε  and located in Cartesian system x , y , z  with 
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corresponded periods a , b  and c  (fig. 1). The wires are thin, so lr << , ),,min( cbar << . 
As the particular case let us also consider the two-periodic (2-D) such MPC with infinitely 
long wires (with infinitely large period с→ ∞ ). This case is realizing in reality from the 
considered above when the wire length l  and the period dimension c  are much lager the 
remaining dimensions a  and b , or we have only one long sell in z -direction. In such case 
one may take into consideration the infinite l. Then there are the traveling current waves 
along the wires with the dependence ( )exp i t iω − kr  and some phase shifts, in which 
connection the current density for wire 1 in the zero number cell is 

 ( ) ( ) ( )zikyxI z−= expδδ0zJ  .                                                  (1) 
 

 
Fig.1. The MPC in the form of  3-D periodic cells with one linear wire inclusion per sell 

 
Here 0z  denotes the unit normal vector of z-axis. Further for MPC we will use the scalar 
GF of periodically located and phased sources (the periodic GF) [29,30]. The free waves 
(eigenwaves) of MPC creates on the metallic wires the phase shifted currents, which for 
one's turn support (excite) the wave. In accordance with based on the GF and IE approach it 
is sufficient to solve the IE in one (zero number) cell of periodicity using only the objects in 
this cell. In our case it is only the wire 1 (fig. 1). The current density (1) creates only one z-
component of electric vector potential Az , through which one can express the electric and 
magnetic fields. For electric field we have 

( )
E z0=

+grad div k
i

Az
0
2

0

ε
ωε ε

 .                                                    (2) 

Further we will need only the lectric field Ez  component as only it is present in the 
boundary conditions owing to small r . After the integration of (1) with the GF we get the 
Az , that according to (2) gives 

( )
∑ ∑

∞

−∞=

∞

−∞= −++
−−−−

=
m n zynxm

zynxmz
z kkkk

zikyikxik
abi
kkIE

εεωε
ε

2
0

222
0

22
0 exp

 .                           (3) 

Here amkk xxm /2 π+=  and bnkk yyn /2 π+=  correspond to spatial harmonics, the time 
exponent is omitted (there and everywhere).  Let us note that instead of surface current 
density on the wire we have used the linear axes current owing to small r , so we transfer 
from surface IE to linear one. If the wire impedance is finite, and frequencies are high 
enough, it is necessary to use the volume distribution of current density of type (1). It, in 
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particular, concerns infra-red and optical ranges where the nanodimensional metallic wires 
should be modeled as plasma. To the dispersion equation (DE) from (3), it is enough to 
impose the boundary condition on any line on wire surface, for example, for x r= , y = 0 . 
In general case we must write 

( ) ( )E x y z Z J x y zz S S, , , ,=  .                                                  (4) 
Here the points x y,  belong to the surface, Z S  is the surface impedance, J S  is the surface 
current density. In our case it is necessary to consider the surface current density as uniform 

( ) ( )J I r ik zS z= −/ exp2π  and connected with a linear current I . It is possible to take the 
surface impedance in the Leontovich form or zero (in approach of ideally conducting 
wires). It is convenient to put z = 0  in the equation (4).  Then the boundary condition (4) 
may be taken as averaged electric field on four symmetric points of the circle, or as the 
condition averaged on an azimuthal angle in the cylindrical system connected with a wire. 
In both cases we get the analytical DE in which one of the sums can be calculated 
obviously [29,30]. 

So, we have the DE of the type 
( )F k0 0, k = ,                                                              (5) 

which (at the given kz ) defines the relation of wavenumber k0  and transverse wavevector 
components  kx  and k y . Let us notice, that it really depends on a square of wave number. 
Setting the specified values of wave vectors, it is possible to construct a dispersive surface 

( )k f k kx y0 = ,  for everyone kz  [29,30]. Generally, the DE defines a three-dimensional 
hypersurface in four-dimensional space. It is multisheeted surface  for ideally conducting 
wires which also consists of not connected each other sheets. Accordingly, there are the 
forbidden zones for k0  (bandgaps). The periodicity is broken, and the specified surfaces 
incorporate in case of a photon crystal (PC) with losses [29]. 

To receive the electrophysical parameters we will take advantage of one of 
homogenization methods, described in [31-36] and based on calculation of the dipole and 
the higher multipole moments. As electrophysical parameters it is understood the 
permittivity and the permeability defined on the basis of strict electrodynamic model, 
depending from k0  and k . 
It means the account of time and spatial dispersions. Further, we will define only the dipole 
contributions to polarization P . It is known that the metallic inclusions can lead to presence 
of magnetic properties [5]. They appear if to consider the finiteness of r  and the presence 
of azimuthal currents on the wire inclusions. In our case of thin wires always µ = 1, and the 
EPT may be written as 

( )















=

zz

k
ε

ε
ε

ε
00

00
00

,ˆ 0 k .                                                             (6) 

The required component is connected with unique z-component of polarization vector 

( )ε
εzz

z

z

k P
E0

0

1, k = + ,                                                             (7) 

where the Dirac bracket means the averaging on a cell  of electric field z-component (3).  
The Homogenization procedure assumes the averaging, i.e. the replacement quickly 

oscillated fields like (3) on their certain effective values. As ways of averaging can be 
much, the homogenization is ambiguous procedure. In particular, it is necessary for us to 
average some functions of type ( )xikxm−exp . As an averaging interval it is possible to take 
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( )0,a , and the complex values thus turn out. We will take these intervals symmetrically: 

( )−a a/ , /2 2 . Then the average exponent value is 
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Averaging on z we will fulfill so: 
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This quantity as function of L decreases and oscillates with the period 2π / kz . Therefore, 
we will average it on the specified period: 
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Let's notice that it does not depend from L. Taking divergence of (1), we will find the 
charge density 

( ) ( ) ( )ρ δ δ ω= − −k I x y ik zz zexp /  .                                             (10) 
The delta-functions presence says that actually we have a linear charge and a linear current. 
The polarization vector has only one z-component 
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The terms in (11) as functions of L  are even, the first term oscillates with the period 
zk/2π , and the second one oscillates and also damps at the big lengths. Therefore, we will 

average the result on the oscillation period: 
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We have received the result, which is not dependent on kz . At the conclusion of (12), 
however, the length L  was assumed big, i.e. the Lkz /2π=  is sufficiently small. So, we 
have 
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Now the permittivity is defined by the formula (7) in which it is necessary to replace the 
polarization with its average value (12). Let us notice that we averaged the polarization and 
a field by the identical method. We will result the received form: 
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It is necessary to notice that at averaging of a field we integrated on all cell volume. For 
ideally conduction wires the field inside them is absent, and their own volume can be 
excluded. Corresponding specifications, however, are insignificant, as the field satisfies the 
approached boundary condition (4), i.e. it is negligible small both on a surface, and inside a 
wire. The error thus turns out the second order on r a/ . We will make one more important 
remark. The terms are entering into (14) are not independent. They are connected by means 
of DE (5). For example, setting k0 , we choose the dispersion surface. If the wave number 
gets to a bandgap, the permittivity is not defined, as there are no any real solutions of DE. It 
is possible to consider its big negative that corresponds to absence of propagation of a wave 
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(attenuation). Further we will specify, how it to define and in this case. Having set k0 , kz  
and one of tangential component of wave vector, we find another from (5). Then their 
substitution in (15) defines EPT (6). It is different for different dispersion surfaces, and also 
depends at given ck /0 ω= , generally speaking, on two transversal wave vector 
components (if zk  is set). The DE (5) is periodical on k x  and k y  with the periods of a 
return lattice a/2π  and b/2π  accordingly. That also concerns to (14). This formula may 
be rewritten down in the form: 
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The expressions like (15) have been received in a number of works from various qualitative 
and modelling reasons [1-3,5,11,12,14,18,20-22,28], including its kind was considered at 
kz = 0  [11,12]. In this case the PC behaves as plasma with cutoff on plasma frequency 

( )zyxppp kkkck ,,,ωω = . This frequency usually is displaced into high-frequency region 

with growth of kz
2 : ( ) εωω /,,, 22

zzyxp kkkkkc +=   [29]. Let us analyze the relation (14). 

The series converges rather quickly, and its sum (at small k,0k ) is defined basically by a 
zero term. At 0→xk , 0→yk  we have ( ) 0,0 →kkzzε  that corresponds to low-frequency 
cutoff. And the cutoff frequency increases when zk  is increasing. The same concerns to the 
case akx /2π= , bk y /2π= , and to similar points owing to periodicity of (14) on 
transverse wave vectors components. At small xk , yk , as it is easy to see ( ) 1,0 0 << kkzzε . 
For MPC configuration cba == , 001.0/ =ar , 1=ε  we have the estimation 43.1=ak p . 
On lower frequencies according to model (15) the zzε  is negative and can aspire to enough 
big negative values at 00 →k  (it is supposed that 0=zk ). If zkk =ε0  and 022 >+ yx kk  
that the expression (14) aspires to infinity. It corresponds to that the free wave cannot 
propagate along the wires. The flat wave excites by a incident source passes through finite 
such MPC structure almost without reflections as its electric field is perpendicular to the 
wires and does not induce at them any currents. However, free eigenwaves in infinite 
structure should induce such currents, which support them. It cannot be carried out in this 
case. The value zk  is real in the absence of losses and defines a wave of a current (1). If 

zkk >ε0 , this wave fast, and at zkk <ε0  it is slow. If 022 >+ yx kk , that the current wave 

can be only fast, i.e. ε0kkz < . The definition of effective permeability at pkk <0  or in 
the next bandgap also can be received by the specified method. It is necessary for this 
purpose to search the imaginary roots xk  and yk , or, setting their values imaginary, to 
define 0k , and further to spend the considered averagings at the calculation of dipole 
moment. 

 
2. Uniaxial, biaxial и triaxial MPC with non-connected wires 

 
From stated above it is clear that the wire orientations defines its contribution into 

the electric dipole moment in a corresponding direction. Further, we will consider non-
connected wires of finite length. Connected (contacting) wire PC demand the account of a 
continuity of a current (under the Kirchhoff's law) that complicates the consideration [18] 
and makes a subject of separate research. We will consider the elementary structure fig. 1. 
Now the current density we will write down as 
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Here ( )k s ls = −2 1 π / , and the coordinate system zero in comparison with fig. 1 is shifted 
in the wire centre so on its ends the current is zero. Using the approach stated above, we 
will find 

( ) ( ) [ ]( )
( )[ ]∑∑

∞

−∞== −++−
++−−







−=

knm zkynxmszk

zkynxmzkzk
N

s
ss

s
z kkkkkk

zkykxkikklkIk
abi

E
s

,,
2
0

22222

22
0

10

exp
2

cos12
ε

ε
εωε

 .        (17) 

The component (17) should turn in zero on the wire surface. Applying the Galerkin method, 
we have 

( ) ( )E x y z k z dzz s
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, , cos ′
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=∫ 0 .                                                   (18) 

In the relation (18) the point ( )x y,  belongs to the circle: x y r2 2 2+ = . It is possible to take 
any point of this circle. Then the relations (17) and (18) lead to system of the linear 
algebraic equations (SlAE) which determinant ∆  should be equal to zero. Actually 

( )F k0 0, k = =∆  is the required DE. It poorly varies at movement of the chosen point on a 
circle. It is convenient to impose boundary conditions in four symmetric points 

0, =±= yrx  and ryx ±== ,0 . Thus instead of exponent in (17) we receive 
( ) [ ]( ) [ ]( )2/cos2/cos, rkkrkkkk ynxmynxmxxmn −+=α , and the component (17) depends only 

on coordinate z  and has decomposition 
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Now the matrix elements according to (18) can be written down so: 
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We, however, will average on all points of a circle, having written down ( )x r= cos ϕ , 

( )y r= sin ϕ , and having integrated on the angle. Thus the Bessel functions appear owing to 
the formula [30] 
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It corresponds to change the entered before term so: ( ) ( )22
0, ynxmyxmn kkrJkk +=α . As the 

series converge enough quickly, the difference of both terms at small r  and for low 
numbers of indexes is insignificant. However, such averaging leads to improvement of 
series convergence. It is seen that the singularity at szk kk ±=  is removable. However when 
the square bracket in the denominator of (17) makes vanish, the matrix elements have 
poles. Often the specified poles are near to DE roots that complicates a finding of the last. 
The elimination of poles is possible by the addition of a small imaginary part to wave 
number: δikk −→ 00 . However, such addition leads to false roots. We will notice that the 
specified way at 0+→δ  in case of free space GF allocates its demanded kind, satisfying to 
the radiation condition [37]. In case of PC it is not necessary to impose a radiation 
condition: in the exponent of periodic GF it is possible to take both signs: 

( )( )rrk ′−± mnkiexp  as there is no allocated direction of radiation. Eigen direct (forward) 
and return (backward) waves (without a source) are indiscernible [29]. The specified poles 
correspond to conditions 2222

0 zkynxm kkkk ++=ε  which divide the dispersion branches. In 
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particular, at 0=== knm  we have ε0
222 kkkk zyx ±=++ . For a wave with 0== zy kk  

the straight lines separate the branches of slow and fast waves of the first zone. We will 
notice that for the series with ( )yxmn kk ,α  in form of cosines it is possible to sum up 
asymptotically on two indexes at their big values. However, such summation is rather 
intricate and leads to inconvenient relations. The initial relations are convenient for code 
parallelization, as it has been made in the calculations. 

The dipole moment of unit volume is 
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Calculating it, we will receive 
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The averaging is not required for this, as there is one wire per a cell. Averaging a 
component of electric field (17), one can find 
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Accordingly, zz-component of tensor (6) is defined under the formula (7). Thus, at first it 
follows, having the set k x , k y . kz , to define the k0  from the DE. There may be several 
values at finite number of basic functions in (16). It is necessary to choose that is need, for 
example, the lowest from them. Further we set the amplitude I1 1=  (a wave is defined 
accurate within any amplitude), and then we will express through it the remained 
amplitudes of harmonics of a current as the solutions of SLAE which order is smaller on 
unit. Then all defined terms we substitute into (20), and then we define the permittivity. 
 The triaxial MPC has three wires per on a cell of periodicity in the form of a 
parallelepiped with the edges cba ,, . The wires lengths are 1l , 2l , 3l , Such MPC is 
characterized by the diagonal tensor of effective permittivity: 
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Basically, the wires can be located asymmetrically. Besides, such wires are possible on the 
edges (sides) of a cell and inside it, thus their orientation may be any. It leads to 
nondiagonal tensor like (21) as arbitrary oriented wire gives the contribution to all dipole 
moment components. However owing to the Onsager-Cazimir theorem under the absence 
of dissipation and because of self-conjugacy it is had ( ) ( )kk ,, 0

*
0 kk nmmn εε = . It is symmetric 

with all real tensor components if losses in dielectric background and in wires are absent. 
However for loss structures the tensors like (2) are already non-Hermitian, and the 
Onsager-Cazimir condition should be altered so: ( ) ( ) ( )kkk ,,, 0

"
0

'
0 kikk nmnmmn εεε −= . The 

presence of 0N  wires per a cell leads to the system of coupled one-dimensional IEs and to 
DE in the form of equality to zero of a determinant of SLAE, corresponding to 
discretization of the equations. The determinant order under the account of several current 
harmonics on each wire at 3>sN  is already enough essential factor, which is worsening 
the search of its complex roots in three-dimensional complex area k  that becomes rather 
not trivial problem. The dispersion is defined then by a hypersurface in six-dimensional 
area. The loss are very essential for microstructured and nanostructured MPCs in terahertz, 
infra-red and optical bands. Such MPCs have no sharply expressed bandgaps, therefore the 
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tensor ( )k,ˆ 0kε  is possible to define in all necessary area of frequencies and wave vectors. 
The corresponding components of EPT are zero on the borders of bandgaps for lossless 
systems. In the bandgap the vector k  is purely imaginary (for 3-D structures), or has 
imaginary some from its component (for 1-D and 2-D structures) [29]. Accordingly, the 
wave in the specified directions fades. Such attenuation has the reactive (nondissipative) 
character, thus the periodicity is not violated. Once again, we will notice that in periodic 
and dissipative photonic crystals (PC) the periodicity in electrodynamic sense is broken: the 
wave propagates with attenuation. This is basic PC difference from usual solid-state 
crystals for which the local probability density is conserved, as the global probability, i.e. 
the number of particles, are also under the conservation. As consequence of it we have the 
periodicity (to within phase factor) of Bloch waves of probability density and the self-
adjoint problem. The violation of periodicity here is possible only by dislocations and 
finiteness of structure, thus a problem again self-interfaced. There is the radiation in finite 
PCs, therefore eigenfrequencies of resonators based on such PC are  complex (like the 
frequencies of open dielectric resonators). 
 

 
Fig. 2. Dispersion approximation of 2-D-P WPC according to the simulation results for DE 

( 1== ba , 0=zk , 001.0/ =ar , 1=ε ) 
 

3. Numerical results 
 

Further everywhere the following configuration is considered cba == , 1=ε . The 
dispersion for MPC in the form of infinitely long and parallel located 2-D periodic wires 
has been received in the works [29,30]. On the basis of DE solutions the approximations of 
two-dimensional surfaces ( )yx kkfk ,0 =  are executed at the value 0=zk . For the case 

1== ba , 001.0/ =ar , 1=ε , and for site of the first sheet of the dispersive surface with 
forward wave such approximation is presented in the fig. 2. In the fig. 3 the calculations 
under the formula (14) are resulted for the same case when the 0k  is defined by the surface 
of fig. 2. It is visible that, in the field of small wave vectors, the component zzε  is 
essentially less than the unit, and the wave is fast. It is confirmed also by the dispersive 
characteristic as for small values k  the wave number always has finite value which greater 
than pk .   
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ε  (     )zz k  kx    y

 
Fig. 3. The component zzε  versus wave vector components in the main sector of first propagation 

band at 0=zk  (the results correspond to fig. 2) 
 

 
Fig. 4. The dependence of normalized wave vector component from normalized frequency for 2-D-

P MPC with the lattice ba =  for 005.0/ =ar , 0=yk  and different akz  values: 0 (curve 1); 1 
(2); 2 (3); 3 (4) 

 
With increase of k  the wave becomes slow with small retardation 2.1~zzn ε=  

that corresponds to the permittivity component a little more than unit. Naturally, owing to 
periodicity in the space of wave vectors the same periodicity takes place for EPT. In the 
bottom forbidden zone pkk <0  the components xk  and xk  are imaginary, therefore the sign 
before the sum in the formula (14) changes and the component zzε  becomes negative. The 
same is for the next top forbidden zone (bandgap) which in our case is 4.393.2 0 << ak . 
Accordingly, for each of 0k  values in these areas it is possible to construct the surfaces zzε  
as functions of imaginary components of wave vector, using the relation (14). Thus the 
minimum (maximum on the module) value in the lowest bandgap in the considered case 
has been obtained as 045.1−=zzε . 
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Fig. 5. The dependence of normalized wave vector component from normalized frequency for 2-D-
P MPC with the lattice ba =  for 0== zy kk  various ar /  values: 0.001 (line 1); 0.005 (2); 0.05 

(3) 
 
In the fig. 4 the dependences of influence on dispersion data from zk  value are 

resulted. The dependence of dispersion on a thickness of wires is given in the fig. 5. The 
dispersion results (band structure) of MPC with finite length are resulted in fig. 6 for two r  
values. This problem already demands the big computing resources, especially if cl ~  (for 
what the account of a great number of harmonics in (16)is necessary), and can lead to a 
determinant of a high order. In the presented results with 6.0/ =al  it is enough to consider 
1-3 harmonics, and the difference on accuracy for 1 and 3 harmonics makes less than 1 %, 
and the computing times differ in 6 times. Strong truncation of three-dimensional series 
brings errors, which can lead to the admission of roots or to their essential change. 
Numerical research has shown that these effects vanish at 20>== KMN  ( KMN ,, - the 
numbers of terms with positive indexes in the sums). All calculations have been executed at 

30=== KMN , i.e. the 226981613 =  flat waves have been taken into consideration. The 
calculation with 10=== KMN increases speed more than in 200 times, thus accuracy of 
roots definition worsens on 2-3 %. Let us notice that the series truncation brings effect of 
radiating losses, as the finite PC structure with eigenmodes is radiating one. The presence 
of the poles, sometimes very close approaching to roots, complicates search of the last. The 
procedure of smoothing of poles (by introduction of infinitesimal losses) and of false roots 
avoidance has been developed. 

For the first dispersive branch fig. 6 also has been calculated the component zzε  
(fig. 7). It changes from 1 at 0== yx kk  (the wave propagates with a velocity of light) to 
values 1.2 (fig. 6,) and 1.3 (fig. 6,) at π== akak yx  of cutoff frequency. In the first 
bandgap it is negative. The Fig. 7 shows its dependence from 0k  at 0=yk . It is necessary 
to have in view of that in this case 0k  and xk  are unequivocally connected by a dispersive 
curve up to the beginning bandgap point π=akx . As it is shown in the works [28,30], the 
introduction of losses (even infinitesimal) deforms dispersive branches as follows. The 
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direct (forward) and return (backward) branches in the lowest propagation band are 
disconnected, the bandgap vanish, and in them the forward lines of lowest frequency branch 
close up with the forward higher branches and accordingly the backward higher branches 
close up with the backward lowest ones. There is a small attenuation in the propagation 
bands, and in the former bangaps there is the wave propagation with small phase velocity, 
large group velocity and strong attenuation. Under the infinitesimal attenuation, the group 
velocity in the bandgaps becomes infinite. It is connected by that zero interval of wave 
vectors corresponds to finite band interval 0k∆  (in our case π=akx , 0=∆ xk , and 0k∆  is 
finite). Therefore the transition from one branch to another goes on a vertical line π=akx  
(see fig. 6), thus 0k  changes within the bandgap strip. Accordingly, the normalized group 
velocity is the tangent of tangential line angle to this line, i.e. ( )2/tan π⋅= cvg . Actually at 
such movement along one of dispersion curves fig. 6 the dependences 1 and 2 in the fig. 7 
are constructed, thus for the first one the component xk  is imaginary (see fig. 6), and the 

zzε  is negative (for the second curve accordingly in the region 16.366.2 0 << ak ).  
The transition to the following branch in propagation band ( 21.30 =ak ) becomes 

ambiguous. The presence of losses removes this ambiguity: movement always goes along 
the direct of return branch either a forward wave, or backward. It and the attenuation 
connected with it break periodicity of fields, which cause the described effect. 

 
 
 
 

          
   

     a                                                                        b 
 
 

Fig. 6. Band structure of  3-D-P wire MPC at 0== yz kk , 6.0/ =al  for 01.0/ =ar  (a) и 
06.0/ =ar  (b) 
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Fig. 7. The component zzε  versus normalized frequency for lowest dispersion branches of fig. 6: a – 
line 1, b – line  2 

 
 

Conclusions 
 

 The electrophysical parameters of the elementary wire MPC in the form of linear 
wires of infinite and finite lengths have been obtained by the method of the integral 
equations formulated on the basis of GF of periodically located sources. The case of thin 
ideally conducting and not contacting wires is considered. One of the homogenization 
methods, using the calculation of averaged on a cell multipole moments and the averaging 
of fields is applied. It is shown, that except of homogenization ambiguities the construction 
of effective permittivities in the absence of losses is also ambiguously in connection with 
necessity of a choice of a corresponding dispersion branch. This ambiguity disappears 
under the wave diffraction on the finite (i.e. quasiperiodic) structures when at a falling 
wave have the set 0k  and k . The results of plasma frequency estimation in the formula (15) 
are in good conformity with earlier published models. This also corresponds to the wave 
retardation, which is defined from the dispersive curves (surfaces). The case cl ≈ demands 
taking into account of a great number of current harmonics in the (16) that simulates the 
capacities of corresponding gaps between wires. Such MPC at high frequencies with finite 
wires length l  is similar to PC with the infinite ones. Accordingly, the dispersive curve is 
bent in high-frequency range, however the low-frequency cutoff is absent. It is not real to 
use the resulted algorithm for a limiting case of wires with infinitesimal gaps (i.e. for 
transition to the first of the considered problems). It is easily to take big c and l values. The 
method can be extended to any wire configurations of MPC structures, including ring, 
spiral, helix, Ω  elements etc., and also on dielectric and magnetic PC. Owing to symmetry 
to the centre of wires we took the ymmetric distribution of a current (16) in the form of 
decomposition on cosine. Thus, the plane 0=z  is the electric wall (as well as the planes 
periodically displaced on c). It is possible to use the decomposition also on sine that will 
give the magnetic walls. The currents should be decomposed in the absence of the 
symmetry in a general Fourier series taking into account the boundary conditions on the 
wires ends. The account of losses will lead effective complex permittivities and 
permeabilities. However, it does not mean the conductivity presence: specified dissipation 
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is connected with a phase shifts between the polarization (electric and magnetic) currents 
and the fields. The conductivity should exist in physical structures of MPC with nanowires, 
and its mechanism is connected with quantum effects, and may have the jump character. 
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