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BBEJEHMUE

KommbroTepHoe MOJEIMPOBaHUE SIBJISIETCS OCHOBHBIM MOLIHEHIIMM WHCTPYMEHTOM HCCIIEJOBaHMS
CJIOKHBIX CHUCTEM W CTPYKTYp. VICIOJIb30BaHUE CTPOTMX KOMIIBIOTEPHBIX MOJIENIel IMO3BOJISET a/eKBATHO
MIPOM3BO/INTH UX AHAIN3, CHHTE3 WJIM ONTHMH3ALHIO U 3a4acTyl0 BBITECHSET HATypHBIH dKcriepuMeHT. Jlis
0O0JIBIIOrO YKCIIa pacCMaTPUBAEMBIX 3a/1a4 POBEAEHHE HATYPHOTO SKCIIEPUMEHTA YPE3BbIYaliHO CIIOKHO MIIH
HEBO3MOXXHO BOBCE, IOATOMY Pa3BUTHE METOAOB MaTeMAaTHUECKOTO MOJEIMPOBAHMUS SBISIETCS YPE3BBIUANHO
Ba)KHBIM M aKTyaJIbHBIM.

B npukimagHOW 3MEKTPOHMKE | NIEKTPOAWHAMHUKE, BKIOYAs M ONTHKY, HCIIOJIb30BAHHE CTPOTHX
METOJIOB aHAJIN3a M CHHTE3a IIPU MOJCIMPOBAHUU O3HAYACT NPUMEHEHHE aITOPUTMOB Ha OCHOBE YPaBHEHUH
MakcBenna U CTpOTHX peIleHUH YpaBHEHUH IBW)KEHUS. BaKHBIM 2JIEMEHTOM, BIIUSIOIIMM Ha aJ€KBATHOCTh
MOJEIIMPOBAHHUS, CIIyKHUT KOPPEKTHOE BBEJCHNE MATEPUAIBbHBIX YPABHEHUI M YPaBHEHUH IBI)KCHUS YaCTHIL,
a TaK)Xe y4eT HEJIMHEMHBIX CBOWCTB.

B nocnennee Bpemsi Bce OoJipliiee 3HaU€HHE MPHOOPETAIOT aBTOMATH3UPOBAHHbBIE CHCTEMbI aHAIN3a
U MPOEKTHPOBaHUs NMpHOOpPOB, ycTpoicTB U cTpykTyp CBY, KBY 1 ontuyeckux auamnazoHoB. [IpumeHeHue
JIEKTPOJUHAMUYECKUX METO/IOB IPOUCXOAMT ISl BCEX YACTOT HCIIOJIB3YEMbBIX SJIEKTPOMArHUTHBIX BOJIH,
BKJIIOYas W ONTHUYECKHH JWama3oH, MPUYEM B OINTHKE TPAJUIMOHHBIE METOJABl AHAIN3a BBITECHSIOTCS
CTPOTMM D3JIEKTPOAMHAMUYECKHM PAacCMOTpeHHeM. Hapsiy ¢ TpaluIMOHHBIMHM YaCTOTHBIMH IIOAXOAAaMH K
MOJIETIMPOBAHMIO PA3BUBAIOTCS W TPOCTPAHCTBEHHO-BPEMEHHBIE METOIBI, YTO XapaKTepu3yeT OypHBIiI
Iporpecc MNPUKIAAHOW HECTAMOHAPHOM JICKTPOAWHAMUKMA W ONTHKHA. JIpyrHMH  aKTyalbHBIMH
COBPEMEHHBIMH HAIpPaBJICHUSIMH, NPEICTABICHHBIMU B COOPHHKE, SBISIFOTCSI MOJICTMPOBAHUE HAHOCTPYKTYP
(BKJIFOYAs! KBA3UIIEPHOIUYECKHE CTPYKTYPBI) U MPUMEHEHHE 3IIEKTPOANHAMUYECKIX METOJOB K HEJIMHEHHBIM
3a7ayam.

JecaTslil BBITYCK COOpHHMKA IPOJNOJDKAET CEpPHI0 ITyOIMKAalMid TPYAOB HAay4YHBIX CEMHHApPOB
oobeaunenHor nepsuyHoit siueiiku (IEEE MTT/ED/AP/CPMT.PS Saratov—Penza Chapter) Bxopsiieii B
MEXAYyHapOoAHYI0 HayuHyto opranu3aiuio Institute of Electrical and Electronic Engineers. Ykazanunas siueiika
coznana yetoM 1995 r. B Capartoe u Ilenze. B cOopHuk Bouwm Tpyzpl, mpexacrasieHHsle B 2009 r. Ha
ouepeHOM TpuHaauaToM cemuHape (Saratov—Penza Chapter Workshops), KOTOpbIH SBISUICS CeIbMBIM
CEeMHUHApOM JIaHHOW NepBHYHOM sueiliku mon HazBaHueM «Workshop on Electromagnetics of microwaves,
submillimeter and optic waves». C 2003 roma ceMuHapsI 1I0]] YKa3aHHBIM Ha3BaHHEM IPOBOISTCS €KETOTHO B
ceHTsIOpe B paMKax MeXIyHapomHoW KoHdepeHmmu «Saratov Fall Meeting»y B CapaToBcKOM
TOCYAapCTBEHHOM YHHBEPCHUTETE.

INTRODUCTION

In recent time there was an increasing development of Computer Aid Design (CAD) methods and
rigorous approaches for microwave electron devices, units and elements all over the world and in Russia
particularly. These methods have been applied both for linear and nonlinear systems and structures in time
and spectrum domains. There is growing interest in electromagnetic and optics to nanostructures and
metamaterials.

The correct introduction of material and motion equations and using of strict electrodynamic models
play important role in adequate numerical simulation of structures. Recently the nonstationary approach for
electromagnetics and electronics stays more desirable and applicable. The nanostructures such as photonic
crystals and metamaterials play the important role in modern science and cause the different methods of its
simulation. These directions of modeling is also have mirrored in the present 9-th issue.

In 1995 on July 11 the IEEE Joint MTT/ED Chapter has been formed in Saratov and Penza under the
sponsorship and help of Electron Devices and Microwave Theory and Techniques Societies (ED-S and MTT—
S). Then it has been supported by Antennas and Propagation, Components, Packaging, and Manufacturing
Technology and Nuclear and Plasma Science Societies (APS, CPMTS and NPSS), and now it is named as
IEEE MTT/ED/AP/CPMT/NPSS Saratov—Penza Chapter included into the IEEE Russian Section.

This issue contains the papers presented at the 13-th IEEE MTT/ED/AP/CPMT Saratov—Penza
Chapter Workshop named as “Electromagnetics of Microwaves, Submillimeter and Optic Waves”. This
Workshop has been held in conjunction with the Saratov Fall Meeting at the Saratov State University in
September 2009.



WHY THE REFRACTIVE INDEX CAN NOT BE NEGATIVE
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Abstract — 1t has been shown that for left-handed metamaterials and generally for negative
refraction media the refraction index cannot be entered unequivocally and cannot be considered as
real, and especially as negative. This index for above referred media is not expedient.

The refractive index (RI) n (or retardation coefficient) was initially introduced in
optics long before Maxwell has formulated the electrodynamics which interprets the optics
as its own part. So, it has been transferred from the scalar optic problems to vector
electromagnetic ones. At that time the dispersion was not considered. Recently the so-
called left-handed media (LHM) or metamaterials with negative refractions (NR) are under
the intensive investigation. The widespread opinion dominates in literature that LHMs have
the negative refraction index (NRI). In 1967 V.G. Veselago has published the paper [1],
where he considered the medium (which he called left) with scalar real and simultaneously
negative permittivity ¢ and permeability . He investigated the geometric (ray) diffraction

theory for infinite in two directions (x,)) and finite in z-direction plate of thickness d with
such LHM and has discovered the anomalous refraction Snell law. Also he has discovered
some anomalous effects: Doppler effect, Vavilov-Cherenkov effect, negative light pressure.
These effects are connected with NR phenomena (excepting negative pressure). It was well-
known long before the Veselago’s paper and considered in several publications (see
references in the papers [2-9]). These considerations proceed from earlier Lamb (1904),
Laue (1905), Mandelstam (1940) and others, from the papers corresponding with backward
wave tubes and antennas. The history of this question one may find in Russian [2-9] and
English [9] papers. The doubtless Veselago’s merit is that he drew attention of scientific
community to necessity of search possible artificial media (AM) with such unusual
properties. Since 80-th to 90-th the research direction of AM investigations is expansive
developing. The researches have been begun early in 40 and 50th years and then was
named as investigation of artificial dielectrics [9—12]. Next the more general name
“metamaterials” was assigned to these AM later. Next the periodic AM with different forms
of wire inclusions (wire media) began to be studied intensively in the beginning of 90th and
were then are named as metallic photonic crystals (PC).

In 2000 J. Pendry has published the article [13] in which he claimed that the
Veselago lens (further in literature named as ideal Pendry lens) is overcoming the
diffraction limit. But the Pendry’s consideration was based on gross errors (see, for
example, the articles [3—-6,14-22] and the discussion there). After the publication [13] and
similar, including the experimental work [23], the such conceptions as Veselago medium,
double negative materials (DNM, DNG), backward media, LHM, wire PCs, complex
media, negative group velocity media (NGV), negative refraction index media and some
others finally have been approved. And the number of publications on these questions
increases avalanche-like. Although the term “negative refraction ” is the most general and it
was well-known long before the paper [1], and this phenomenon takes place also in slow
wave systems, nature crystals, dielectric PC, generally in optics when the energy transfer
direction of monochromatic wave may constitute the obtuse angle with the direction of
phase motion, the term “negative refraction index” on our opinion is not correct. We will



show further why the RI couldn't be negative, can not be such, and why it is not appropriate
for NR media. Authors of some works (apparently, realising it) instead of NRI use the
terms “negative refraction” [6] or “negative media” [8] along with NR. The big number of
above abbreviations also indicates on the problem. In several such papers the NRI is not
considered altogether, but in most of publications the NRI n < 0 nevertheless is considered.
Thus, the NRI is the sufficiently established term (especially in English scientific
literature), and the number of papers with its usage is highly large. The goal of this paper is
to show that the question here is not only in terminology: the introduction of NRI 7 <0 in
the relations, in which it evidently couldn’t be introduced, often leads to incorrect physical
results.

There is prevailing common opinion in literature that for LHM with ¢ <0 and

41 <0 one must extract the root as follow: n=—/gu <0 . And in the normalized

impedance it is need to take the root branch as p =./z/ & > 0 [24]. These values one can

insert in spectral form of Maxwell equations for harmonic plan wave (the equations (5)
from [1]), that is indirectly assumed under such determination [24]. The energy flow and
phase motion directions then are opposite, i.e. the wave is backward. The values n and p

are introduced in such manner in optics, But they there both positive (also together with
positive & and u ). To choose the branch of root one must set some physical condition. In

optics there is the dissipation according to which Im(fz )< 0 and Re(ﬁ) >0 (for complex
values with the time dependence exp(ia)t) ). It may seem that by introducing the complex
RI, impedance, permittivity & =—¢—ig" and permeability 77 =-pu—iu" , where all
quantities are positive, one can from the conditions Im(ﬁ)< 0 and Re(p)>0 get the
unambiguously: #n=n'—in" , n'=—\Jeu<0 , n"= (g”,u + gy”)/ eu>0
P =/ 5[1 + i(,u”/ u—:&"/ 5)/ 2]. But the problem here that it is impossible to take the

limits ¢”"— 0 and x#" — 0. It will be shown further. Furthermore, the value +/gu is

polysemantic. Imposing these estimates and binding two roots (either of the two is double-
valued), we use only backward wave. But in the PC both backward and forward waves are
possible for each dispersion branch. Let’s consider the simplest case of propagation along
z-axis. For such wave the transition from forward to backward ones occurs under the
replacement k, — —k_*2mn/a_ (a, is the period along z ), and also by going over the
passage from one dispersion branch (hypersurface) to another through any bandgap by
changing the k,. These propagation branches (bands) are separated by the bandgaps, and
the waves in different directions are differed (for anisotropic or bianisotropic AM). The
effective permittivity and permeability (and RI) are the even functions of k. (and others
components if any). Hence, the transfer from forward wave to backward one takes place not
due to sign of n, but owing to sign of k_ (under |k a_|< x), or due to sign of dk,/dk,

(here we propose the absence of loss). In low frequency limit £, — 0 and for |k| — 0 (in

our case for k. >0) the wave is forward-directed, i.e. the NR corresponds with the

characteristic Bragg spatial |k|'|a|~1 (a is the translation vector) and frequency

kon, (0)a| ~ 1 resonances (scales). Here n,, (0) is the effective RI in the low frequency limit

which is produced by the homogenization. The exclusion here is the physically unrealizable
and similar ideal plasma wire medium with infinite parallel wires, which has the low-
frequency cutoff. Accordingly all the RI n,,, &, and g, (without dependence from that
tensors they or scalars) are depending of @ and k. Usually the homogenization in optics
(excepting crystal optics) leads to the isotropic RI, as the wavelength is sufficiently greater



than the typical dimensions of natural substance. In the hard ultraviolet and in the X-ray
diapasons it is not so.

It is already well known from optics that in the regions with strong anomalous
dispersion it may be negative i.e. the inverse waves may exist. In particular, under the large
oscillator forces the NR in narrow band may exist (that runs up to this seldom), but
n'(w) = Re(n(@)) > 0 (see formula 83.13 from [25]). In this case the phase and the energy

move in opposite directions, and the losses are highly large, i.e. n"(@)= —Im(7%(®)) may be
of n'(a)) order. The group velocity does not characterize here anything. Usually in periodic

waveguides (say, for microwaves) the losses are negligible small, therefore the NR is
described by positive retardation n and negative group velocity [26]. These are the one-
dimensional-periodic (1-D-P) structures, therefore n is scalar. The losses lead to negative
influence on NR media properties (in particular, they destruct the focusing capability of
Pendry lens (PL) and Veselago-Pendry lens (VPL)), and the sufficiently big papers are
devoted to that. But, as it is surprising, some losses are necessary are necessary for
existence of NR. Namely, in the paper [27] it has been shown that in isotropic media with
NR there is lower limit of electric and magnetic losses, and the NR does not exist lower this
limit. The Kramers-Kronig relations [25] for nz(a)) have been used to proof this and the

criterion has been obtained [27]:
2 1 W) O )y
7y (@ - w?) B

At that the value n*(@) (but not n(w)) is the analytical functions in one of @ semiplanes

l

(depending on the sign choice in the exp(ir ia)t)). Nevertheless, to reduce the losses the
several metamaterials different from DNG wire media are investigated in a number of
papers [28-30]. In these papers the 1-D-P PCs with high-temperature superconductive and
magnetic films [28], with superconductive and dielectric films [29], and also with
additional inclusions of structures like “magnetic atom” in form of MgF, film with golden
plate [30] have been considered. Such superconductive magnetic structures are the uniaxial
PCs. Thus, in [29] the transverse ¢, and longitudinal &, components of permittivity are

introduced, and it is shown that even for superconductive state there are sufficiently
considerable losses. They suppress the increase of damping (evanescent) mode amplitudes
and put obstacles for superresolution, but, nevertheless, the NRI is introduced in [29] and

the references to experiments concerning the figure of merit (FOM) in form |n’| /|n"| are

given. This FOM for LHM in infra-red and optical diapasons lies in the region 0.1-3.5.
But such anisotropic or bianisotropic structures couldn’t be described by one scalar RI.
Moreover, the magnetic inclusions need the magnetic field which is proposed to control
their properties [28]. Such PCs in magnetic field are the gyrotropic media.

It is useful to remember how the 7 is introduced in optics. For transparent isotropic
media in the disregard of dispersion (and therefore, neglecting of losses) we have g(r) >1,

and it is possible to determine the RI n = Je . In this case it is a simple constant for
homogeneous medium. The taking into account of frequency dispersion for monochromatic
waves already leads to complex frequency depended values 5(r, a)) u
n(r,0)=n'(r,0)— jn"(r,®), where &"(r,0)>0, n"(r,®)>0, in which connection the
equality is possible only if @ =0 or @ — oo [25]. That is justly in any dissipative medium,
and the complex number can’t be negative. In his paper [1] V.G. Veselago at first proceeds
from the dispersion equation (DE) for anisotropic medium without dissipation [1]:
detA=0, A4, =kié,f, —k’6, +kk,, (1)



where k; = »” /c*and k> =k*. Besides the equation (1) one may, as a matter of fact, use

also the equation

detB=0, B, =k, ji,é, —k*S, +kk,, (2)
i.e. the DE and » are ambiguously determined and introduced. Further in proposal of
isotropy the equation (1) is rewrote in [1] as

k> —kin® =0, n" =gu. 3)

That, as a matter of fact, means the scalarization of Maxwell equations, that generally it is
not necessary to do and anyone shouldn’t to do, because of only the values & and £ are
initially in these equations (or in the more complicated material equations which must be
used there). The DE (1) and (2) are the equations to determine the dispersion, i.e. the
dependence k = k(ko) or inverse dependence k, = k, (k) If plane wave spreads along z-
axis, i.e. k = zk_, then the equation (3) gives two solutions k” = k;gu and k, = iko\/g_ ,
that corresponds to forward and backward waves, in which connection one may take the
arithmetic value for the root, i.e. if ¢ <0 and <0 then n= \/a > 0. As it will be shown
further, the values ¢ <0 and i < 0 is the exactly unreliazable abstraction. So, the choice of
forward or backward waves is determined by the sign of k_, but not of n. This sign in
general case of dissipative media must be chosen from the condition Irn(kz)< 0 [8], i.e. the
wave with the dependence exp(iwt —ik.z) must damp in media along the direction z of
energy transfer. This direction in dissipative media must be determined by the Pointing
vector direction [8,31,32], but not by the group velocity vector (as it is made in the majority
of works). Such root choice gives the backward wave if &'<0 and x'<0: Re(k.)<0.
Both considerations: the present form and the form from [1] are equivalent in isotropic
case, but everyone should have in view and remember that the initial for DE is the
dependence k = k(k, ), but not the n = n(k, ).

All real known LHM are bianisotropic with periodic metallic inclusions of
complicated form (usually these elements are pins and split ring resonators, or -
elements, spirals, helixes and some similar configurations). The electrophysical
(electromagnetic) parameters of metamaterials must be obtained by homogenization [6,33—
48]. It is fulfilled by inverse problem solutions and averaging based on full-wave analysis
of periodic structure. It is necessary for this to solve many times the direct problems for
dispersion and field determination using the rigorous methods (for example, integral

equation method, or plane wave expansion method) [48]. The homogenization is also based
on the models of media, for example, in the form [45-47]

P =g, e-1JE+c ' F =g |- T)E+ 2],

p” =ﬂo(ﬂ—1)ﬁ+c ¢E =ﬂo[(ﬂ—1)ﬁ+Zo gEJ ,
and then on the determination of parameters of such models by strict or approximate fitting
to the boundary problem solution [45,47]. Here Z, =,/ x4,/ &, is the vacuum impedance,

P¢ and P" are averaged over the periodic cell dipole moments (electric and magnetic), the
upper line means the field averaging. The higher averaged multipole moments in principle

also must be included in polarization. The effective medium tensors &, /1, é,é are resulted

from the homogenization are dependent on averaging method and determined, at least, for
wave length 4 > D, where D is the characteristic dimension connected with the region of
averaging (for example, the cell period). The homogenization procedure in addition to
calculation of averaged cell dipole moments may be based on least-square analysis
(minimization) of rigorous (full-wave) and model DE solutions, or least-square analysis
(minimization) for corresponding plane wave diffraction results for structure vacuum-



metamaterial with different angles of hade and polarizations to boundary [10,45,48]. It is so
as the Ewald-Oseen extinction theorem [43] in this case may be proven. One of the first
such publication in which the effective permittivity was determined by plane wave normal
fall on plane boundary of media with periodically included small ferrite and metallic balls,
and also air-bladders (halls) in dielectric was the monograph [10]. The effective parameters
in general case must be fitted so that the least-square discrepancy has the minimum [45,48].
Let’s write down the averaged fields (denoted by the upper line) as

E=Aexp(iot Tikr), H=Cexp(iot T ikr). 4)
In general case one can extract from Maxwell equations not the relation (1) but the
following matrix equation [47]

{ & ki, +$M A j_m
—kik, @ z,c) (o)
which is equivalent to two DEs in the forms
Mook relitloi-a-ch-o.  loi-chlatis k-0
and to two DEs in the forms
det((e e+ )a (' k - )+ 2)=0,  detlliy'k-c)e (k)% + &)+ 2)=0. ()

Here we introduce the cross-polarization tensors &,¢  and the matrixes:

0 —k & ~k2-k>  kk, k k.
k=| k0 —k| kK=| kk  -k-k> kk, | (7)
~k, k0 k k. kk, -k -k

From these equations after the homogenization one should determine the dispersion relation
ky=f (k) The metamaterials in general are possessed of spatial dispersion, i.e. their

effective spatial-depended parameters are not local and in the k -space they are the
functions of k. Let us summarize the essence of homogenization. Many times setting the
different values and directions of k (the wave properties differ in different directions) and
determining the corresponding values of &, from boundary problem solutions and from

model of DE we are calculating the polarization and fitting the material parameters so that
the wave properties in inhomogeneous structures would be on average equivalent to the
plane wave properties in the model homogeneous anisotropic or bianisotropic medium.
Correspondingly the material equations are equivalent on average to media particles
motions under the wave influence. If there are two sorts of inclusions, and the first give the
input mainly into electric polarization and the second ones for the most part into magnetic
one, and in which connection they have weak electromagnetic correlations, that one may

A

neglect the cross-polarization tensors: &£=¢=0 . Then [l%[fllg + kozé]A =0 ,
lléé‘llg + kg ﬂk: = 0. If the matrixes (7) commute with the inverse tensor 4", that there is
[]€2 + k(fﬁéJA = lAz + k(fﬁzJA =0, where

h= (/:\lé)l/z =H —ip" = [(l[l!é_r _ /:‘lﬂéﬂ)_ l'(l[l”é' + ﬁrén)]l/z ) (8)
In the small loss case we have 71 = ﬁ’[f —i(a2"e' + p'e")-a /2], and
A" =Re(n)= (&), A"=-Im@)=(a"¢+ p'é")-(2n')". 9)

The problem arises here how one must extract the roots from matrixes. If £" and /' are the

diagonal tensors with all negative (or positive) components, then 7’ is the positive definite
matrix. But the components may have different signs. One may also to use the tensor

= (éfz)l/z. The permittivity must commutate with permeability for coincidence of these
two definitions. Generally we must introduce several impedances, propagation constants

10



and several constructions like RI in the considered bianisotropic media. The first two kinds
of terms are possible and necessary. But for RI it is possible and it is better not to do this,
otherwise it is connected with the troubles of root extraction from matrixes. If one directly
uses the Maxwell equations (but not the wave equations) the similar problems are absent,
and the different impedances and propagation constants (also several kinds) are turning out
in correct forms. But the RI does not quite arise instead of this. If the Cartesian axis
directions coincide with the cubic periodic cell verge directions and the metallic inclusions
are symmetrically located, then we have the
simplifications é =&l , fi=yl ,e=¢'—ie" , u=p —ip" ,e">0, u">0. In general case
one must take the sign in (4) in such a way that the fields damp along the direction
n, = (H+H*)/‘H+H*‘ of energy movement. Here the II=ExH"/2 is the Pointing

vector. If the tensor 7 is diagonal and one puts k, = k, =0, then there are two solutions:

k. =tk and k. =tk . Here the sign in dissipative media must be taken in such

manner that there was the damping along the energy propagation direction. For hypothetical
medium ¢ = ¢ =—1 in the ideal Veselago-Pendry lens (VPL) which cannot be realized

physically, one has &k, =—k,n (the inverse backward wave), where the RI

n=4/(=1)~1) =1. The mentioned exotic medium & = xz = —1 (or anti-vacuum) can not be

created in form of metallic PC contrary to the statement in [49] (essentially it is mentioned
already in [1]). Formally it corresponds to hypothetical diluted collisionless plasma of
electric and magnetic charges (monopoles) at extremely low frequency. The rarity is
essential in order to neglect the collision losses and proper plasma fields which lead to
gyrotropy and spatial dispersion. As some approach to this unti-vacuum one can consider
the high-frequency lossless and not created at present time magnetic semiconductors (when
the frequency is less than plasma frequency and the gyromagnetic resonance frequency) can
serve yet. But such media must be anisotropic and gyrotropic. The listed below demands
are contradictory, that causes the difficulties in such media creation even for narrow
frequency band. For the electrical (denoted by index e) and magnetic (index m) polarization

current densities in hypothetic media s=pu=-1 we have J}, =-2iwgE and
J? = -2iwu,H . These currents support the wave and are in antiphase with the fields. If we

apply the Pointing theorem in complex form with polarization currents as incident ones in
vacuum (that is equivalent to taking into account the media), one can get the own field

energy density U,,, in the following form U,,, =U;,, +U;,, = 50|E|2 /4+ ;10|H|2 /4. And
for stored (electric and magnetic) reactive powers in this medium one has
PC=EJ. /2= ia)go|E|2 and P" =J7H /2= —ia),u0|H|2. Therefore U;,, =U},, , and the

reactive electric and magnetic powers are equal and counterphased. As corresponding to
this the equal averaged over the period stored electric and magnetic energy densities are the

form <ULED> = <UA”}ED> = 2<U§M> = 2<U,’5"M> = <UEM> (as in such medium H=./¢,/ y,E).
This energy is not transferred to matter, and the full energy density for field and matter is
U =3<U EM>. Here the brackets <> designate the time averaging. Correspondingly the

energy transport velocity in three times less than the velocity of light: v, = ¢/3. The phase

shift /2 testifies to oscillations similar to some resonator modes. If one uses the formula
(10) in [49] which is connecting v, with v, in such ideal collisionless plasma under the

condition ¢ = 4 =-1, he has for phase velocity v,=—c,v,>0, and Vg =‘Vg‘=c/3 ,

v, =-v,/3 for group velocity. Accordingly he gets n =1 and the stored reactive matter
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energy in two time greater than the transferred by field electromagnetic energy. Here the
division of energy on matter and field part is possible as there is no any interaction energy
(the photon scattering is perfectly elastic). The wave movement causes the media
polarization currents and they in one's turn support the wave. Just these antiphases lead to
backward wave. But the energy and the majority of its carriers - photons are moving
forward (from the source). It does not give the negative light pressure as the field
momentum moves from the source and along the Pointing vector direction (in our case
along z-axis). It must be noted that in such exotic medium and in general case of media
there are always the backward and the all directional photons having the some phase shifts
from the wave. The resulting collective effect describes by quasi-photons (polaritons), and
the resulting energy and momentum movement goes into positive direction i.e. from the
source, but the phase in case of NR runs backward as the result of interference. In this
connection there is the obvious mistake in the papers [49-52]. True, it is mentioned in [52]
that the pressure is positive for vacuum-LHM plane boundary and the negative pressure
disappears in low frequency limit. There has been shown in the paper [53] that the
Minkowski energy-momentum tensor form in the nondispersive media is relativistic
covariant, that once again testifies to Minkowski energy-momentum tensor and photon

momentum in media p* = D x B benefit. But the introduction of RI in p* for anisotropic

and bianisotropic dispersive media is incompetent, including the substantiation of negative
pressure and mass transferring to source when one introduces the NRI n < 0 (see [54]). By
the way, conclusions in [49,50] contradict work [53]. According to last, if ¢ and x are the

negative constants (from impossibility of it here we abstract), then the electromagnetic field
momentum density in medium is p=guExH/c> =n’S/c”. Le. the pressure is positive

even at the negativen . This density is quantized value and also consists of quasiphotons
momentum [55]. In [50,51] it is told about “the formula P =#k connecting the photon
momentum value with its wave vector” (designations and citations are taken from [50]).
Further the conclusion follows: “It is obvious that in case of an opposite orientation of
phase and group speed when the wave vector £ is negative, the specified form gives
negative value of an momentum of a photon, and, thereby, at absorption or reflexion of
light in medium with a negative refraction index the light pressure should be replaced with
a light attraction”. Without concerning of slip about "a negative" vector, we will notice that,
speaking about a negative direction of a vector, it is necessary to specify, concerning what.
In ideal (infinite-periodic and lossless) PC all directions are equivalent, and forward (direct)
and backward (return) eigenwaves are indiscernible [48]. In finite (quasi-periodic) PC
(plate) there are radiating losses because of periodicity infringement. Such PC layer is the
multiband filter with strong attenuation in bandgap zones and with zones of a relative
transparency. Here waves are forced, and it is important, where there is a source: at the left
or on the right. If it is inside of a plate it is important as concerning how the observation
point is located. The Pointing vector S flow goes from a source, and the phase in LHM can
move as from a source (a forward wave), and to it (a backward wave). If a source at the left,

the photon (quasiphoton) momentum in medium has the form zo|n|k0h = zo|n|a)h/ c [54,55]

without dependence how the phase moves. Such approach is used in [1] for construction of
a beam picture: there the direction of a stream of energy is defined by a direction of a beam
falling from a source.

Here it is appropriate to consider the question: wherefrom the backward wave
arises? Let the source with carrier frequency @ has started to operate (has arose) at the
instant ¢, = 0. In the homogeneous medium at the big time ¢ it creates only forward (direct

and inverse) quasi-monochromatic waves of both directions. In the inhomogeneous (for
example, in periodic) medium there are the reflections from their elements. The reflections
come to source from both directions with tardiness, in which connection as the delay
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greater, the farther elements are located. As the interference result of multiple reflections at
the instant # — oo it may be that the phase is moving to the source whereas the energy and
momentum are always traveling from the source. Therefore the negative light pressure -
that's impossible and misunderstanding.

The radiated in both directions source loses the mass (see [51]), but its momentum
is zero. The mass of all closed source-field-matter system is conserved and the constant,
and the lost mass is also distributed in the field (the opposite momentum phonons have the
mass), and, possibly, in the medium (the losses lead to heating, and the mass of warmed-up
medium is greater) [54]. The energy and momentum flows go from the source, i.e. on the
right side — to the right, and on the left side — to the left.

Let us consider a problem about pressure of light in the LHM with ¢ = 4 =—-1. In

proposal that the constitutive (material) equations D=-gE, B=—-yH are true for
nonstationary Maxwell equations (i.e. for any frequency) then we get
p” =DxB=ExH/c*. So the pressure is such like in the vacuum and positive in

accordance with the momentum direction (cf. with the reasoning in [51]). The
monochromatic wave does not press on the boundary vacuum-anti-vacuum and does not
transmit the momentum to such medium. Further we will show that such approach is
incorrect even for monochromatic wave. Let’s note that all quantities here are
unambiguously defined (no any roots). But the wave pulse of train will produce the
pressure, as that such medium possessed the properties inherent in it, the very large (strictly
speaking, infinitely large) time is necessary for accumulation of energy of its internal
(intrinsic) oscillations. For more detailed consideration let’s introduce the model of rarefied

plasma with electric and hypothetical magnetic charges [1]: &(w)=1- a)f)e oo - jw,)],
,u(a)) =1- a)f,m / [a)(a) -jo,, )] We regard that the harmonic plane wave propagates in this
media with the electric field polarization along the axis x (£, = E'), and the magnetic field
directed along the y-axis (H, = H ). As distinct from [1, 49] we have taken into account the

collisions here. Further we consider @ >> max(a) a)cm) and @, =®,, = ®,, from which

we have ¢(0)=1-0? /0’ - jo, /(g,0), Ww)=1-a? /0’ - jo, (4). If o~ 0, /N2,
then &(w)~-1-jo, /(goa)p) , ulw)=-1-jo, /(,uoa)p) . Here o, zgoa);/a)w ,
o, = ,uoa); / @,,, . It may be seemed that this wave complies with Maxwell equations in the
form 0. H=¢,0,E~0,E, 0 F=u,0,H+o,H . If we get the balance equation for

momentum from these equations using the well-known way (see [54,55]), that we find
0.U,+0,g" =—f' — fF. Here the Lorentz forces acting on the charges are in the right

part, and term in the left part g¥ =S/c” is the momentum density, S = EH is the z-
component of Pointing vector. The balance equation has the standard form, but the energy
density of wave U, = —(goE >+ uH 2)/ 2 is negative (cf. with the argumentations in [1]).
This density (by the implication of balance equation) is the momentum flow density in z -
direction, therefore it may seems, that the momentum is really carried back, and the wave
pressure is negative. But this is not the case. The power balance in considered equation
forms also leads to such negative energy density U,. We have made the gross error in our
considerations by introducing the constants into nonstationary equations. Here the strict and
taking into account of frequency (time) dispersion consideration is necessary, though the
wave is monochromatic. This was indicated also is [1,51]. Such analysis in quasi-mono-
chromatic approach gives the positive energy (see [32]) and the positive pressure. Here one
must use the integral relations ([25], formula 77.3) between the inductions and the fields,
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where the integral operator kernels £(¢) and u(¢) are obtained from the Fourier-transforms
of &(w) and u(w). Particularly,

2
o0)= 00+ 22 ool 0,0) -l 0]
W, — W
Here y(t) is the Heaviside function and the Landau damping is introduced here to remove
the pole from zero point in the spectral permittivity function g(a)) The plane wave may be
presented here as E = E, cos(wt — fz)exp(—az), and H = H, cos(wt — fz — p)exp(— az). If
o=, =0, then we have H, = /¢, / y, E,,, and when the collision frequencies tend to
zero, than f — k, and the phase shift ¢ and attenuation constant ¢ also tend to zero.
Correspondingly ~ we  get (U)=(U,)=3(U,,) ., (D)=¢ (1 +w, | o )<E> ,
<B> = U, (1 + a); / a)2)<H > , 1.e. for the energy and momentum transfer velocities at the

frequency @, / V2 we have v, =v, =c/3, and the phase velocity is equal to c.

As the Dirac monopoles until now are not discovered yet, and the linear
collisionless plasma can’t be created in principle, the LHM with real and negative £ <0
and x <0 must be regarded as hypothetical. Also they do not satisfy causality principle
[25,27]. From the equation (6) under the similar proposals one may extract the DEs in
which there is the hermitian conjugated tensor 7°. The difficulties of NRI introduction is
discussed in the paper [44], and there is the suggestion in the paper [56] to hold always
n > 0 taking the corresponding signs in the solutions of DE, in the Snell law formulas, and
in others formulas. The present paper also uses this approach with that difference, that, even
for isotropic media, it is would be better not to use the term n quite. It is so as it isn't
posses the required analytical properties, and in another cases it cannot be unambiguously
introduced in general.

There are different metamaterial models in literature. One from them may be taken
in form of [6] with the taking into account the excitation of excitons. Such model is
convenient for natural crystals or for metamaterials with nanodimensional inclusions when
the averaging over the physical infinitesimal volume does not work already, and their
proper permittivities and permeabilities and surface impedances are incorrect for use. It is
shown in [6] that in this case 8(60) and especially ,u(a)) have restricted physical meaning.
Thus, the model n(aJ) < 0 is the very crude model which does not fully correspond to NR
physics. But it is pictorial and allows one to do any qualitative conclusions using the
geometrical optic approximation that has determined its spreading. The next footstep — it is
the model &(@) < 0, u(w)< 0. It is more rational here to consider the complex value with

g'(@)<0, u(w)<0 and &"(@)>0, u"(@)>0 . For the LHM having weak cross-

polarization effects the next level model is the usage of complex tensor permittivity and
permeability. And the general model is the bianisotropic PC [47]. There is the question
arising here: somebody could create a material with NR and scalar terms ¢ u and w

having the simultaneously negative its real parts? It is obvious that such PC must be 3-D
periodic with cubic sells and similar elements in its nodes having central and axis
symmetry. The split-ring resonators in DNM have not such symmetry. Possible approach
here is to use the embedded 3-D-P cubic cells with various elements (resonators)
orientations. The usage of magnetic semiconductor 3-D-P PC lower of ferromagnetic
resonance frequency for getting ,u’(a))< 0 [1] demands the external magnetic field and

leads to gyrotropia. Moreover, the losses in ferrites are quite high. Another and more useful
approach is the creation of biisotripic (chiral and nonreciprocal) AM. They are described by
the material equations
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D=¢geE+c ' (y—ix)H, B=pyuH+c ' (y +ix)E (10)
with four scalar values: permittivity, permeability, chirality x and nonreciprocity y .
Therefore one couldn’t use only » and p here [57]. We get the chiral AM if y =0 [58],
and x may be of both signs. For example, the chaotic implantation of ideally conductive
microhelixes in transparent dielectric background may serve as chiral media [58]. The sign
of x depends from helix winding. As far back as in 1823 Fresnel has introduced for
optically active media two (but not one) Rls: for right-polarized and left-polarized waves
correspondingly n, and n, with specific rotation 7Z'(l’lR —nL)/ A [58]. If the right-winding
and left-winding helixes are chaotically located and equiprobable, that one can try to create
the medium with ¥ =0 and zero specific rotation. The problem here is to get the NR in
such metamaterials. Here the RI is complex, and the real losses under the NR are quite high
from behind the resonances.
The losses are increasing with the increase of frequency and the decrease of dimensions.
Let’s note that it is not necessarily to have &'(w)<0 and #'(@)< 0 for NR [9]. It is only

necessarily to have the obtuse angle between v, and v, . So the NRI is the big
misunderstanding.

Let us summarize the conclusions. There is no real scalar RI in the NR media. It
corresponds only to isotropic lossless and nondispersive media models. The usage of such

RI is the very simplified models will lead to some mistakes. Both terms 7 and n* which in
customary meaning may correspond to n are complex and tensor (for anisotropic case). In

general bianisotropic case even two tensors 7 and 7° do not describe the LHM, and in
addition one should use four complex tensors. For hypothetical case of negative terms & < 0

and <0 we may introduce one real positive RI n=,/gu , taking the sign of k_,

corresponding to backward wave, as just k_ (but not n) is the result of DE solution. Then

this RI has the meaning of retardation n = k2|/ k, = ‘V p‘/ c. The Fermat principle in such

hypothetic media is the same as in [59] with such difference that instead of negative n we
use the negative light way distance as the phase moves back to energy. The Snell law is
modified by change of sign [56]. The positive scalar retardation coefficient » may be
introduced for wave in any media and any directions v, and v,. If the customary optic

lens in the operating frequency range is absolute transparent (lossless), that the phase and
group velocities are equal: v, =v, [31,32]. Therefore all beams come to the lens focus in

phase with equal group time of retardationz, =7, =1/ HV p‘dl = [c I ndl r . But in the case

of ideal VPL and focusing of normally located point dipole source all rays come to the
focus in zero phase, but with different group times of retardation. These times lie in the
infinite interval 84 /c <7, <oo. The time delay comes to infinity for ray angle near the

angle 7 /2 relatively of lens axis. This lens does not focus quasistationary and especially
nonstationary source. Even more so it does not focus short pulse, that is particularly
established in [59]. The normally located at the distance / < d harmonic source must act
infinitely long for focusing. In case of tangential located monochromatic point dipole the
full focusing is absent as their fields is not azimuthally symmetric, and the dipole does not
create the convergent to the focus point semispherical wave as it has been shown for
normally located case [21]. Appositely, the only such simplest case of normally located
dipole is considered in all papers concerning to VPL. Also let’s note that for finite lens
thickness d and finite dipole location the Ewald-Oseen extinction theorem [43] is not
proved for VLP, and, apparently, can’t be proved. So the dipole located at the distance
[ <d to the “ideally matched” VPL creates the reflected quasi-spherical wave which
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especially strong, than the distance / smaller (it is corresponded with the microstructure
influence). It is need to remember that the quasi-periodic layer of finite thickness d has the
radiation losses [48]. So, it is needs to solve the Maxwell equations for complicated
microstructures. The rigorous wave picture of real object image must be given by the
combination of 3-D vector spatial (volumetric) and/or surface spectral integral transforms
from source distributions in its volume (or on its surface) over all spatial variables
k., k, k. in the regions (— oo,oo). Here all modes are included: the propagated under all

angles and the damped evanescent ones. Such integral transform gives the image, i.e.
transfers the source value fields from the object point r' to the point r of its observation.
And the kernel of this transform is the tensor Green’s function of the layer. In view of this
there is always some resolution limit.

It is not necessary to consider this paper as the criticism of well-known works and
articles on problem of NR. The goal here is to accent on possibility to use the
electromagnetic material equations which more exactly correspond to real physical
processes into the media with NR. It allows one to predict their properties more precisely
including the interpretation of experimental data.
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Abstract — Mathematical model based on a coupled system of differential equations of
electromagnetic and thermal fields is formulated. In general case of temperature-dependent lossy
media this model allows analyzing microwave ablation processes of tumor in human body. Such
analysis is simplified in modeling coaxial interstitial applicators or microwave hyperthermia
therapy. Dielectric and thermal properties of some biological tissues taken in the literature are
reviewed.

1. Introduction

Electromagnetic (EM) therapy is one of the most rapidly developing medical
technologies nowadays. Along with infrared, radiofrequency and laser radiation
microwaves find wide practical application in such technologies. In particular microwave
energy is successfully utilized for hyperthermia or ablation of tumor tissues. Microwave
exposed tumor is heated up to 43+45°C (hyperthermia) or 60-90°C (ablation) by means of
specially designed devices, like contact type waveguide applicators [1], coaxial slotted
antennas [2], reentrant cavities [3], microstrip or spiral arrays [4,5] operating at ISM
(industrial, scientific, medicine) frequencies 433 MHz, 915 MHz, 2.45 GHz.

Numerous mathematical models (MM) are employed for computer-aided design (CAD)
of given microwave devices. Most of them are based on 3D numerical techniques: finite
element method (FEM) or finite difference time-domain (FDTD) method. Further upgrade
of microwave medical applicators requires more deep understanding of processes of EM
waves interaction with biological tissues and development of new computer memory saving
MM.

The generalized MM for the EM and thermal fields distribution in human body
irradiated by microwaves is given by the system of coupled Maxwell’s and Pennes’s
equations with corresponding boundary and initial conditions. And besides, these equations
are formulated usually for temperature independent lossy media. Such formulation is valid
mainly for hyperthermia processes. But during ablation therapy temperature of tumor is
increased on 20+40°C leading to coagulative necrosis. That is the temperature dependent
dielectric and thermal properties of human tissues must be taken into account in the coupled
MM.

Then the EM source parameters are neglected very often in the first Maxwell’s equation
despite on the fact that microwave heating takes place in the near antenna zone [6]. But as it
is known [7] the source modulation influences on the EM field pattern and that is why the
source term must be also considered in the coupled MM.

Accurate modeling of microwave ablation and hyperthermia processes is impossible
without correct and complete information about all parameters included in EM and bio-heat
equations at least at ambient temperature. But in most cases these data are incomplete and
the influence of temperature is not known.

Different assumptions can be successfully employed in order to increase efficiency of
simulation and CAD of microwave medical applicators. Few of them are considered in
present paper.
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2. Governing equations

Consider propagation and dissipation of EM waves in lossy temperature dependent
human tissue with complex diclectric permittivity &£(7)=¢&'(T)— j&e"(T) and complex
magnetic permeability & =1, where € is the dielectric permittivity; € is the loss factor; T

is the temperature. EM fields for this case both for applicator and body zone are defined
from Maxwell’s equations:

rotH = o, (T)E + goé(T)g—E +J,, (D
T
rotE = —pu, ot , (2)
ot
dive,é(T)E = p+ p, (3)
divu,H =0, 4)

where £ and H are the vectors of electric and magnetic field; v is the time; o, is

the electrical conductivity of biological media; J| is the density of source current; p is the

specific charge density; p, is the source charge density; &) , uy are the dielectric and
magnetic constants respectively.
Equations (1) — (4) can be rewritten for complex amplitudes of EM field in order

to exclude time as parameter:

rotH = jwé(T)e,E +J (5)
rotk = —ja)yOH, (6)
dive,e'(T)E = p,, (7)

divH =0, (8)

Let's transform equation (7) as the following:

dive,e'(T)E = &(T)divE +E, grade'(T)] = 2=, (9)
&y
divE +| £ grade'(T) | = P-. (10)
e(T) &

And now combining (5) and (6) we can derive inhomogeneous Helmholtz equation

for temperature dependent media [8]:

V2E+k02é(T)E+grad ,i,gmdg'(T) :ja),uo.].v —— ! grad divJ, . (11
&(T) " jes, 0 (D)

If parameters of the source are not taken into account we obtain homogeneous Helmholtz

equation for temperature dependent media which is well known [9]:
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V?E +k &(T)E + grad{i,gradg'(T)} =0. (12)
&(T)

Solutions of both (11) and (12) must satisfy Neumann’s and Dirichlet’s boundary
conditions at metal applicator walls and condition of continuity of tangential components
(E,,H,) of EM field at dielectric interfaces. Attenuation of EM waves in human body can
be described by so-called absorbing boundary conditions:

V.E, =—jk,E, +2jk,V.E,, (13)
where k; = @’¢, 1, is the free space wavenumber and ® is the angular frequency. And
besides complete damping of EM field is achieved if biological tissue boundary is shifted at
some distance (L) from the antenna output port:

L=1.15129". (14)

Here a is the attenuation coefficient determined as:

IR &MY
a=148-10"°f |£'(T) 1+(6,(T)] 1. (15)

In most cases medical applicators can be represented as single port microwave

network with EM source in the input port [10]:
E"D = M exp(—jfBz) {1+ |R

I (16)
where M are the eigenvectors of input port; S is the phase constant of EM wave in the
input port; |R| is the reflection coefficient; z is the coordinate.

Specific absorption rate (SAR) and power density in the interaction zone:

SAR = % , (17)
0, =0.50¢e,6"(T)E?, (18)

where p; is the density of biotissue.
The thermal field distribution is defined by Pennes’s bioheat equation [11]:

oT
ptCtE:ﬂ“tva_pzprbF(T_Tb)'i'Qm +Qv7 (19)

where p,, p, are the densities of the tissue and the blood correspondently; C,, C, are the
heat capacities of the tissue and the blood; /, is the thermal conductivity of the tissue; F is
the blood flow rate; O, is the specific power density caused by biochemical processes
inside human body; 7} is the blood temperature. In more generalized formulation thermal

parameters of blood and tissue depend on temperature: p(71), ps(T), CAT), Co(T), A(T).
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Metabolic heat source is estimated about Q,, = 4200 W/m?® [12] while O, = 10°+10°

W/m?® that is O, >> Q,, in many real situations. Blood flow rate values vary in the range
42107 < F, m’/kg's < 1.67-107 [13].

Equation (19) must be completed by the initial condition: 7 = 37°C at T = 0 and

the boundary conditions defining heat exchange between i and i+1 dielectric layers:

or,_ . oI,
]11' = 7—}+1; /lt,‘ 8_1’1 = ﬂ’t(i+1) El ’ (20)

where # is the unit condition

So, the processes of microwave hyperthermia and ablation of human tissues are
described by the coupled EM-bioheat problem which is formulated either for temperature
dependent or independent parameters of biological media. Analytical solution of this
problem is too complicated and that is why different numerical techniques are utilized for
simulation of EM and temperature patterns. Computational resources used in such
simulations can be essentially reduced when medical applicator design assumes 2D
approximation.

3. Axial-symmetrical modeling

Coaxial-dipole or monopole antennas are widely employed in microwave interstitial
hyperthermia systems [2, 6, 13, 14]. EM fields in such applicators can be successfully
calculated in cylindrical coordinate system (7, ¢, z) with the help of axial-symmetrical 2D
models. Neglecting the source term in (1) — (4) we can write [15]:

%=—(eoe’<T>)‘{%+m(T)E,,j, 1)
or oz

%, _ (eoe%T))*[r* 9 ) - ae(T)Ez} , 22)
or or

OH,  (OE. OCE,

or _”"(ar 62)’ 23)

where H, is the azimuthally component of H-field; E. and E. are the radial and longitudinal
components of the E-field respectively.
Then the power density in lossy media is found by:

0, =0.50e,&"(TYE> + E?). (24)

Finally temperature pattern will be determined by 2D bio-heat equation:

oT L o0( or\ o' T
ptCtE:ﬂ’t[r 15(r§j+§:|_ptprbF(T_T;))—i_Qm+Qv' (25)

Equations (21)-(25) must be completed by corresponding boundary conditions in
cylindrical coordinates.

4. Numerical algorithms

Duration of EM processes (nanoseconds) is much shorter than thermal ones
(seconds or minutes) and in order to overcome this discrepancy so-called time-scaling
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factor (¢ = t/7.m) 1s introduced in bio-heat equation in FDTD algorithms of the coupled
problem solution [16]:

M _elver Vor_ 1y, &
‘far—fa{VT LI -T)+=m+ 20, (26)

1 t 1

where a, = (4,/Cp,) is the thermal diffusitivity; V; = pppCyF.

The discrete form of equations (21) - (25) according to FDTD computational
scheme is represented in [15,16]. Another approach: adiabatic approximation is used in
frequency domain computational techniques like FEM. According to this assumption
physical parameters of lossy media are not changed during several periods of EM field
oscillation. Such approach allows avoiding employing two time scales. Then equation (11)
is transformed to the matrix form:

[4])x}- AlBYx )= . 27)

where [4] and [B] are the sparse nonsymmetrical global matrixes; A is the wavenumber
which is known if J; # 0 or the eigenvalue if J; = 0; {X} are the EM field functions; {J} is
the vector of source current. Final matrixes [4] and [B] can be solved with GMRES and
SPOOLES algorithms [10].

Generalized numerical algorithm of the coupled problem solution for temperature
dependent media can be found in [8,16,17]. EM part of the coupled problem is solved first
and then results of this solution (power density values) are substituted in bio-heat equation.
The most time consuming is the first stage.

When the coupling between EM and bio-heat equation is weak, that is human tissue
parameters are taken temperature independent, modeling of EM and thermal patterns is
simplified.

5. Analytical approaches

Sometimes simulation time can be essentially reduced with the help of analytical
approaches implemented in computational procedures of the coupled problem solution. For
example, as it has been proved in [6] the steady-state 7(») and transient 7(r,7") temperature
are defined in local heating area as:

=" [ j‘gG(r/rO)@SAR(ro)dgdzdro, (28)

T(r,7') = j - ( jy G(r/r,,7)® SAR(r,,7)d dzdr, )dr , (29)

where 7 is the radial coordinate, 7y is the source location point, 7" is the time period, G is the
Green’s function which can be formulated in cylindrical or spherical coordinates.

One more important observation made in [6] for SAR distribution in the transverse
plane for the coaxial interstitial antenna immersed into biological tissue shows that the
power density pattern is approximated by exponential function:

SAR(r) = 0, exp(—4z), (30)

where Qy is the peak amplitude of power density, ¢ is the response coefficient responsible
for the SAR pattern. Then the tissue area near the radiating slot can be subdivided on thin
layers inside which temperature is calculated using analytical expressions obtained in [18].
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6. Dielectric and thermal properties of bio-tissues

As it has been mentioned above correct estimation of dielectric and thermal
parameters of human tissues is one of the key moments of mathematical modeling of
microwave therapy processes. In most cases this information is available in the literature
only for human body temperature about 37°C [19]. Essentially less information is available
about &' (7)-je" (7).

Example of temperature dependent complex dielectric permittivity of human blood is
given in Table 1.

Table 1
Dielectric properties of blood at 2.45 GHz [19]
T°C g’ g’ o, (Ohm'm)
1
15 59.9 19.9 2.71
25 57.5 17.1 2.33
35 56 15.9 2.166

Investigations of cancerous biological samples show [20] that both & and &" of
tumor are higher than the normal tissue because of higher water content (Table 2).

Table 2

Dielectric properties of breast tissue at room temperature and 2983 MHz [20]

Sample Tissue g 6, (Ohm'm)”’ | Bound water, %
Patient 1 Normal 20.43 3.12 43
(edge 47) Tumor 32.31 3.52 62
Patient 2 Normal 18.85 2.71 42
(edge 49) Tumor 38.73 4.12 65
Patient 3 Normal 24.98 3.25 45
(edge 51) Tumor 40.1 431 65

Solution of the coupled EM-bioheat problem requires data at least about five main
physical parameters of human tissue: €', €"’, p;, C;, 4;. (Table 3).

Table 3
Physical constants of some human tissues [13, 19]
Parameters Blood Muscle Liver Skin Fat Brain
Dielectric permittivity 60 49.6 44.04 40.4 5.3 42.5
at 2.45 GHz
Loss factor at 2.45 GHz 15 18.8 13.14 11.23 0.734 11.09
Density, kg/m3 1060 1020 1070 1100 916 1030
Heat capacity, J/(kg-K) 3960 3500 3590 3500 2300 3640
Thermal conductivity, 0.61 0.6 0.488 0.5 0.22 0.53
W/(mK)
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Table 4
Dielectric properties of human tissues at 37°C [21]

433 MHz 915 MHz
Tissue o o
¢ | (Ohmm)’ ¢’ | (Ohm'm)"
Blood 66 1.27 62 1.41
Bone 5.2 0.11 49 0.15
Brain 57 0.83 50 1.0
Fat 15 0.26 15 0.35
Kidney 60 1.22 55 1.41
Liver 47 0.89 46 1.06
Muscle 57 1.12 554 1.45
Skin 47 0.84 45 0.97
Eye 66 1.32 55 1.4

Operating frequency of some contact type waveguide applicators [1, 3, 4] is taken lower
than conventional frequency 2.45 GHz in order to increase penetration depth of EM field
in lossy media. Two main ISM frequencies used for these purposes are 433 and 915 MHz.
Dielectric properties of some body tissues (Table 3) at these frequencies can be found in
[21]

7. Conclusion

Represented coupled mathematical model describes processes of microwave heating of
biological tissues in human body. This model can be employed for simulation of both
temperature-dependent and independent lossy media interaction with EM waves during
microwave hyperthermia or ablation therapy. Some numerical and analytical approaches to
the coupled problem solution have been analyzed. Considered model is easily adapted to
FDTD or FEM algorithms of EM and thermal patterns computation in the interaction zone.
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Abstract  —  Using the method of Green functions we found the four-potential and
electromagnetic field components for a pointlike charged macroparticle moving along an arbitrary
path in a perfectly conducting circular cylindrical waveguide. Solutions are expressed analytically
through the Green functions of the d’Alembert operator with Dirichlet and Neumann boundary
conditions. It is shown that if the waveguide is excited only by a longitudinal current density
component and/or non-zero charge density (transverse current components) the obtained solution
reduces to the well-known expressions for TM (TE) circular cylindrical waveguide modes. If
transverse and longitudinal current density components and non-zero charge density are present
simultaneously in the waveguide, then the radial structure of the excited electromagnetic field
coincides with that of the superposition of 7M and TE circular cylindrical waveguide modes. The
results thus obtained allow one an ab initio calculation of the forces acting on an arbitrarily moving
relativistic charge from the self-induced charges and currents at the waveguide walls. They also
provide a basis for solution of rigorous self-consistent problem on the non-stationary propagation of
relativistic electron beams in perfectly conducting circular cylindrical drift tubes with the account
for space-charge effects.

1. Introduction

Modeling of intense charged-particle beams is an important subject in beam physics
and to the development of high-power microwave oscillators and amplifiers, which use
them as the working media.

The first task that arises at studies of charged beam dynamics in external and
intrinsic (self) electromagnetic fields in waveguide structures is the beam equilibrium
configurations. For axially-symmetric charged beams moving along the circular cylindrical
drift tube axis, this problem has a sufficiently simple solution. For certain cases the use of
conformal transformations and taking into account of particular symmetry properties of a
problem could substantially assist in finding solution for beams, which do not move along
with the symmetry axis of a guiding structure or drift tube. However, such methods cannot
be generalized for charged beams moving in complicated electromagnetic fields and not
possessing any symmetry or periodicity. Therefore, development of efficient three-
dimensional analytical, semi-analytical and/or numerical methods for finding
electromagnetic fields induced by arbitrarily moving charges in waveguide structures
becomes one of the principal objectives in vacuum electronics.

Second, physics of weakly-relativistic and relativistic high-power microwave
sources (such as klystrons, gyrotrons, free electron lasers, etc.) requires essential knowledge
of space-charge influence on frequencies, start current and any other oscillation conditions,
which cannot be satisfactory achieved without calculation of electromagnetic fields created
by a moving charge.

Third, the well-known restrictions of differential methods, i.e. particles in cells
codes, as opposed to integral methods, i.e. methods involving Green functions (see, for
example, [1]) when the relativistic dynamics of charged-particle beams is important, call
for solution of completely three-dimensional problem on the vector-potential (and inclusion
of relativistic corrections to the electric field and the magnetic field of the total space-
charge field of charged-particle beam). In generic (i.e. not only necessarily circular)
cylindrical geometries such solutions are obstructed by coupling of transversal components
of the sought four-potential and electromagnetic fields [2]. Therefore, finding of efficient
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methods to solve coupled scalar partial differential equations analytically, could greatly
assist with modeling of various state-of-the-art microwave vacuum electron devices.

For these reasons, we calculate analytically the four-potential and electromagnetic
field components induced by a pointlike charged macroparticle moving arbitrarily in an
infinite perfectly conducting circular cylindrical waveguide. Our solution generalizes that
of [3] to the non-stationary situation and, under particular conditions of paper [4], reduces
to the results on the four-potential presented there. Given by equations (23), (24) and (27)
for the four-potential and (47) and (51) for the electromagnetic fields together with Green
functions expressions (36), (37) and (43), (44), results presented here provide the general
solution to the problem under consideration.

2. Problem setup

Under the Lorentz gauge condition, Maxwell’s equations for the scalar and vector-
potentials ¢(x,¢) and A(x,7) in the circular cylindrical coordinate system take the form:

Lo(2) Lt g ne], 2o ur, 0

ror\ or) r- r 060> 0z c ot r- 00 c

Lalra e e s e R @
ERIEA ISR AL P g
B 5

where j(x,t), p(x,t) are the current and charge density; », ¢, z, ¢ are the circular

cylindrical coordinates and time; ¢ is the speed of light in vacuum. It should be noted that

equations (1) and (2) are coupled one to another, while equations (3) and (4) are
independent.

Boundary conditions for the scalar potential ¢ and vector-potential components 4, and
4. follow from those for electromagnetic fields on the perfectly conducting surface
assuming that p(x,) and j(x,r) vanish at the waveguide boundary. In particular, 7ixE =0
and 7-B=0 at » = a (a is the waveguide radius) lead to the conditions

4, =¢ _ =0 5
(cf-, [3]). Apparently, the easiest way to deduce the boundary condition for the remaining
component of the vector-potential, 4, is to consider the gauge condition
10(4,), 104, 04, lop _, (6)
r or ro@ 0z «c ot
and, restricting it to the boundary, derive

gvA,) ~0; )

r=a Zlr=a

r=a

although, this result can be also obtained directly from Maxwell’s equations. It is naturally
assumed here that the fulfillment of the boundary conditions is achieved through radial
dependence of the components of four-vector potential.

Source terms on the right-hand sides of Maxwell’s equations must satisfy the continuity
equation

roor rod & o

irrespectively of the chosen gauge condition.

Coupling of equations (1) and (2) provides the major obstacle for finding general
solutions for 4, and 4,.

1M+l%+%+al_o (8)
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3. Coupled equations

To solve the system of coupled equations (1) and (2) we propose the following
procedure. We apply to the both sides of equation (1) operator »'6(r-)/or and 0/(r00) to

those of (2). Adding them up, we have
1of o), 10 &0 10 | 7 4701005) J|__47 4, 5
{r 6r(r8rj+r2 692+822 c? 8t2}dlviA cr[ or +66’}_ c v, 7 ©)
where we denoted
w71 [0y, %
dIVLV—r{ar(rVrH 80] (10)
Accordingly to (5) and (7), unknown function (10) on the left hand side in (9) obeys the
Dirichlet boundary condition
div, 4],_,=0. (11)
Applying operator 8/(r06) to both sides of (1), »'o(r-)/ér to those of (2) and subtracting
the obtained equations, we find

2 2 2 . .
N I o T (-
ror\_ or r- 00 0z c” ot cr or 00 c

where
1| 0 ov,
rot, V:[ar(rvg)_aé] (13)
The unknown function rot, 4= B, on the left hand side in (12) is subject to the Neumann
boundary condition

d(rot, 4)  _ 0B,

or or

To prove this boundary condition, we assume that j,|_=0 as discussed earlier and apply
the derivative o/0r to the right hand side of (13) written for 4. We find
8{1 a(rd,) 164}_16@6@) A, 204 1 0°(r4)

r oo r _}"al" or T a0

-0, (14)

r=a r=a

15
r or r 00 P8 P 86or (13)

where the last summand on the right hand side of the equation above vanishes at the
boundary because of (7). The rest of the right hand side vanishes on comparison with the
restriction to the boundary of equation (2) and the use of (5). Thus, equations (9) and (12)
can be solved for div, 4(x,#) and rot, A(x,r) via the method of Green functions.

To find solutions for 4 and 4, we additionally propose the following ansatz: let us

introduce a pair of new scalar functions P(x,7) and Q(x,7) obeying the relations

ArzaiP_l(?iQ’ Ag:16£+6£ (16)
or r o6 r o6 or
with corresponding boundary conditions
P =0, @ (17)
e ar r=a

Substitution of definitions (16) to (10) and (13) leads to Poisson equations in transversal
coordinates for P(x,r) and QO(x,¢):

ALPE|:16(”6]+12 62:|P:diVL;L (18)
ror\ or r° 00

frof, o), 1o, g
ALQ{F 4 ( ar} . }Q_rotzA. (19)

Here the right hand sides are regarded as known functions. It can be proved that (16) and
(17) are compatible with boundary conditions (5) and (7) for 4, and 4, . For 4, the

compatibility follows directly from definitions in (16) while the proof for 4 calls for a
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more involved consideration. The boundary condition for the radial component of the
vector-potential is given by expression (7) and to secure our assertion it is sufficient to
prove that »'6(roP/or)/or|,_,o P|,_, . First, one can check that such a relation holds for any

function of the form J,(»v/a) by virtue of the Bessel equation
[ 7'0(roF /or)/or=0°F /or* +r '0F Jor=—(v* /a® —n’ /¥*)F ; v/a is a constant of appropriate
dimensions]. Second, the assumption that P(r,0,z,¢) obeys the Bessel equation (or, more

generally, that P is expandable in Fourier and Fourier-Bessel series with the eigenfunctions
J,(v,,r/a){cos/sin}[n@] of the “transverse” Laplace operator A, with appropriate v, )

obviously does not restrict the generality of such a consideration. Following [5, Sec. 13.1]
we are certain that separation of variables possible in circular cylindrical coordinates
[ P(r,0,z,t) = P'(r,0)P*(z,t) at least] and looking for the solution for P'(r,0) exactly among
eigenfunctions of A .

Thus, equations (9), (12), (18) and (19) can be solved for P and Q by the method of

Green functions to provide [via definitions (16)] the analytical solutions of coupled
equations (1) and (2) for the transversal components, 4, and 4,, of the vector-potential.

It should be also noted that in this approach the Lorentz gauge condition can be set aside
while solving system of equations (1) — (4). The possibility of this omission lies not only in
the fact that the system had been derived using it, but also because the gauge condition can
be inferred from equations (1) — (4) using the continuity equation. The very existence of
such an interrelation is a priori understandable because the four-potential components are
connected by five differential conditions (1) — (4) and (6) one of which can be shown to be
a corollary of the others, and it is at our disposal which four equations to take as a complete
set. To demonstrate this, we observe that equations (3) and (4) lead to the following

equalities:
1o 0 108 & 10| o4 4r o
St St | o =, (20)
ror\ or) r 00 0z ¢ ot 0z c Oz
1o( 0 108 & 10 |10 4z 0
ol A T e T A T A e o (21
ror\ or) r-00° 0z c¢ ot |\c ot c ot

Adding to equation (9) equations (20) and (21), we find
{15( aj+ 1o, & 18 }{1 6(rA,)+16Ag+6AZ+16(p}:

;81’ o

00" 8zt ¢ or

r or rod o0z c ot
:_M{IWH%JF@ZJF@?}

r
or 22)
c|r or rof oz ot
The right hand side of this equation must vanish by virtue of continuity equation (8),
whereas the boundary condition for the unknown function on the left hand side is that of
Dirichlet. It then follows that the unknown function on the left hand side of equation (22)
vanishes identically. This shows that Lorentz gauge condition (6) holds.

4. Representation of four-potential

So far, we have reduced the problem of finding solutions of system (1) —(4) to the
construction of appropriate Green functions G”"(x,£;x',t') and G?"(x ;x!) of the d’Alembert

and A, operators with the Dirichlet and Neumann boundary conditions, respectively, in
cylindrical coordinates. Formally, we write the solutions of equations (1) — (4) as
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Do | =t N/ =t
A(ﬁﬂ:_lI{mACandwlg_aGﬁggn)mfg}ﬁ@
!

" 4r or 7 :
D/ .=t Nio =t

%@ﬁz_lIF@U&auMg+ﬂamﬂumﬂ4“¢

4, roé or (23)
A (%,0) = I I GP(x,6;x",1")j.(x",t")dV"dt",

Ve
p(x, 1) = c J' J' G”(x,t;x",¢") p(X",t")dV"dt",

Ve

where
div, A(x,,z,1) = ijD(x;,z,t; X" div" F (& ")V de",
24)

rot’ A(x!,z,1) = j j GV (®!,z, %", (") rot” J(x",¢"dV'dt",
e

and primes over operators show that they employ primed coordinates [for the definitions of
involved operators see (10) and (13)].
For a pointlike macroparticle of charge ¢
J(x,0) = q(dx(1)/ dt)o(x - X(1)),
P(X,1) = q6(x - X(1)),
where %(¢) is the position of the macroparticle at the moment of time ¢.

(25)

Representations (23) exhibit certain symmetry between expressions for 4, and 4,. In
these representations one can immediately see that if j =, =0 then 4 =4,=0, ie. the

transversal current induces an analogue of the 7E -eigenmode of a circular waveguide [in
fact, the second equation in (24) shows that this analogy is quite deep one]. If p=,;=0

then ¢p=4.=0, i.e. the charge density and longitudinal current induce an analogue of the

T™ -eigenmode of a circular waveguide. It should be also noted that by virtue of continuity
equation (8) div, 4 vanishes identically under such a condition.

5. Green functions

Having reduced the problem of finding solutions of system (1) — (4) to the construction
of the appropriate Green functions, let us proceed to the task of their explicit finding. Since
the cases of Dirichlet and Neumann boundary conditions turn out to be completely
identical, we shall demonstrate the accomplishing of our task for the Green functions of the
d’Alembert and A, operators with the Dirichlet boundary condition.

In the first case, we look for the solution G”(x,#x",¢") to the equation
10 0 1 o 0’ 1 0° 4
=+ o |G === 5 (x X"t~ 1") . 26
Lar(rarj P00 o & aﬁ} p OF- Tk (26)
In the dimensionless coordinates:=r»/a,  =z/a and 7 =ct/a, we write

1o( 0 1 0 0’ o’ | ., Ar " " " "
Laz(’az}rﬁ oot ar M}G == Sa=150-0")8(5 (NS -1"). (27)
First, we expand the Green function into the Fourier and Fourier-Bessel series with the use
of eigenfunctions of the bounded part of d’Alembert operator, thus, separating the
transversal functional dependence (cf. [6]):

P A
EG‘;‘ + > (G" cos[n]+ G": sin[n0]) and oo => oo J, .0 (28)
n=1 n g=1 nq

G’ =

where
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G" (r,z,t;x",t") _i]iGD(Tc e cos[nd] 40
G (r,z,t;X",t")| 7y T Msin[n6]]

G, (2 3",1") _i' GD,I,(r,z Sl
L,
G (z,;3",1") T GD,,z (r,z,t;%",t")

‘1

(29)

and v, are the roots to the equation J,(x)=0. Substituting these series and using the
orthogonality relations for the involved eigenfunctions, we rewrite equation (27) in the

form
0* o L1167, 8 J,(v,1") [cos[n0"] . o
|:8T2 - aé,z +an:|{GDf’q}_asz (V ){Sln[ ]} (T T )5(4, é/ )' (30)

Second, we observe that equation (30) is the (1+1)-dimensional Klein-Gordon equation
with the roots v, playing the role of mass terms (cf. [7, p. 93]). Now, we use the integral

nq

Fourier transform (see, e.g., [8, p. 183])

{g} H{ z}exp [ix. (¢ = &"Ylexpl-iw(z — 7")ldxdw 31)

—0—0

and the following representation for the delta-functions:

6(-¢No(r—1") =

explix, (¢ —¢")]exp[—iw(t —7")dK dw (32)

—o0—00

(x,=k.a and w=wa/c). Then, equatlon (30) results in the solutions for the coefficients
D1

g”, and g” :

{g”iq(zo,wn" 6".¢", r")} 2 J,w, 1" {cos[n&”]} (33)

ngq (K_ w;t ,6” é/u T”) ﬂ,ZaZ(WZ _ K‘; _qu) J’il(vnq) Sin [neﬂ] .

It turns out that integral (31) can be solved explicitly with the use of (33). As a first step,
we find
Almw

Fig. 1 Contour used for calculation of integral (34)

I [zw(r r) o ﬁstzc +vnq(r z') (34)
5w —K —V K HV,

which is obtained by contour integration (see Fig. 1). On the second step, we calculate
@ sin[/x? +v, (z—1")] v ,sin[L Kl v, (T - z'")
[explixe, (¢ —¢M————=="——dx, =2 [ cos[x.({ ~¢")]
s \/K'g + V” 0 \/ + V

1 _ " "
:EJO(vm,J(r—T")Z—(4—;”)2){0} { dlie 5'}5 (35)

|&-¢"|>7-7">0
=1 (v, (e =" =& =) )Se - 7" = | £ = ¢,
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where the penultimate equality is due to the known standard integral
[9; Sec. 2.5.25, Eq. (9)]; 9x] is the Heaviside step function. Finally, the Green function of

the d’ Alembert operator with the Dirichlet boundary condition takes the form:

+ooJ Vv r/aJ v V"/a
GD('X:t;xﬂst”):iz lz 0( 0q 2) O( Og )
a” |24 Ji(ve,)

q=1

Ty o |t =1") —(z—=") Ja) +

36
X Jn(vn r/a)‘]n(vn r"/a) " 2 ”\2 n\2 " " ( )
Z — 1 cos[n(0—-0")1J,(v, \/c ="' —(z=-2")" 1a)p9(ct—t")-|z-2"|)/a].
qj Jn+1(vnq) !
An analogous calculation with the Neumann boundary condition 6G" /ér|,_,=0 yields:
10 J ’ / J ' "/ 2
GN(X.’I;X.N’tN) 2% lz O(Vqu Z) (,)(Vqu a) JO(V(,)q\/CZ(t // (Z z ) /a)+z ,Zvnq
a |2 g=1 Jo (V()q) =1 Vg
n=1 (37)
J, la)J, "/
(V r Ja)( (;/nqr ) s[n(é? _ 6”)] JO(V,,W\/CZ ([ _ Z‘/!)2 _ (Z _ ZII)Z /(1)}19[(6‘(1 _ t”)— | z—2z" |)/a],
nq
where v, are the roots to the equation dJ, (x)/dx=0.
In the second case, we look for the solution G (z,;x]) to the equation
10 0 1 o
——|r—|+— G’ =-4rs(x, — %! 38
L ar(r arj 2 692} 7o~ ) (38)

obeying the boundary condition G/ (x;%')|_,=0. In the dimensionless coordinates:=r/a

and @, we write
10( 0 1 0 4r
Sl S 6P == s-1)s(0-0). 39

Laz(’azj & 892} . 1 (1= ) (39)

Note that Green function G”(x,;x]) does not carry any dimensions. Again, let us expand the

Green function into the Fourier and Fourier-Bessel series with the use of eigenfunctions of
the bounded part of the d’ Alembert operator:

GD] oo GDI
LS Gm + Z(GM cos[n0]+ G’ sin[n0]) and {G”Z} = Z{ }J ((FOR (40)

D2
in 1 GLn

Gl (%) _leD(x gy el g
Glx)| wq T [sin[n6l]

GDl X, 1 G 1.0
DZ( ') 2 2 _.. Jrz(vnql) an(l ! ) dl,
G..(x)| S5 G (0,0

Lng

where

(41)

and v, are the roots to the equation J,(x)=0. Substituting these series and using the
orthogonality relations for the involved eigenfunctions, we find from equation (39)

G, _8J,(v,1") [cos[né'] (42)
G2 v, sl

Finally, the Green function of the operator A, with the Dirichlet boundary condition takes
the form:

&= J, /a)J "/ N la)J "
GP(x.:x) =8 72 (v, rza)2 N a)+z ”(vnqrz az L, r'a) os[n(@ -] | 43)
2 g=1 VOqJI (VOq) n=1 Vrqun+1 (an)

An analogous calculation with the Neumann boundary condition oG, /or|_=0 yields:

N *mJ(V r/a)J(v r/a) *mJ(V' r/a)J(v' r'/a)
= . af L " g ., ng s 44
GL ( : L) 8 2 qZ]: J (V 0Og ) ; (V'iq _nz)J: (V’nq ) COS[n(a 9 )] ’ ( )

where v, are the roots to the equation dJ, (x)/dx=0.
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6. Expressions for electromagnetic fields

Having found expressions for the four-potential, we can obtain the corresponding
electromagnetic fields by direct differentiation via formulas:
E:—Vgo—la—A, B=rotd. (45)
c ot
In performing these calculations, it is important to keep in mind the commutation
property of the d’ Alembert operator with the derivatives
90 4nd 2. (46)
00 oz ot
This property allows one to shift the aforementioned derivatives from the Green functions
to sources in the final formulas [cf. (20) and (21)].
It also should be mentioned that we have effectively found the z -component of the
magnetic field [see (26)]. We, therefore, can write

E.(%,0)=—[[G"(x,:%",") cPLE) | GO | gy
: ) o' cor

B.(%,1) = I I G"(x,t;x",t" rot” J(x",t")dV"dt".
Ve

(47)

Moreover, we shall also need other auxiliary relations involving Green functions. First,
using the definition of Green function G (x,;%!), one can write the following identities

. =" " l =, =/ r - =! ” ” !
S == [ GIGL XA (x2S

T K

1 (48)

P == [GP(x1;¥)A, p(x],2",1")dS"
4r s,

Second, observing that obviously the d’Alembert and A, operators commute with one
another (A-c20°/0t)A W(X,,z,t)=A (A—c0* /ot W (X ,z,t) = (4r)’ ¢ 'F(%,,zt) and restricting
ourselves to functions W (x,7), which are eigenfunctions of A, with the Dirichlet boundary
condition, we may check the equality

w0 =[G? (XL;XL){HG”(XL, 2 X",t”)F(x",r”)dV"df}ds' -
s v (49)
= IIGD(X, t;x",t"){ I G (x];%] )F()”ci,z",t")dS'} av'dt".
4 s’

Results (48) and (49) (note the positions of arguments of F in both lines of the equality
above) are extremely useful in transforming representations for 4.(x,7) and ¢(x,¢) in (23) to

the form
A (%) =— RS [a? (xi;xi){ j j G (x,z,:%",t")A" j. ()”c",t")dV"dt"}dS’,
4” S’ Ve
(50)
p(x.1) == “ij(xl;xL){UGD<xL,z,t;x':r")Aip(x",t")dV"dt"}dS'.
dr o
Using (45), the first two relations in (23) and (50), we finally obtain

1 ¢|0GP(x,;x) 0
E (x,t)= — [{ =L G2, z,6:X", 1) cA" p(x",t") +
(%,0) 47[!{ p jj (x].z )| ALPE )+

div" ](X",t")}dV"dt” -

aGJ]}/ (xl ; xi ) N r " " 8 n = " " 1) n !
TR (TGN (R, 2,63, 6") ——— ot J(x",¢")dV'di" tdS’,
00 VH (%, ) o O S
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E, (%, t)—— j{aG L (F5%0) ”Gf’(x;,z,t;x t"){cA PEY L 0 iV, t")}dV"dt"+
4

s

aGJ_ (axj_axl) ijN(Xi» , ’ " on (—H ﬂ)dV”dtﬂ}dS!’
r
(51)
- 6G x ﬂx ’ =" LA [ =" " a =" n n
B(nn=— j { r(a; ™) j j G” (3, z,6:%",t )[Alfz(x )= div j(x r)}dth -
W j IG (X, z.6%" t)—rot" ](*”t)dV"dt”}dS’,

B,(%,1) = II{W”G (xi,zt)‘c'"t)[Alj (x", ") —

(x.ll’ t”)}dV"{i["'f‘
4r <,

8G X, ;X y o o ,
r(a; L)J‘J‘GN(XL,le t) ~rot” j(x",t")dV"dt }dS,

Expressions (47) and (51) can also be derived dlrectly from Maxwell’s equations for the
electromagnetic fields [cf. (57), (62) & (65) and (66) & (69)].

7. Direct derivation of electromagnetic fields
Let us derive expressions for the components of electromagnetic field directly from

Maxwell’s equations using technique described in Section III. Maxwell’s equations read:
div E = 47p, divB =0,

52
tE——fa—B, rot B = 47[]+l@ (52)
c ot c c Ot
Using relations
ro(l an 12 0’5 and rot(lagj 477r§+i26§ (53)
c Ot or’ c ot ¢ ot ¢ ot
obtained by differentiation of the second line in (52), we find
—rotrotE—izaE—é‘—fi and ! aB:—4—”r otJ. (54)
ot’ ot ¢t o c

Taking into account the known relation AV =V divV —rotrot” and the first line in (52), one
can rewrite (49) as

2 25
E_izaf_“” Vp+ 9 and aB-L OB __47 5. (55)
ot c c Ot ¢ Ot c
Boundary conditions for the field components are
BN 0, Bl =E.|,=8.=0, "5 _F o (53)
or |, or |._., Oor|.,

and finiteness at » =0
For E. and B., we obtain

10 0 1 & 0? 1 6° 47| cOp 0.
e Rl e et e e L2 i el
ror\_ or r- 060 0z c- ot c| Oz cot

(56)
l a i +L az +872_i872B —_4lr0t
rorlor) o0 e | c J.
These equations can be solved by the method of Green functions. The solutions read
E (x t) — .[.[G (x t =" //){ ap(_’ ) a.]Z(q )}dV"dt"’
Ve Cat (57)

B.(%,1) = j j GY (x,6;x", 1" rot" F(x",¢")dV"dt",
Ve
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where G”(x,;x",t") and G"(x,1;%",t") are the Green functions of the d’Alembert operator

with the Dirichlet and Neumann boundary conditions. These expressions obviously
coincide with those obtained from the four-potential [cf. (47)].
As to the transversal components, we rewrite some of Maxwell’s equations in the form
diviE:4ﬂp—%, rotZE:—l@; divigz—%, rotﬂB:ﬂjZ+l%; (58)
0z c Ot 0z : c c ot
the right hand sides in (58) can be regarded as known functions given by p, 7 and (57).

Partial derivatives of E. and B, can be calculated using commutation relations with the
d’Alembert operator. In particular, we have

2 "om 2. rom o
8Ez — _J‘J‘GD(.Y,EX”,I”) c 0 P(fi;t ) + 0 ]:(ic af ) V”dt”,
oz i z coz"ot

2 . " o.n

l% — J'J'GD (X,t; x") t")[aa" diV” j(xﬂ) t") _ a ]:2(6-?";t )}dV"dt"’
e
——== ||G"@x5x"1" rot! j(x",¢")dV'"dt",
o jj ( ) ot (&)

0B 0

== ||GN(x,6;%",t")—rot” J(X",t"dV"dt".
~ jj ( ) rotl (&)

Here in the second line continuity equation (8) has been used. Using relations, which follow
from the definition of Green function (26), one can write the obvious identities:

2
4rp(,t) = || GD()?,t;X”,t")[A”—l 0 }p(f",t")dV"dt",

CZ 6t!!2
4 1 & (60)
T
—j.x 0=~ |GG L3 A ———— |j.(X"t")aV"dt".
A jj ( ){ Cz at,,z}]_( )
For further convenience, we then calculate (using again the continuity equation)
4rp(X,1) - % _ . [[e" G5, t”)[A[ p("1")+ i a” div" ]()‘c’”,t”)}a’V"dt",
0Oz o ¢ ot 61)
A+ L% ”GD()'c’,t;X’”,t”){AI]’-(X",t")— 6,, div’ ]()‘C”,t”)}dV"dt".
c c Ot i ’ 0Oz

Representations (61) not only provide a concise form of two right hand sides of (58) but
also effectively dispose off singularities of the point-charge-type [delta-functions in p(x,?)

and ;. (x,7) ]. Summarizing, the last two expressions of (59) and expressions (61) provide

the right hand sides to equations (58). To continue with equations (58), we employ the
following ansatz.
1. Electric field. Let us introduce a pair of scalar functions P,(x,7) and Q,(x,t) obeying the

relations

E =% 190 ,4q g 10 00 (62)
or r 06 r 08 or
with boundary conditions

P,|_,=0 and 00,
-

~0. (63)

r=a

Substitution of (62) to the first pair of equations of system (58) leads to Poisson equations

in transversal coordinates
10 0 1 o° oF
— 2l = P =dnp -,
[r or (r 8}’) r’ 86’2} £SO 0z

Lof,2), 10, Lo
ror\Cor) r?oe* |7F c ot

(64)
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It can be verified that if radial parts of P,(x,r) and Q,(%,7) are given by Bessel functions

then (62) and (63) are compatible with (53). The solutions to (64) with boundary conditions
(63) read
P,(%,1)= L |Kez (x;;x;){ [Jor ez x’",t"){cAIp()‘c’",t") + i”divj j(x",z")}dV'ut"}dS',
4y i cot
(65)
0
cot”

The transversal components of electric field are then obtained via formulas (62).
2. Magnetic induction. Again, we introduce a pair of scalar functions P,(x,r) and Q,(x,?)

- 1 - =/ ) = ”n
0, (x,1) =4”!Gf(xl;xL){HGN(xL,z,t;x N

v

rot” j(x",¢")d V"dt”}dS "

obeying the relations

" ro0 or or r 00
(note the order of auxiliary scalar functions) with boundary conditions

-0. (67)

r=a

Substitution of (66) to the second pair of equations of system (58) leads to Poisson
equations in transversal coordinates

10 0 1 & 4z . 1 OE,
—lr S |,
ror\  or r- o060 c c Ot

18(7‘6)4—1 62 Q __aBz
ror\Cor) rroe* 7" oz

It can be again checked that if radial parts of P,(x,r) and Q,(x,r) are given by Bessel

functions then (66) and (67) are compatible with (53). The solutions to (68) with boundary
conditions (67) read

1 ’ ’ =" " " - =" "
P,(%,1)= 47[ij(xi;xL){”GD(xi,z,z;x .t ){Asz(x ") —
!

yren

__ VOB 00y g g 0P, 100, (66)

Pyl,,=0 and %
"

(68)

aa" div" 7(x", t”)}dV"dt"}dS’,
zZ
(69)

0,60 =[G 2 [[6" @z -, rot! Vvt '
47[ N Ve aZ

The transversal components of magnetic induction are then obtained via formulas (66).
Thus obtained electromagnetic field obviously coincides with that one found in the
preceding Section.
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Abstract - The structured mathematical description and algorithm of theoretical research of
effect [lokkenbca in crystals of barium titanate and strontium-barium niobate on the basis of wave
equations is offered. The appropriate conclusions about the optimal use of the Pockels effect for
process control of the optical modulation devices on the given crystals are performed.

Introduction

For the selection of optimum modes of modulation of light on the concrete crystal it
is necessary to carry out research of electro-optical properties of this crystal. Traditionally,
at studying of propagation of electromagnetic waves in anisotropic mediums, including the
presence of an external electric field, the method of an ellipsoid of refractive exponents (or
an optical indicatrix) is used [1-11]. The given method, though is a consequence of the
electromagnetic theory of light, however it is not always convenient and evident for
quantitative assessment of the effect in anisotropic mediums, in particular in electro-optical

crystals.
The purpose of the present work is the theoretical description of the Pockels effect
in electro-optical crystals (barium titanate BaTiO, , strontium-barium niobate

Sry,sBa ,sNb,Oy ), realized on the basis of the electromagnetic theory. Problem statement

about the Pockels effect [12] in the form of Maxwell equations has allowed us to transfer
directly to wave equations and to find their solutions, i.e. to gain the expressions
determining phase velocities and polarization of the optical plane waves, propagating in the
given crystals in any direction for various cases of influence of external static electric field.

The appropriate conclusions about the optimal use of the Pockels effect for process
control of the optical modulation device based on the given crystals are performed on the
basis of the carried out research and the analysis of the gained results.

1. Problem statement about the Pockels effect in crystals of barium titanate
and strontium-barium niobate

Using general statement of the problem about the Pockels effect in the form of Maxwell
equations presented earlier in work [12] we made following operations:

1. the expressions defining the additives to components of the impermeability tensor,
caused by the linear electro-optical effect, are gained in a general view;

2. the expressions for components of the electric intensity vector of the optical plane
wave propagating in considered electro-optical crystals are obtained;

3. the Maxwell equations which have been written down concerning required
components of the electric inductance vector and the magnetic intensity vector of the
optical plane wave, taking into account the Pockels effect for the considered crystals, are
obtained.
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Now we will be turned to system of the homogeneous Maxwell equations, which
completely describe an electromagnetic field of optical wave propagating in a crystal.
Substituting in them expressions for the components of the electric intensity of the wave
propagating in crystal BaTiO; or Sr,,;Ba,,;Nb,O, taking into account the Pockels effect,

we obtain following equations:

0H_ OH, oD, 0H,_ oH, D, 0H, oH, oD

o oz o oz ox ot o » o W
<r51E;T>a§; < 51E°T>6§y <7722 +7’33ECT>86’; <77vy + 13ECT>6§ < 51ECT>8622 = —HHEy %’
<77;x +7”13E§T>8a£z < SIECT>88DZ < 51ECT>a§C <’”51E;T>a§cy _<77;z +r33EZCT>%:_,U,U050 agl_ty’

<77)0/y +”13EZCT>%+<”51E;T>%_<77;C +”13EZCT>88_13);_<”51E§T> aéiz = THHE, 6@% (2)

These Maxwell equations are written concerning required the components of the electric
inductance D, , D, D, and magnetic intensity //,, H,, H_ of the optical plane wave,

taking into account the Pockels effect, for crystals of BaTiO; and Sr,,;Ba,,;Nb,O,. Then
we will obtain wave equations, having excluded H, ., H , H_ by substitution (2) in (1),

and we will find their solutions for the optical plane wave propagating in considered
crystals taking into account the Pockels effect. The obtained results are represented below.

2. The wave equations for research of the Pockels effect
in crystals of barium titanate and strontium-barium niobate

Let's define influence of external electric field E on propagation of the beam of
light in crystals of barium titanate and strontium-barium niobate. Depending on a direction
of intensity of the applied enclosed electric field its influence on propagating of the beam of
light will be different.

1.1) Let the electric field is applied along the optical axis z, and the beam of light is
propagating along the axis x (or y), i.e.

EI#0,
o =0 or o #0.
ox
In this case from Maxwell equations (1)-(2) two combined equations follow:
2 2
6122_ 0/”/”080 — 8132207 (3)
ax ’722 + r33EZ at
o°D o°D
2y . O/U:uogo - 2)’ =0, (4)
Ox N, +r,E; | ot
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0 cT
+r,E 1 . .
where v’ =M:cz[—2+rﬁE§TJ — phase velocity of the extraordinary wave
Hiyé&, e
polarized along the axis z, under the influence of the static electric field E" ,

0 cT
_ 77yy + rl3Ez
Hiyé&

the axis y, under the influence of the static electric field £;". Here we take into account,

e L _ 1 o _1_1
thatnxx:nyy:g_:n_z’ nzz:_:n_zﬂ ﬂNl'
L o I e

= cz(%ﬂanz“] — phase velocity of the ordinary wave polarized along
n

o

2

b,

Such configuration (in the conditions of the transverse Pockels effect) can be used
for making of the modulation device of laser beam with the low control voltage.

1.2) Let the electric field is applied along the optical axis z, and the beam of light is
propagating also along the axis z, i.e.

ET #0,

2;r:O.

0z
In this case Maxwell equations (1)-(2) will be transformed into the following wave
equations:

’D ’D
a 2x _ O/u/uogo a 2x — O, (5)
aZ nxx + rlSEZCT at
asz HELE asz
- =0. (6)

oz’ n,, +nsES ) or

From here follows that at propagating of light wave along the optical axis z the double
refraction will not be observed also as in case of absence of the Pockels effect. For waves
of initial polarization along the axis x or y, or any polarization in the plane (x)) phase
velocity will be defined by following expression:

0 cr
of =op =T Pt Cz[Lz + mEz”] , 7

HyéEy n,
where 7, =17, .

Thus, if the modulating electric field is applied along the axis z, then beam of light
propagating along the axis z, will have the same phase incursion irrespective of its
polarization. Such modulation device can modulate the phase of the nonpolarized laser
beam.

2.1) Let the electric field is applied along the axis x, and the beam of light is

propagating also along the optical axis z , i.e. E.' #0, ai;to. In this case Maxwell
zZ
equations will be transformed into the following equations:
2 2
0 Dy _ HHéE, 0 Dy _

= 0, 8
oz> ' ol ®

0’D,  pe, O°D, _
oz nd. ot

0. ©)
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2.2) Let the electric field is applied along the axis x, and the beam of light is

propagating also along the axis x, i.e. £ #0, ai;t 0. Then Maxwell equations will be
X

transformed into the following equations:
2 2
"D vy HHE o°D _
ox’ nﬁy o’

(10)

62l)z _ ﬂﬂogo 82Dz
ol ot o

= 0. (11)

2.3) Let the electric field is applied along the axis x, and the beam of light is
propagating also along the axis y, i.e. E #0, §¢O. Equations (1)-(2) will be
y

transformed into the following equations:
0°D, 1 0°D,  rET 0°D,

» )y o al (12
0’D, | &°D,  rET 9D, 13
» () o ph 9 (2
02 1 c 0\ 1 ¢’ .
where (l)x) =—=—, (UZ) = =— — phase velocities of the waves
Hiy&0E, 1, Hily&oe 1,

polarized along the axis x or z accordingly, in case of absence of the Pockels effect. These
equations are not independent from each other, therefore we use Euler's substitution and we
obtain following set of the algebraic equations:

v ( )Z v’
s

Equating the determinant of the considered combined equations to zero, we obtain the
quadratic concerning the quadrate of required velocity (02 ):

(’)2)Z _((Uf)z +(uf)2) v’ +(Uf)z (Ug)z (I_SLSI\(FSIE;T)z): 0,

the corresponding solutions are defined as expression:

uﬁz(Uf)z+(vf)z+(03)z—(vf)z\/1+ (4(03)2(03)): RESY . (16)

(B
Let's introduce the following designation:

2 2

2(1)0 (UO > n’n’r, E ’

N =) g B :2[—0 51 j : (17)
©0f -2)

Then the expression (16) defining required velocity, will assume the final form:
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0 0

oY _{(,,0

1)12,2:(Ux)zg(uz)zi(ux)zz(uz)z«/1+ 2N . (18)
From corresponding calculation [13] follows that2A* <<1, then it is possible to consider
that v/ 1+ 2A” ~1+A’, and in this case we obtain expressions for phase velocities in the
form:

2 cT
Ulz = 2 Lz + n, (”512Ex )Z , (19)
n()
J O
ne
2 cT
02 =c LZJFM . (20)
n@

The polarization directions x" and z' of the light waves propagating in the crystal along the
axis y under the influence of external electric field E" with velocities v, and v,
accordingly, are obtained from the equations (14), (15), taking into account solutions (19),
(20), as following expression:

D] _ g1 £y _ g1 By _ sk ’ Q1)

D_j? 2[11 o 1L+M
(v

v e 2
1 2 2 0 2 2 2
0) v, (UZ ) n, n, n, .
n

gy =
where y - the corner defining induced polarization directions x’ and z', relative to crystal-

physics directions x and z. The calculations show that, value y is very small, even for

moderately strong electric fields and consequently is physically inessential demonstration
of electro-optical effect in the considered crystal.
3.1) Let the electric field is applied along the axis y, and the beam of light is

propagating along the optical axis z, i.e. £} #0, 62 # 0 . In this case Maxwell equations
4
will be transformed into the following equations:
o°D o°D
2y _ ,Llﬂgé‘o 2y -0, 22)
0z n, Ot

62Dx _ /u/uogo 8sz _
oz’ nd ot
3.2) Let the electric field is applied along the axis y, and the beam of light is

0. (23)

propagating along the axis y, i.e. E}' #0, é’i # 0. Then we have the following equations:
Y

62Dx _ /u/uogo 8sz _
o' o, o

0, (24)
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0’D,  uuys, 0°D. _
ot . o
3.3) Let the electric field is applied along the axis y, and the beam of light is

0. (25)

propagating along the axis x, i.e. E]' #0, 82 # 0. In this case Maxwell equations will be
X

transformed into the following equations:
o’D, 1 oD, rE} 0D,

- 9 26
N () e nd  oxt (26)
o°D ’D,  r ET 3
zy _ 1 5 2) [ S1 Oy 8 lzz , (27)
ox (Ug) ot 7’ ox
2 2
where (Uﬁ)zz;:c—z, (03)2: ! .
Hihhéo&, 1, Hih&o8) N,

3. The analysis of wave equations

On the basis of results of the analysis of the obtained wave equations for crystals of
barium titanate BaTiO; and strontium-barium niobate Sr,,Ba ,;Nb,O; following
generalizations are made.

1) If for the considered crystals the modulating electric field is applied along the
optical axis z ( E,),then the beam of light propagating along the axis z, will have the same
phase incursion irrespective of its polarization, according to the obtained expressions:

E, , Ap, =Ap, = nr, Ez Kl , (28)

_ _ 3
n.=n,=n,—n,n;

X y 2
where at light wave length A4 =0,633 ( wm ) value of electro-optical coefficient
ry =810 (m/V) — for BaTiO,; 1, =67-10"" (m/V) — for Sr,,;Ba,,sNb,0O, [13].

Therefore, such modulation device (on the longitudinal Pockels effect) can modulate
the phase of the nonpolarized laser beam.

2) If for the considered crystals the modulating electric field is applied along the
axis z ( £, ),and the beam of light polarized along the axis z, is propagating along the axis x
or y, or in any direction in the plane xy, then as result of double refraction the extraordinary

wave will appear. This wave will have the maximum induced phase incursion which is
proportional to length of crystal, according to expressions:

CcT ECT
n,=n,—nr, Tzs Ap, =”SF337Z/€1= (29)
where at light wave length A4 =0,633 ( wm ) value of electro-optical coefficient
1y = 281077 (m/V) — for BaTiO,; r;, =1640-107" (m/V) — for Sr,,sBa,,;Nb,O, [13].

Hence, such configuration (in the conditions of the transverse Pockels effect) can
be used for making of the modulation device of laser beam with the low control voltage.
Obviously, the most perspective is the linear electro-optical crystal with structure of
tetragonal barium titanate — strontium-barium niobate Sr,,;Ba,,;Nb,O,, possessing the

highest measured value of coefficient r;.
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3) In crystals of barium titanate BaTiO, and strontium-barium niobate
St ,sBa,,sNb,O, in case of the electric field is applied along the axis x or y, the linear

electro-optical effect at any direction of propagation of the beam of light is actually
insignificant small.

Thus, for providing with phase modulation, the maximum change of the refractive
index for the given linear polarization is necessary. This is optimal reached in the
conditions of realization of the transverse Pockels effect (the electric field is applied along
the optical axis) for the crystal of strontium-barium niobate Sr,,;Ba,,;Nb,O,.

Conclusions

Thus, in the present work by the example of crystals of barium titanate and
strontium-barium, the structured mathematical description and also algorithm of research of
the Pockels effect in arbitrary electro-optical crystal for various cases of propagating of the
plane light waves are composed. Using the method of transformation of coordinates, it is
possible to obtain the expressions defining phase velocities of light waves, propagating in
electro-optical crystals in any direction. This is not represented in the present work.

As result of analysis of wave equations corresponding conclusions about the optimal
use of the linear electro-optical effect for control of operation of light modulators are
drawn.
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Abstract — The dispersion equation for open periodic helix with thin wire has been obtained
and the dispersion dependences have been investigated numerically using the periodic Green’s
function and the integral equation approach.

Introduction

Since 1943 as R. Kompfner for the first time has used the helix in the slow wave
system, many attempts have been undertaken for approximate and accurate descriptions of
periodic helix dispersion. Among approximate approaches, for example, one can mention
the helix-conductive (anisotropic-conductive) cylinder model [1-4]. Its disadvantages
reveals when the wavelength is compared with the helix period, as the model does not
obviously consider the periodicity of helix winding (correspondingly the periodicity of
fields) and the finiteness of wire radius (the mode matching technique is applied on the
infinite thin cylindrical surface) [1,4]. The rigorous models even for most simple open helix
case still have not realized that corresponds with sufficiently complicated conductor
configurations. As the exception, on must point to the papers in which the thin wire
conductor approximation for helix has been used (see. [5], Chapter 6 in the monograph [4],
and the references there). The same approach has been used in the papers [6-8] for
modeling of thin finite length helix in the cylindrical screens. Such approximation (the
surface current replacement by the linear wire axis one) for thin helix is highly precise and
allows one to bring the problem to one-dimensional integral equation. At the same time we
neglects the transverse current on the wire and the longitudinal current change depending
on transverse conductor coordinates, that is completely defensible claim. In present paper
this approach was used with the application of different (more convenient in our opinion)
analysis as in [4,5]. It is based on the periodical Green’s function (GF). The methods of
more precise taking into account of conductor configuration also have been considered.
Though the modern electromagnetic simulation program complexes (such as HFSS, for
example) allow one to modeling also the helix [9], the construction of particularized
mathematical models for helix structures simulation is still relevant [10.11].

1. The approximate helix dispersion equation

The equations for central helix curve for one winding period in parametric form are
P=py » p=Qt , z=ht , s=tL, L={Q'p;+h>, 0<t<1 . (1)
Here Q=2r is the full azimuth angle, # 1s the helix period (step), p, is the winding
radius, L 1is the arc length per period, ¢ is the non-dimensional variable. Let us go from
surface current density to axis wire current / (s) , which is the function of arc length s of

helix curve. We count off it from begin of helix period (# =0) along the wire axis. For the
current components we have
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1,(s)=QpyI(s)/L , I(s)=hi(s)/L |, 4)
where the full curve linear current is

I(s)=12(s)+1:(s). (5)

The helix current density at that describes by the relations
Jo(p.0.2)=1,(s)5(p~py )0z~ ht) (6)
J(p.p.2)=1.(s)5(p— py )@~ )/ p, . (7)

Here we use the scalar one-dimensional periodic GF form in the cylindrical coordinate
system from the paper [12]:

~ "o 1 < - . ' . ' '
Glo.p.z1 p'0,2) = 2 Dexpl=inlp=¢')=ilk. +2mz bz =2 ), (p.p) . (®)

Here the time dependence exp(iar) is omitted and the following functions are introduced:
' "]n(Kmp)Hr(JZ)(Kmp’)’p<p’

q)mn(p’p)z (2) I} 2
Hn (Kmp)‘]n (Kmp )’p > p

in which the «, :—i\/(kz +2mz/h) —k; is transverse component. The GF (8) satisfies

)

the inhomogeneous Helmholtz equation [12]

~ C o, Qexpl—ik (z -z N N ,
2 460021 02) =~ P E D 50 )5 - 0 -2m). 10
Here the tilde denotes the periodic Dirac delta-functions with the period €, which are
defined by the second relation from the formulas (2.23) in [13]. This follows from the fact
that GF (8) is obtained from satisfying (10) initial periodic GF by residue integration
method. This fact also may be proved directly. Just, at p=p" GF (8) satisfies

homogeneous Helmholtz equation (10). The functions (9) are continuous at p # p", but they
have the step of derivatives. Under the second differentiation on p from this step and

owing to well-known relation for cylindrical functions

HE (o, W, (o, )~ T2 (o, YO (o, ) = H) (o, W, (o, ) (o, ) i, ) = ——

TPK,
we have additionly the delta-function o (p - p')/ o' which is proportional to the step. After
the reduction on this delta-function in (10) and on the factor exp(—ik,(z—z')) one get the
identity
1 = . ' > . ' S YN '
T Z exp(—in(p—¢ ))Zexp(—ﬂmﬂ(z—z ) h)=6(p—9')o(z-2"),

in which the second delta-function has the period 4 .
k 2, at that there are

<x/h. By virtue of periodicity on k_ these solutions may be

Let us further consider only the slow waves. For these k; <
k k,

z

the solutions *+ where

continued on all values |kz| > 7/ h . Therefore, always (k. +2mz/h) >k? and «, =—iy, ,
7, >0 are fulfilled for slow wave. Correspondingly if k; >k’ (fast wave) the value «,,

may be both real and imaginary (under big |m| ). In the first case we have the radiation
(2)

n

(leakage) for lower number spatial harmonics owing to Hankel functions H,”~’ asymptotic
behavior. Whereas for slow wave (k7 > k; ) the radial damping always takes place, as the
Hankel function argument is imaginary and H ,(,2)(— ilrc,,| p): /2 ="K (1,p) .

Similarly for Bessel functions one has J, (— i|Km | p) = (— i )" I, ( o p).
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In the loss case the attenuation in the energy leakage form is always present, but for
slow wave it is low. The electric vector-potential according to relations (6), (7) has the
components

1 o0 0

4 (p @,z I Z Zexp(—in(go—Qt)—i(kz+2m7r/h)(z—ht))®mn(p,po)dt .
(11)
A.(p,p,z :—jl Z Zexp in(p—Qt)—ilk, +2mm/h\z—-h )@, (o, p,)dt . (12)

The usage of perlodlcally located source GF (periodic GF) straight away leads to expanded
in spatial harmonics vector-potential and the fields. The resulting integral equation (IE)
may be solved only on the one period. We need further only two electrical field
components:

04, 04,
E¢=_Z—° k02A¢+1 0\ 1% o4l E =2 ko A + ONL1% AN 3
ik, pop| p 6(0 0z zko oz P 6(0 0z

Here Z,=./u,/¢&, is the vacuum wave impedance. Let us take two helix curves like (1)

with the winding radiuses p = p, = r. Here r is the wire radius, and we consider r << p, .
Obviously, these curves lie on the helix conductor surface. Both unit tangential vectors / *

to these curves have the components (O,Q(po +r)/ Li,h/Li). Here L* = \/Q2 (p, £7) + 1’

are the lengths per period for corresponding helix curves. If we consider the electric field
on these curves, we must demand the boundary conditions E (t)=E; (¢)I> + EZ(¢)IZ =0 for

tangential electric field. Accordingly on the helix surface we have

E()=20lkza, +— ! | 04, o4,
’ ik, o poEr| pytr 09 G(P@Z

4kLJ- Z zeXp n+m Q+k h](t t))§ CDmn(pi,po)dt’,

m=—00 p=

0’4, o’
Ef(t)=—.Z° Kd, 4| e O
Jk, P, tr 0poz Oz

Z Zexp [(n+m)Q+k bt —1)z,@,, (p..p, )t

=—00 n=

4k L
Here p=p, = p, i r, @ =Qt, z=ht and the designated values are introduced as:

2 2 2
g2 Q° p, [kg_”_z]_ﬂ(szrz’"_”J , (14)
h pi) P h

2 2 2
S A P P I L2 A (15)
77mn 0 z h hpi z h

Now the tangential electric field takes the form:

B0 1003, Slow. i o olo ot miae ko=t 10

mM=—00 n=

The boundary conditions Ef (t) =0, 0<¢ <1 are, as a matter of fact, the IE for the unknown

current. Since r << p,, the boundary conditions may be applied on any helix curve
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belonging to the surface. Of course, there are infinitely many such curves and one can draw
its beginning at any point on the wire circle cross section of radius ». Then the averaging
over such conditions can be fulfilled [12]. For the lossless helix it is convenient to take the
boundary conditions as arithmetical mean (omitting the factor 1/2):

E (¢)+E (t)=0 . (17)

Imposing the slow wave condition one has

E;(r)= > Z[ijm+hnm,,]/n(zmp+)l<,,(;cmpo)j (¢ Jexpl=dl(n-+m)2+ ke~ e

M=—00 n=

27 kLL+

2

E) e 3 Sl b K G el vkl

M=—00Hn=—00

Let us proceed from IE (17) to quadratic functzional
1
Ao ke )= [ ES () + E7 e e (18)
0

Setting the approximate wire axis current distribution / (t), we get the dispersion equation
(DE) A(ko,kz,l )= 0. Fore example, it is well known, that the current distribution in form
of traveling wave with the speed of light along the helix curve is the sufficiently good
approximation in the frequency wide band [5]: I(s)= dexp(-ik,s)= Aexp(—iLk,t). But the
question of current approximation chouse is highly not simple. Such investigation will be
performed further. At first we take the real current I(t)= Acos(Lk,t) for functional (18). It
is convenient to put 4=1. For complex current amplitudes one can use, as a matter of fact,
the weight functions both /”(¢) and /() in generally. In the first case the real functional
part is zero. Putting the imaginary part to zero, we have the DE

A(k()’kz):A+(k0’kz)+A_(k()’kz):0’ (19)
where
. Z, L(x.p. )Kn(zmpo)}
Ny b )= —20 Qp. &5 +h m){ I (kok), (20
(k%)= 27k, LI MZOZL[ L(2.P)K,(2.P-) ko), 20

I (k,.k.) j j cos((a, — p)t—t ))dt'dt—Z[(nin:;;(fZZZh foli)L]z : 1)

a,,=n+mQ+k.h, B=klL . (22)
Further the DE will have the form (19), (20) with different relations like (21). The form
(21) does not satisfy the symmetry condition A*(k,,—k.)= A*(k,,k.). This incorrectness

corresponds with the fact that we initially set the positive direction for current wave
propagation. In this approach all complex power is zero. If the weight function is
I(¢)=exp(—iLk,t) then we get the complex value of (18). Taking zero real part, we find

(k i ) sm(amn +ﬂ)—sin(amn —ﬂ)—sin(Zﬂ)
o - '

If we use the function /(¢)=cos(Lk,t) as weight, then

(23)
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l—cos(a +ﬂ) l—cos(a —ﬂ)
1 kO’kz = = 2 » 2
ook Aap, +BY 2y -p)
N 1+ cos(Z,B)— cos(amn + ﬂ)— cos(amn - ,B)
2y, - 5°) |

The approximation / (t): cos(LkOt) and nonconjugated weight function both determine the

(24)

forward and backward waves. But the cosine describes the standing current wave that does
not correspond to current distribution in helix. The expression (23) turns into zero at =0

(with respect to kQ). In case a,, =+/, that I, (k,,k.)=Fsin’(a,, )/ ,, . The expression
(21) at «,,, = B turns into unit. Let k h=xkQ, k=0,12,...u k;=0. At the same time

(23) turns into zero, i.e. indicated values are the points (initial and terminal) of dispersion
branches. Let k h=tk L+kQ) , k=0,£1,+2,.. Then the value k=0 corresponds to

geometric retardation N, = L/h. Substituting this value into (19), (20), we get the equation

for resonant frequencies determination. If one uses (21), that under k 4 =k L the nonzero
and equal to unit terms in the series are keeping for n =—m , that gives

Kl L/ h)=—2 S lop.e 4 hn;(n)}{ln(znm)lfn(znpo)}.
ik, LL =, 1,(z.p)K, (2,p-)
Let k. =1k, +kQ/h. Evidently (23) now is always zero if k, =0, i.e. the limit
retardation for main branch is N =k_/k, =1. If we take only azimuthally symmetric term
in (19) (n=0), then, using (21) and k, =k, L, we essentially have m =0. Then
Zke 2 p; [Qpi _1}{1 o(0p, Ko (0P )}
7k, LL h Io(lopo )Ko(lop—) ‘
Functional (19) turns into zero for any frequency, but only if N, ~+/2 , that says about

(25)

/\i(k()’kz)z

highly approximate character of azimuthally symmetric model (21) and taken approach for
current.

Let us investigate the possibility of geomantic retardation achievement for relation
(23). It is equal to zero always, if only n#-m , or (n+m)Q+2k,L#0 . Let

(n+m)Q+2k,L#0 . The equality n=-m corresponds to the case «,, =/ (with the
accurate within «7), i.e. I_,, =—sin*(k,L)/(k,L). Consequently, we have the equation
(25), which is distinct by multiplier /_,), having the additional roots k, =kz/L . Such
roots are realized under the condition (n+m)Q+2k,L=0. It is clear that the values
k,L =7 at any integer k determine the zeros of relation (23). For the first dispersion
branch the value k, =x/h corresponds to k,=x/L . This point is the beginning of

bandgap, at that the corresponding group velocity equal to zero and the retardation achieves
the value N, . The correlation (24) has need of numerical investigation.

Thus, the taken approach of helix current wave moving with the speed of light along
wire for quadratic functional gives the correct extreme results. Namely, for small &, and

k. the waves are moving with the phase velocity ¢ in both directions along z-axis, the
dispersion branches are even and periodic on k_ with the inverse lattice period 2z /4, and
for k,=kn/L there are the extremums of dispersion branches in the points

k. = (21 —1)72/ h, [=12,. For the first branch the maximal retardation is equal to
geometric one. The extreme points of dispersion branches do not depend on value 7.
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2. The constructions of rigorous models

The used current representations give approximate results (within the framework of
applied approach r << p,) and need in several explanations, though as (23), so (24) give

the correct results for k. h=kn (k=0,%1,..). To solve the DE (18) correctly, it is need to
expand the current /(¢) into series using some basis functions

I(t):kzl;lk“k(t) (26)

and taking the extremum of quadratic form (18). For real functions wu, one has for the
integrals

1 1
Ly =1 = [exp(~ia,u, ()t [ expliar,, 1 e, () 27)
0 0

i.e. gets the hermitian matrix elements and correspondingly the real DE roots. For such
bases one can use, fore example, the trigonometric of finite element (FE) function, in
particulars, the simplest piecewise constant FEs [5]. For complex functions in (26) one
must use the conjugate weight functions (the another wave is to take the real part of
functional). If we take I(¢)=exp(—ik_ht), then we get I, = J,(_y and the functional (25)

in which we have the &, and k_ as the unknown parameters of seeking. But the numerical

investigation of such DE does not lead to correct results. Let therefore consider he possible
current representations.

By virtue of G. Floquet’s theorem one can approximately (by truncation of series)
write the complex current as

i()= zz expl—i(k.h + kQ)) = exp(— ik h)I () 28)

Here the periodic complex function has the form

10)=1.(6) il (1) = z B coficu)-itt -1 )sin(th)} |

k'
mn

The conjugated to (28) weight function leads to independent on k_ integrals /, and not

well numerical results. If one gives the weight function in the same form (28), then the
good result will be obtained by putting the real part of functionals to zero. The reason of
these misunderstandings consists in as follows. The used in the IE and in the functional GF
is the source function of phasing and periodically located sources. Therefore the factors
exp(—i(k_ht + my)) are already are contained in the GF and we must not include they into

the current. Here for zero sell m =0, and the term y =k _h is the phase shift per sell. The
current (28) must be used with the customary nonperiodic  GF:
G(F—F'):(47r|17—17'|)_1 exp(— jk0|77—17'|) (its representations in cylindrical system are in

[13]). Therefore for real current (26) with taking into account the relation (28) we must use
the expansion
1(r)= f 2, cos(kQt) . (29)
1+6,,

k=0

Such periodic current has not any jumps at =0 and ¢#=1, as distinction from function
cos(kzht) . The sufficiently simple approximation (29) with K =1 has the

form I(t)=1,/2+1, cos(Q¢). It is convenient to put /, =2. The DE is derived from the
quadratic form extremum as zero of determinant:
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Ao(koakz):Aoo(koakz) 11 koak |A01 kysk, )‘ =0. (30)
All terms in the left part of (30) have the form of (19), (20), in with instead of (21) one
must replace the matrix elements (27):

:Hcos([(n+m)Q+kzh](t—t’))dt'dt, G31)

o'-—.~

= [ [exp(=il(n+m)2+k.hYe - "))cos(k.ht')cos(Q" )t dt (32)

”cos (Qt)sin([(n +m)Q+ k. k|t —1'))cos(Qe'dt'd . (33)

The integral (31) leads from (21), if we put S =0. The remanding integrals are also simply
calculated and therefore not presented. In general case the rigorous K order model leads to
the necessity to find the roots of K order determinant. The losses and the impedance
boundary conditions on helix demand to use the complex current expansion and
correspondingly the seeking of complex roots k_ for complex determinant. In this case the
direct and backward lower and upper (corresponded to frequency) dispersion branches are

closed in the bandgap where now the wave propagation is possible with large attenuation
[12].

3. The simulation results

We search the DE (19) roots by the besection method on k, with usage of relations
(21), (23) and (24). The simulation results for relation (23) with r,/A=1.7(N, =10.7766 )

are presented in the fig. 1 and 2. Fig. 1 demonstrates the normalized wavenumber and
inverse retardation versus the phase shift per sell (helix) period, and fig, 2 — the frequency
dependence of retardation. The bold lines 1 correspond to »/A>0.1. There is no any
dependence from wire radius for lower » values. The used approach has not applied for
r/h>0.1. The series in (19) is fast convergent by virtue of well-known relation for large
arguments [14]:

L(2,P0)K (2,2 = {1 -

Iop=1 13 (u=1)fu=9) 135 (u-1)u-9)u-25) }
3 + 7] 5 +...p.
207,00 24 QCr.p) 248 (27,0)

Here u=4n"is fixed. But the separately calculation of the second kind cylindrical

functions in (20) at large arguments and indexes leads to ill-conditioned algorithms. In the
presented results we have used the 7 azimuth and 101 index m terms in the series. One can
get practically the same accuracy by restriction of 21-31 m-terms. Also we have
investigated the cases of usage 5, 9, 11 and 13 of azimuth members. Even so the results
differ only insignificantly. The modified Bessel functions are obtained by calculation if
integrals with the accuracy of 6-7 significant digits in their integral expressions [14]. The
numerical exploration of formula (24) shows that it is not very good as the dispersion in
this case is strongly nonlinear with the anomalous zone that not corresponds to helix.
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Fig. 1. Normalized dispersion and inverse retardation for helix with p,/h=1.7, r/h=0.001
versus phase shift per cell  =k_h. The line 1, 2, 3 correspond tor/h =0.001, 0.05 and 0.1
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Fig. 2. The retardation frequency dependence for the case of fig. 1
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The DE A, (k,,k.)=0, which is corresponded to the case 7, =0 in (30), is also has been

investigated numerically. The simulation gives the understated retardation coefficient N
values. That says that zero-order approximation of constant along helix current also is not
good.

Conclusions

The cylindrical coordinate system periodic GF form efficiency has been shown for
simulation of infinite periodic helix slow wave system dispersion. The results also may be
used for fast wave leakage analysis in long helix antennas. This method leads to solving
one-dimensional IE for wire axis current. It allows one to simulate the conductors with
arbitrary cross-sections and multiple-start winding helixes. Here the several helix current
curves arise instead one helix current and correspondingly the several coupled linear (one-
dimensional) IEs. In particular, it is convenient to analyze the ribbon helixes by setting
several multiple-thread helix currents, uniformly located on ribbon helix surface. In any
respect such approach is equivalent to the auxiliary sources method. The only essential
approximation here is the absence of transverse currents on helix conductors.

In this paper the approximate closed relations for helix DE are obtained. Their
examination by numerical simulation shows that the relations (23) in (19) and (20)
sufficiently well describes the helix dispersion. Evidently, appropriately to use the
continuous real finite elements for current expansion and to construct the high order
algorithms. One of possible low-order and convenient complex current approximations may
be taken in the form I(t)=1,exp(—ik,Lt)+ I, exp(—ik ht), which also leads to closed

explicit DE.
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Abstarct - Given paper is focused on analytical and numerical modeling of cylindrical reentrant
cavity resonator. Analytical model taken in the literature is based on the equivalent network
method. It can be used only for approximate calculation of resonant wavelengths of such devices.
Results of calculations can be improved if analytical model is completed with additional closed
form expression obtained in present study using finite element method. Proposed simplified
analytical approach can be a useful tool in computer-aided design of various microwave
components on reentrant cavity resonator.

1. Introduction

Cylindrical reentrant cavity resonators (RCR) are used nowadays in klystron and solid
state generators, dielectrometers, medicine applicators, particle accelerators, microwave
filters, telecommunication antennas and etc. Electrodynamic properties of such resonators
are defined mainly by sizes of capacitance gap formed by one or two metal posts in
cylindrical cavity. And besides double post resonator (Fig.1) can be considered as
combination of two single post cavities with XY symmetry plane. Geometrical model of
RCR is completely described by aspect ratio (axb) and sizes of capacitance gap (d*t), but
number of freedom degrees can be reduced from four to three using normalized parameters:
bla, t/a, d/b.

Fig.1. Cylindrical reentrant cavity

Such properties of RCR as quasi-uniform distribution of dominant mode electric field in
capacitance gap and smaller aspect ratio sizes in comparison with convenient cylindrical
resonators at fixed frequency can be successfully utilized for design of laboratory scaled
microwave heating chambers, intended for investigations of processes of electromagnetic
(EM) waves interaction with different substances, for example, in microwave chemistry [1],
microwave biology and etc. Low impedance makes RCR easily compatible with coaxial
lines which play role of feeders. That is RCR with one input port and respectively one
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excitation element (coaxial probe or loop) is usually analyzed in the literature [2-4].
Significantly rarely RCR with two input ports is designed for special purposes [5].

Despite on a wide practical application analytical theory of RCR is absent up to now and
it is usually simulated numerically employing finite element method (FEM) [2], finite
difference time domain method [6], mode matching method [7], method of moments and
finite integration method [8]. All these algorithms require serious computational resources
and corresponding software.

If capacitance gap height (d) of RCR is small enough simple analytical expressions
based on equivalent network method [9] or theoretical function [10] can be derived. Given
simplified approaches are quite useful in engineering practice but good accuracy of these
methods is achieved only for the dominant mode and limited range of cavity dimensions
variation.

The main objective of this study was to improve equivalent network method using the
results of 3D numerical simulations.

2. Simplified analytical model

It is known that the electric field of the lowest mode in reentrant cavity is mainly
concentrated in the central part of the cavity (capacitance gap) and the magnetic field is
distributed in peripheral region closer to the side cavity walls. According to equivalent
network method we can introduce quasi-static approximation and analyze both fields
separately neglecting penetration of the E-field in peripheral region and the H-field in
capacitance gap. Then resonant wavelength will be determined as:

A=2m,/L,C, , (1)
where c is the velocity of light; L. is the equivalent inductance; C, is the equivalent

capacity. Using approach proposed in [9] and cavity sizes labeling (Fig.1) two main
parameters of equivalent circuit can be expressed as:

[ = HHb A @)
27 t
' t2
C, = %+ 27e's,tIn %, 3)

where go,lp are the dielectric and magnetic constants respectively; € is the dielectric
permittivity; p” is the magnetic permeability of media inside cavity.

Substituting (2) and (3) in (1) and assuming that for air ¢" = p” = 1 normalized resonant
wavelength of the reentrant cavity [9]:

A_m [20bla)|, ,dla) ((bla) l{gj @
a 2a\ (d/a) (t/a) \(d/a) t)

As it was mentioned in [9] multiple testing of equation (4) derived for any aspect ratio
b/a has shown that accuracy of 4 calculation is nearby 10 < A% <20 when 0.2 <#a <0.5;
0.1<d/b<0.5.

When b/a = const formula (4) describes a function of two variables 1 = f{t/a, d/b)
geometrical interpretation of which is a surface. And now it is necessary to find intervals of
both geometrical parameters variation ensuring minimal computational error.
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3. FEM model and design equation

3D finite element model of the reentrant cavity (Fig.1) has been built using commercial
software COMSOL V.3.5 (www.comsol.com). Symmetrical half of geometrical model
shown in Fig.1 with magnetic wall boundary conditions at the symmetry XZ-plane was
analyzed. Mesh model included about 120,000 + 160,000 tetrahedral edge elements.
Variable density mesh was employed with denser mesh in capacitance gap region taking
into account peculiarities of electric field distribution for dominant mode. Introduction of
electric wall boundary condition at XY symmetry plane easily transforms double post RCR
model in single post model with half reduced sizes along Z axis: b; = 0.5b and d; = 0.5d.

EM field in the cavity under study is described by Helmholtz equation which can be
expressed in matrix form as [6]:

[AI{X} = A[BI{X], )

where [A] and [B] are the sparse symmetrical matrixes; A are the eigenvalues; {X} are the
eigenvectors of electromagnetic field.

General Minimal Residue (GMRES) algorithm was utilized for matrix equation (5)
solution. Numerical model was tested both for single post and double post RCR using
experimental data obtained in [6, 11]. Comparison of numerical and experimental
approaches is given in Table I.

Table 1
RCR resonance wavelengths

Single post RCR: a = 30 mm, Double post RCR: a = 1900 mm,
b;= 10 mm, =20 mm, d; = 1.5 mm. b =1450 mm, ¢t = 600 mm, d = 450 mm.
Measured [11] Simulated Measured [6] Simulated

Ma=2.87 Ma=2.95 Ma=2.09 Ma=2.1

Described numerical model was implemented for the calculation of the lowest mode
resonant wavelengths (1) of the double post RCR (Fig.1) as a function of two geometrical
parameters #/a and d/b when 0.2 <b/a < 1. Two examples of such functions for 0.1 <#/a <
0.8 and 0.1 <d/b <0.9 are represented in Fig.2.

[ -
Mo W@

normalized eigenwavelength
-
n

normalized eigenwavelength

Fig.2. Dominant mode resonant wavelengths in reentrant resonator with b/a = 0.2 (a); 0.8 (b)
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Intersection of each of these surfaces with function A/a = f(t/a, d/b) obtained analytically
by means of (4) has demonstrated that the maximum accuracy of analytical modeling is
achieved for 0.2 < b/a <1 and 0.1 < t/a < 0.8 only when capacitance gap height is
described by approximate function:

oDl el o) ool o)) -
) e (212

where u; + u;9 coefficients values are given in Table 2. Equation (6) has been derived with
the help of surface fitting procedures and Table Curve 3D V.4 software
(www.sigmaplot.com). Determination coefficient for expression (6): R* = 0.9988.

Table 2
Empirical coefficients for equation (6)

Uj Uz U3 Uy us
0.528129 0.85474 1.45029 0.436696 -1.44782
Ugs Uz us Ug U
0.578403 0.073195 -0.056704 -0.6079025 -0.01729

In order to check equations (4) and (6) five RCR (Fig.1) designs with different arbitrary
taken sizes were simulated employing FEM model described above. Results of comparison
of numerical and analytical data are shown in Table 3.

Table3
Testing results of analytical model
RCR bla tla dla Ala, anal. Ala, FEM
design
1 0.25 0.78 0.072 1.9444 1.9383
2 0.37 0.63 0.230 1.5705 1.5546
3 0.58 0.51 0.459 1.4184 1.4284
4 0.72 0.37 0.584 1.3866 1.4051
5 0.93 0.24 0.725 1.4443 1.4141

Represented analytical model which includes equations (4) and (6) can be used for
calculation in first approximation the eigenwavelengths of the dominant mode in RCR with
0.2<b/a <1and 0.1 <t/a <0.8. And besides two steps approach is necessary here:

1) determination of capacitance gap height values according to (6);
2) normalized wavelengths calculation by means of (4).

Main advantage of this model is it simplicity and main drawback is the limited range of
capacitance gap height variations defined by condition (6) where basic equation (4)
demonstrates best accuracy.

60



4. Conclusion

Analytical expression determining restrictions on known equivalent network model and
allowing approximate calculating resonance wavelengths of RCR has been derived and

tested.
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Abstract — The results of optimal Simplex-Sum Design of experiment development for the
numerical or physical modeling are presented. Using developed method, design of experiments, that
possess the properties of symmetry, orthogonality, rotatability, D-optimality and contains a small
number of experiments, has been constructed. The third-order design of experiment was calculated
for the Slow-Wave Structures (SWS) with coupled cavity chain electrodynamics characteristics
modeling. The wide range of factors variation allows using this design for devices of different
functionality.

1. Introduction

The development of high-power microwave devices supposes mathematic modeling
of waveguide systems (WS) and processes of electron beams interaction with
electromagnetic fields of the WS, computation of characteristics of individual parts using
models as well as an optimization of the whole device in order to achieve the required
output parameters [1].

At the modern stage of computer modeling techniques the development of
simulation of electrodynamics characteristics (EDC) of WS can be done quite accurately by
the field methods based on Maxwell's equations for boundary conditions presented. Due to
it’s an awkward task to do the optimization of WS with loss and deterministic
inhomogeneous, taking into account. Also, at the process of moving in the short-wave
range it’s difficult to account the manufacture inaccuracies and quality of the surface of
WS, that has a significant influence on their parameters.

One of the ways of solving these problems is to use a polynomial regression models
of EDC or parameters of equivalent circuit (for WS), constructed according to the
numerical or physical designing experiments data and to take into account the implications
of the above factors [2].

In this case a mathematical model can be represented by the following expression
[31]:

nzf(xlaxza'"xk)a (D
where x, - independent variable (factor) — for example, the sizes of the WS,
n - simulated electrodynamics parameter of the WS,
f(x,,x,,...x,) - polynomial of required order.

The problem of the adequate regression equation (1) construction using
experimental data (i.e. solving of the task of coefficients determining in regression
equation) is possible only under certain stringent requirements: design of the experiment
should be symmetric, orthogonal, should ensure minimum error of the regression
coefficients dispersion (D-optimal), etc. [4]

The theory of design of experiments [4-8] offers different ways of optimal design
searching by various criteria. Often, the complete factory experiment, in which all possible
combinations of factor levels implemented, is used. Also its fractional replicates are widely
used. But high complexity and unsuitability of this method is conditioned on a necessary
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number of experiments increasing with the number of factors taken into account addition.
Therefore, all efforts of the design theory of experiments aimed at improving its efficiency
by reducing the number of experiments with the model adequacy saving. In [9] the methods
for constructing second-order Design, that available to reduce the number of experiments
and improve the dispersion characteristics of the experimental data, are presented. The
experiment was done on the base of second-order Simplex-Sum Design. The error of
dispersion characteristics calculation by this model does not exceed 3% and the coupling
resistance - 10%. Further reduction of the error of models could be achieved by using data
from experiments that were done using designs of higher orders.

2. The Design of experiments on the base of a regular simplex

The principle of many single-factor experiments replacing by one multiple-factor
[4] suggests using the experimental data, which belong to different single-factor
dependence in single-factor experiments, for cross-averaging. For that purpose the
allocation of experiments in the factors space must be performed in a special way, called
the optimal design of experiment. One of the optimal design properties is that it does not
only reduce the number of experiments, but also provides less dispersion of averaged
results variance than in separate single-factor experiments.

Rotatable composite designs [5] are often used in the practice of the experiments
designing and besides points of the first-order design contain extra "star" and central points.
In [6] rotatable D-optimal designs on k -dimensional hyper sphere were suggested for a
polynomial regression.

In [7] correct simplex was proposed to use as a design of experiments, which is
defined as the set of k +1 equidistant points in a k -dimensional space. In one-dimensional
space it is a line segment. For two factors the simplex is an equilateral triangle, for three - a
tetrahedron (Fig. 1), etc. This design allows to approximate the required characteristics with
the help of a first order polynomial.

Fig. 1. The first-order simplex-design in the three Fig. 2. The third-order simplex-sum design of
dimensional factor space geometric interpretation  experiments geometric interpretation in the three-
dimensional factor space

The matrix of a simplex in the k£ -dimensional space can be expressed by the follow
equation:
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X X12 X1(k-1) X1k X 9, 4, 9y q
Xa1 X2 Xo(k-1) Xok X, -0 q 91 q
X = . = — . ,
Xyt X(m-1)2 Xin-D)k-1)  X(m-1)k X, 0 0 -0 4
| X X, X (k1) X, i X, 1 L0 o - 0 -0, |
)
where O, = m and g, = m — radiuses of the round and inscribed in the ;-

dimensional simplex spheres ( j =1....,k ), respectively.
The matrix X is the design of the m = k +1 initial experimental series. The rows of
the matrix (k& -dimensional vector x,, i=1,...,m) are the coordinates of vertices of the

regular simplex in k& -dimensional factor space. The columns presents the varied factors.
This design allows to approximate the required characteristics using a first-order
polynomial.

The matrix X of Simplex-Design of experiment has properties of symmetry,
normalization, orthogonality, rotatability and D-optimality

In [8] it was proposed to use a regular simplex (2) as a basis for development of
composite designs for the second-order polynomial. In addition, these designs can satisfy
the requirements of symmetry, normalization and orthogonality, and also possess the
properties of rotatability and D-optimality.

3. The Design of experiment for SWS with coupled-cavities-chains

In this work the third-order Simplex-Sum Design of experiment for the physical
modeling of coupled-cavities-chain type SWS with bean-shaped slits bond (Fig. 3) (which
has eight independent dimensions) EDCs was constructed on the base of developed
methodology.

L

Fig. 3. Longitudinal and transverse sections of an SWS of coupled-cavities-chain
type with bean-shaped coupling slots rotated through 180° slot: (L) period, (d) gap,
(f) diaphragm thickness, (71,/2) inner and outer radius of the drift tube, (#3,r4)
inner and outer radius of the coupling slot, (#5) radius of the cavity, and (o) flare
angle of the coupling slot

Regression equation of the response surface is represented as:
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where x, - independent variable factor; S, - coefficient of regression.

Sufficiently wide range of factors, that needs to simulate the SWS of different

functionality, was chosen (Table 1, 2).

Table 1.
Range of factors variation used in the Design of experiment
t/L 21 /L r,/2r; r/r alr r, /7 r/r, d/L
min | 0,1533 2,5800 0,4270 0,4670 | 23,5550 | 0,2082 0,5537 0,2133
max | 0,2867 3,5867 0,4830 0,6368 | 37,8790 | 0,3047 0,7226 0,4000
Table 2.
The normalized third-order Simplex-Sum Design for SWS

Ne t/L 2r, /L | 1, /2r r/r aln r, 7 n/r, d/L
1 0,2867 | 3,3667 | 0,4654 | 0,5787 | 0,58333 | 0,2693 | 0,6618 | 0,3467
2 | 0,1533 | 3,3667 | 0,4654 | 0,5787 | 0,58333 | 0,2693 | 0,6618 | 0,3467
3 0,2200 | 2,5800 | 0,4651 | 0,5778 | 0,58333 | 0,2687 | 0,6635 | 0,3467
4 | 0,2200 | 3,1067 | 0,4270 | 0,5829 | 0,58333 | 0,2682 | 0,6640 | 0,3467
5 0,2200 | 3,1067 | 0,4549 | 0,4670 | 0,58333 | 0,2682 | 0,6640 | 0,3467
6 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,41111 | 0,2682 | 0,6640 | 0,3467
7 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2082 | 0,6598 | 0,3467
8 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2597 | 0,5537 | 0,3467
9 10,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2597 | 0,6529 | 0,2133
10 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2597 | 0,6529 | 0,3333
11 | 0,2533 | 3,1333 | 0,4830 | 0,5595 | 0,51111 | 0,2638 | 0,6371 | 0,3333
12 | 0,1867 | 3,5867 | 0,4498 | 0,5620 | 0,51111 | 0,2639 | 0,6268 | 0,3333
13 | 0,1600 | 2,7067 | 0,4557 | 0,5622 | 0,51111 | 0,2636 | 0,6262 | 0,3333
14 | 0,2800 | 2,9733 | 0,4372 | 0,5590 | 0,51111 | 0,2623 | 0,6325 | 0,3333
15 | 0,2200 | 3,1067 | 0,4549 | 0,6179 | 0,66111 | 0,2597 | 0,6364 | 0,3333
16 | 0,2200 | 3,1067 | 0,4549 | 0,4764 | 0,62222 | 0,2597 | 0,6364 | 0,3333
17 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2940 | 0,7226 | 0,3333
18 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2146 | 0,7000 | 0,3333
19 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2597 | 0,6529 | 0,4000
20 | 0,1867 | 3,1333 | 0,4830 | 0,5286 | 0,57056 | 0,2511 | 0,6525 | 0,3133
21 | 0,2533 | 3,5867 | 0,4498 | 0,5289 | 0,57056 | 0,2547 | 0,6423 | 0,3133
22 | 0,1600 | 2,9733 | 0,4372 | 0,5282 | 0,57056 | 0,2489 | 0,6577 | 0,3133
23 | 0,2800 | 2,7067 | 0,4557 | 0,5297 | 0,57056 | 0,2512 | 0,6471 | 0,3133
24 | 0,2200 | 3,1067 | 0,4549 | 0,5849 | 0,41111 | 0,2489 | 0,6552 | 0,3133
25 | 0,2200 | 3,1067 | 0,4549 | 0,6368 | 0,62222 | 0,2489 | 0,6552 | 0,3133
26 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2790 | 0,5615 | 0,3133
27 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,3047 | 0,6972 | 0,3133
28 | 0,2200 | 3,1067 | 0,4549 | 0,5566 | 0,55556 | 0,2597 | 0,6529 | 0,3800

As evident from the table 2 the Design contains 28 experiments that allows to
construct a third-order polynomial model.
The design of experiment in natural sizes, rounded taking into account technological
tolerances for manufacturing, is presented in table 3.
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Table 3.

The third-order Simplex-Design of experiment for the SWS of coupled-cavities-chain type

simulation
No | L,mm | t,mm | 2rs,mm | y,,mm | r;,mm | a, degree | 2r,,mm | 2r,,mm | d,mm
1 15.0 43 50,5 23,5 13,6 105,0 13,6 9,0 5,2
2 15.0 2,3 50,5 23,5 13,6 105,0 13,6 9,0 5.2
3 15.0 33 38,7 18,0 10,4 105,0 10,4 6.9 5,2
4 15.0 33 46,6 19,9 11,6 105,0 12,5 8,3 5,2
5 15.0 33 46,6 21,2 9,9 105,0 12,5 8,3 5,2
6 15.0 33 46,6 21,2 11,8 74,0 12,5 8,3 5,2
7 15.0 33 46,6 21,2 11,8 100,0 9,7 6.4 5.2
8 15.0 33 46,6 21,2 11,8 100,0 12,1 6,7 5,2
9 15.0 33 46,6 21,2 11,8 100,0 12,1 7,9 3,2
10 15.0 33 46,6 21,2 11,8 100,0 12,1 7.9 5,0
11 15.0 3,8 47,0 22,7 12,7 92,0 12,4 7,9 5,0
12 15.0 2,8 53,8 24,2 13,6 92,0 14,2 8.9 5,0
13 15.0 2,4 40,6 18,5 10,4 92,0 10,7 6,7 5,0
14 15.0 472 44.6 19,5 10,9 92,0 11,7 7,4 5,0
15 15.0 33 46,6 21,2 13,1 119,0 12,1 7,7 5,0
16 15.0 33 46,6 21,2 10,1 112,0 12,1 7,7 5,0
17 15.0 33 46,6 21,2 11,8 100,0 13,7 9,9 5,0
18 15.0 33 46,6 21,2 11,8 100,0 10,0 7,0 5,0
19 15.0 33 46,6 21,2 11,8 100,0 12,1 7.9 6,0
20 15.0 2,8 47,0 22,7 12,0 102,7 11,8 7,7 4,7
21 15.0 3,8 53,8 24,2 12,8 102,7 13,7 8.8 4,7
22 15.0 2.4 44,6 19,5 10,3 102,7 11,1 7,3 4,7
23 15.0 472 40,6 18,5 9,8 102,7 10,2 6,6 4.7
24 15.0 33 46,6 21,2 12,4 74,0 11,6 7,6 4.7
25 15.0 33 46,6 21,2 13,5 112,0 11,6 7,6 4,7
26 15.0 33 46,6 21,2 11,8 100,0 13,0 7,3 4,7
27 15.0 33 46,6 21,2 11,8 100,0 14,2 9,9 4,7
28 15.0 33 46,6 21,2 11,8 100,0 12,1 7,9 5,7

Rounding leads to optimal properties modification, therefore

realized (results are presented in the table 4).
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its assessment was

Table 4.
Comparison of design properties before and after rounding
Design constructing Design taking into
Properties of Design with machine account of machine's
precision capabilities

Symmetry D x; 1071%+107"7 0

i=1
Orthogonality | Y. XX, 10"7+10" 10%5+10°

i=1
Rotatability X'M'x, 0.2963+10" 0.2963+107
D-optimality | det(x7x)" 0.0391 0.0393




Thus as it is shown in table. 4 properties of the experimental Design, taking into
account technological tolerances, are close to optimum, i.e. it can be used for SWS EDCs
modeling.

4. Results

As a result of this work the method of n-th order Simplex-Sum Designs constructing
for numerical or physical experiments on modeling EDCs of the SWS of coupled-cavities-
chain type using polynomials of higher order was developed. The algorithm of method is
implemented in the graphical programming environment LabVIEW 8.5.

The third order simplex-design for the SWS of coupled-cavities-chain type with bean-
shaped coupling slots rotated through 180° connection for the wide range of factors
variation was constructed.

The properties assessment of experimental design was done with taking into account
technological tolerances for manufacturing measurements. Its suitability was demonstrated.
Developed design is proposed to be used in SWS EDCs modeling.
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Abstract - The main goal of this publication is computational modeling of operating
conditions and determination of optimal parameters for four-gap resonator with cophased oscillation
mode that provides maximum value of electronic efficiency for multibeam monotron. A monotron
generator that has multibeam structure and common four-gap resonator be able to provide high
efficiency and output power, small overall dimensions and weight.

1. Introduction

Nowadays the development of high power microwave devices with a small mass
and simple structure is getting great attention due to their possible application as a high
power RF generators for different technological process (drying, defrosting, vulcanization,
pasteurization, caking, destruction of materials, baking), where required power of
continuous operation is up hundreds kilowatts. In addition they can be applied as a power
generator in the charged particle accelerators. One kind of like devices is monotron - a
high-power floating-drift generator with single cavity. Monotron may be utilized as high
power microwave device for industrial and technological applications.

The traditional monotron generator with homogenous RF field in cavity’s gap has
low efficiency (2-5%) [1].

In relevant publications that devoted monotron generators with single one-gap
cavity and heterogeneous RF field we can reveal if the RF field has the optimal distribution
function in interaction area the efficiency is around 20% [2]. This value is actually if
multibeam or circular stream used. More value of monotron generators efficiency (up to
50%) can be obtained if a two-gap cavity with different magnitude of electrical field in gaps
is utilized [3]. The results of calculations are shown that like value of efficiency can be
reached in the output gap cavity only at high magnitude of RF voltage. But this condition
restricts a maximum output power such devices because of strong dependence of energy
relations to signal level.

Thereby the research of availability of a three-gap and a four-gap cavity with 2zn-
mode, m-mode for applying in monotron generator with high efficiency is appropriately.

2. Mathematical simulation

The conditions of high efficiency are good grouping of beam, that is characterized
by high magnitude of circulating current, effective magnitude RF field intensity in initial
interaction area must be considerably less than field intensity in extraction of energy area
(RF field must be increasing in direction of beam movement), low initial velocity spread
and space charge in the beam.

Hereby, the main tasks of research are:

e Investigation of process interaction in different cavities types (three- and four-
gaps);

e Investigations of electrons interaction features with RF field at different field
distribution function along interaction area;

o Influence of space charge at the efficiency.

As a result of this stage of research a mathematical simulation of electrodynamic
system has been made. The object of research was a four-gap resonant system operating in
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2n-mode. Method of investigation - mathematical simulation of a physical process in
electrodynamic system with «<AZIMUTH» code [4].

Thereby the optimal construction of a four-gap cavity was found that has following
parameters: resonance frequency 2450 GHz, characteristic impedance 83 Ohm, unloaded
Q-factor- 3500, operation mode Ep.

Following functions field distribution in a discrete gap cavity that was synthesized
in code «AZIMUTH» shown at figures 1-3.

Ez Ez , Ez
Fig. 1. Homogenous field Fig. 2. Heterogeneous field Fig. 3. Optimal field
distribution: distribution: U,;/U4=0.52, distribution:
Ul/U4:U2/U4:U3/U4:1.0 Uz/U4:0.47, U3/U4:068 Ul/U4:0.22, Uz/U4:0.6,

U3/U4: 0.89

For various values & (£=U/Uy, where U- relative amplitude of RF voltage in cavity;
Up-accelerating voltage) the dependences of a first harmonic normalized amplitude of
convection current and a electron efficiency (ne) against accelerating voltage was found
using «DISKLY» code (fig.4,5) [5]. These curves correspond to field distributions (fig.1-3).

vea] 11/

I.a348
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Optimal field distribution, &=1.5

A\

1764

1722 Heterogeneous field

distribution, &=1.1
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Heterogeneous field
distribution, &=1.2
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1.386 Homogenous field

distribution, &=0.8

1.344

Up, KV

126 128 132 (B33 138 14.1 14.4 14.7 15 153 156 189 162 165

1.26

Fig.4. The dependences of first harmonic normalized amplitude of convection current
as function of the accelerating voltage

The results of investigations shown that for homogenous field a maximum of a
convection current Ijma/Ip = 1.55 1s reached for Uy=15 Kv at £=0.8; with increasing &

(&>0.8) a regrouping of electron beam is occurred accordingly maximum of convection
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current shifts in side of third gap and extraction of energy occurred in the third gap.
Therefore such field distribution is not effective.

For heterogeneous field (Fig.2) a maximum of convection current Ijmax/Ip =1.6 is
reached at Uy=15.3 Kv, &=1.1; at £>1.2 and extraction of energy occurred in third gap.

For optimal distribution function (Fig.3), maximum of convection current Ijmay/Io
=1.8 is reached at Up=15.5 Kv, &=1.5; at £>1.5 and extraction of energy occurred in third
gap.

Therefore a numerical experiments shown that an optimal operating condition for
this device is where additional grouping and energy extracting combine in two last gaps.
The evidence of this supposition is dependence of normalized amplitude of first harmonic

convection current (Fig.4).

06

0.55

0 Heterogeneous field distribution, £=1.2

0.45
Heterogeneous field distribution,
&=1.1

Homogenous field
distribution, &=0.8

0.4
0.35
03
0.25
Uy, kV

0.2 >
132 136 14 144 148 1562 1b6 16

Fig. 5. Dependence of electron efficiency against accelerating voltage

The maximum value of a electron efficiency that can be reached in such a four-gap
cavity structure operating at 2n-mode for homogenous field is approximately 35% and
48% for heterogeneous field at U;/Us=0.52, U,/Us=0.47, Us/Us=0.68. For optimal field
distribution with a relative voltage amplitude U;/Us=0.22, U,/U4s=0.6, U3/Us=0.89
efficiency is 60%.

3. Conclusions

The quality of investigated electrodynamic system is high efficiency that reached on
condition that electrical strength of cavity doesn’t disturb. More cavity output power can be
reached with using annular or a multibeam electron-optical system with a high summary
perveance that allowed decreasing accelerating voltage, overall dimensions and mass of
device. Utilizing one cavity will allowed making adjusting of device at resonance frequency
more easy in comparison with multiple-cavity klystron.
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Abstract — The features of envelope solitons formation in one-dimensional periodic
ferromagnetic structure were considered. The model based on the coupled nonlinear Schrodinger
equations was used for investigation. The parameter space showing the region, in which the solitons
similar to Bragg solitons with different features can form, was calculated. The mechanisms of the
formation of the solitons localized on the limited length of the structure were considered.

1. Introduction

At the present time investigation of the envelope solitons (localized wave packets) are
of a great interest. This type of solitons can be formed from a pulses propagating in
different medium with nonlinearity and dispersion [1]. A new type of solitons, called Bragg
soliton, or the gap solitons can be formed in nonlinear media whose properties vary
periodically in the definite direction with length [2]. The photonic crystals are an example
of such media in optics. In this structure the refractive index is a periodic function of spatial
coordinates [3]. The investigation of Bragg solitons are of interest not only from a
fundamental point of view, but also have great potential for practical use of such structures
in telecommunications systems, in optical communication lines [4].

In recent years, due to advances in the technology of thin-film magnetic materials
raising and a new approaches to obtain periodic structures the production of crystals, based
on the magnetic materials — magnon crystals (such as photonic crystal) represent a great
interest. The magnon crystals where spin waves propagate are similar to the photonic
crystal [5,6].The magnon crystals have a number of significant advantages compared to the
photonic crystals: the ability to manage their properties by an external magnetic field and to

use a planar technology, and 7N L
moreover crystals creation with
magnon band gap at microwave d e

1

a3 P al
frequencies (the order of several 4 v 74
millimeters). The nonlinear effects _ T // %1 // ////I
in ferromagnetic films appear at H, A /o
relatively low power levels [6]. i
The magnon crystals by X MSW Y

. . E—
analogy with the photom.c cryst.als Fig.1. The scheme of periodic ferromagnetic structure
demonstrate ~ more  interesting
nonlinear phenomena in comparison
with the effects observed in of a film; Ad=d, —d, — depth of a groove;
homogeneous ferromagnetic films. 4 = L —a, —width of a groove
However, we can conclude that the
nonlinear processes in such periodic structures, including those associated with the
peculiarities of formation of solitons are investigated insufficiently. You can specify only
some work in this direction [7-9], which shows the experimental and numerical simulation
results based on a one-dimensional nonlinear Schrodinger equation (NSE). The coefficients
of dispersion and nonlinearity, which were calculated based on the assumption that only

with the geometrical sizes: L — period; d, — thickness
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one magnetostatic wave propagates in the ferromagnetic film. The dispersion of this wave
depends on the parameters of the periodic structure.

The coupled-mode theory was used for investigation fiber-optic gratings [3]. The
essence of this method lies in the fact that the nonlinear wave processes in such structures,
mainly due to a superposition of incident and reflected waves. The system of coupled NSE
was used to describe this structure. In this case the use of one NLS is a simplified approach
to describe a nonlinear dynamics of periodic structures.

The aim of this work was to investigate the features of formation the solitons are
similar to a Bragg solitons in the ferromagnetic one-dimensional periodic structure. The
system of coupled nonlinear Schrodinger equations for the amplitude envelopee of the
forward and backward waves was used for numerical simulation. We pay great attention to
the conditions of formation of solitons, such as Bragg or gap solitons.

2. Theoretical model

A one-dimensional periodic ferromagnetic

structure (magnon crystal) was considered. The (7 SQ
structure is infinite in the direction of the x and T2 L

v (Fig.1). The constant magnetic field is applied ;\2 1
perpendicular to the film plane. The value of B

this field Ho was chosen in such a way that the 1.50
forward volume MSW (FVMSW) propagated -
in the y direction. The dispersion equation for b2
FVMSW in a homogeneous ferromagnetic film, 1.25f 1
loaded with the two semi-infinite dielectric
layers, can be written as [10]:

| T R |

28
t kd = 5 1 1.00 L1l L1 |
8(8kd) g -1 M 0 1 2 3 4 5 6 b
o —o. (0. +6 ‘ Fig.2. The dispersive diagram
where & = ”2( i ¥Ou) s (Re(Q(KL)) - curves 1, Im(Q(KL)) -

o), —
curves 2, Q=w/w, ) of a periodic

structure at O, =2, a,=0.5, d,=0.1,
d, =0.08

frequency of the signal, o, =vH, |,
o, =4nyM,, M, — saturation magnetization,
Y — gyromagnetic ratio, k — propagation
constant for a FVMSW, d — film thickness.
Following to [6,11], a dispersion relation for the one-dimensional system consisting

of alternating layers of two media with different velocities of wave propagation can be
written as:

k(o) +k; (o)
2k, (w)k, (o)

where k is wavenumber for a wave propagating in the structure with the period L =aq, +a,,

cos(KL) = cos(k ()a,)cos(k, (w)a,)- sin(k, (0)a, )sin(k, (0)a,), (2)

a, — width of the groove, functions k, (®), k,(w) is dispersion relations of FVMSW for

films thicknesses d, and d
ratio (1).

The results of numerical solution of equations (1) and (2) were shown in Fig. 2 (with
determinate geometric dimensions of the one-dimensional periodic structure). It shows the
behavior of the real and imaginary parts of KL in the FVMSW pass band with varying
frequency Q =/, . The geometric dimensions of the structure are normalized to the

, , correspondingly. These functions were determined by the
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period of the structure L=1. As seen in Fig. 2, the periodicity of the structure leads to the
appearance of a band gaps on the dispersion characteristics for KL =n. From the last

condition (Bragg condition) follow that K, =%:i—n , where K, and A, are the Bragg
B
propagation constant and the wavelength, respectively.

The Bragg condition provides the addition of a weak reflected wave on a phase along
the entire length of the lattice. It leads to an effective reflection of the incident wave. To
construct a nonlinear model of the periodic structure of the ferromagnetic use, similar to
optical systems [3,4], coupled-wave approximation and represent the distribution of the
magnetostatic potential near the gap as the sum of forward and backward waves:

v(nt)=0, (y.0)exp(i(of—K,p))+ o, (v.0)exp(i(or +K,p)), 3)
where ¢, (y.,t), ¢,(y.,t) are slowly varying complex envelopes of the forward

(incident) and backward (reflected) waves, respectively.
Taking into account [3] in the approximation of weak nonlinearity the nonlinear
equations for the envelopes of direct and reflected waves can be represented as:

[ 0¢ o¢ 0’ 2
{ LV, a;]—B f+n<pf+x<pb+v(\<pf\ +2|(Pb|2)(pf:0

ot oy’
5 ; . ; )
.| OQ, O, 0, 2 2 B
1( v, ayj—B 5 O, +Y(I<Pb| +2Jo| )%—0
where V, — group velocity, n =, —®, — detuning (®, =K,V,,, V,, — MSW

phase velocity in homogenous structure), B — coefficient of dispersion, ¥ — coefficient
of coupling, Y — nonlinear coefficient.

Equations (4) are similar to the system of two coupled nonlinear Schrédinger
equations describing the propagation of the direct and reflected waves in Bragg optical
lattices [2-4]. It should be noted that the system (4) without taking into account the
dispersion (3 =0), as shown in the [3], may have soliton solutions — the family of Bragg
solitons. This type of soliton represents a combination of two waves moving together or
remaining in place. If ¢, (y,¢) =9, (y,t) soliton does not move — a stationary gap soliton.

In the case of excitation of magnetostatic waves with a carrier frequency near to the
band gap, the dispersion medium plays more important role than the dispersion caused by
the structure's periodicity. Moreover, the coupling parameter, the coefficient of dispersion
and nonlinearity depend on the type of MSW excited in a ferromagnetic film (on the
direction of the external magnetic field Ho) significantly.

When FVMSW was excited in a periodic structure the coefficient = 8203/ ok> and

the group velocity V, =0w/0k were calculated if the thickness of the Ilattice

d=d, _ aid, ¥ aydy is the effective thickness. The nonlinear coefficient for FVMSW at
1, o )(kaY

kd <<<lis y=——|1+—- (—j [10].
4 o, )\ 2

To calculate the coupling coefficient, we assume that the thickness of the film in the
direction of wave propagation in periodic structure is described by the expression:

d=d,+3(y), )
Ad=d,—d,, 0<y<a,
where 8(y)=5(y+L):{0 L a <y<lL L=a +a
, 1=V =1L, 1 2°
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The function 6( y) was expanded in a Fourier series and restricting the expansion

coefficients with n =0, £1, the relation (5) can be represented as:

d=d, {1 +0d cos (%yﬂ , (6)

where 0d :ﬁsinﬂ.
nd,
Taking into account the relation (6) the coupling parameter for a one-dimensional

periodic lattice of 1-th order for kd, <<l can be written as:

e d %)
}\I b

X =
where A is a wavelength of FVMSW at the frequency .

3. Simulation results

The results relating to the formation of solitons in this system were obtained based on
the numerical solution of the coupled system of the NSE (4) using a SSFM method [3]. The
coefficients in (4) were calculated taking into account the relations (1), (7) and were

accepted as p=-2-10* cm’-s™', y=3-10""s"", §=1-10° s~'. The pulse was specified only
on a forward wave as the initial conditions ¢,, =@, exp(—y2 / y;n,,)a @y, =0, where y, = -

pulse width, ¢, — dimensionless pulse amplitude during the initial moment of time which

got out above a soliton threshold [3].
We consider the features of the wave evolution at a fixed value V, depending on the

parameter y . This parameter characterizes the geometrical parameters of the periodic
structure and the relationship between the forward and backward waves, accordingly. The
extreme case (when x =0) corresponds to a homogeneous film (a, =0) and the backward

wave is not excited in the structure. When y # 0, a linear relationship leads to the exchange

of power between the waves. In this case the backward wave is excited and the solitons are
formed, such as Bragg solitons. The parameter space (V,,y ) corresponding to the solitons

formation with a different features Vel om-s™
is shown in Fig. 3. The parameter -
space corresponding to solitons, i
which move with some velocity (3|
V,<V,, is shown in white color. '

The parameter space corresponding 0.2}
to the solitons remained localized i
on the limited length of structure is ¢ 1]
shown in gray color on the Fig. 3. !
Figure 4 demonstrate the dynamic

%10 s

of the solitons formation for 005 10 L5 20 25 30 35
parameters values conformable to  Fig.3. The parameter space (Y ,V, ), corresponding to
the point 1 on the Fig. 3. For small  envelope soliton formation

values 7y there
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0.006§

0.002 /\/
b . . . _t, us

(a) (b)

Fig. 4. The power swap of a forward (dotted curve) and backward (continuous curve) waves
eventually (a); lines of equal level of envelope amplitudes for ¢, (it is shown by grey color) and

@, (is shown by black) (b) at x=110°s" (¥,=0.3 10° cm/s )

l
2
is incomplete transfer of power of the forward wave P, = _H(p f‘ dy into the backward wave
0

]
B = J.|(pb|2 dy , where [ — length of a structure (Fig. 4 a). The forward wave dominates and
0

solitons are moving in the positive direction of axe y at a velocity V, <V, (Fig. 4 b). Figure

5 demonstrate the dynamic of the solitons formation for parameters values conformable to
the point 2 on the Fig. 3. The complete power swap between waves with period 7 was
observed (Fig. 5a). Thus on a forward wave it is formed soliton, moving in a positive
direction of axe y (Fig. 5¢). Figure 5d demonstrates that its power proceed to the soliton on
the forward wave, traveling to the same direction. After the time cell 7/2 the power of these
solitons turns equal and solitons moving decease. Thus the solitons change its propagation
direction periodically in time, and move to the direction of the major power wave. Ones can
notice some «kinking» of the solitons, but nevertheless it remains to be localized on the
certain limited structure length. The period 7" decreases and «zigzags» become smooth with
the increasing of 7, and solitons can exist without moving (¥, =0). In the parameter space
situated on the right of the gray area (point 3 on the Fig. 3), solitons are not also localized
in space and travels with the some velocity. This phenomenon can be explained by that the
period 7' get minor in comparison with soliton period 7, ~ 1/, [4], it leads to the power

swap periodicity disturb, and provokes the solitons moving.
At increase in V, power swapping V, becomes less effective (period 7" decreases and

swapping becomes incomplete), that leads to a pulling down of pulses at increase in V, .

4. Conclusion

In this paper with use of model in the form of coupled nonlinear Schrodinger
equations for the envelope amplitude forward and backward waves are calculated the
parameter spaces of periodic ferromagnetic structure corresponding to solitons, similar
Bragg solitons, with different properties. In particular, the basic mechanism of formation of
soliton, similar Bragg soliton, and localized on the limited length of structure, is mutual
capture of pulses on forward and backward waves, which move with the cumulative
velocity (velocity, in turn, it is defined by relative power of two waves), and presence of
power swapping between forward
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(c) (d)

Fig.5. The power swap of a forward (dotted curve) and backward (continuous curve) waves
eventually (a); lines of equal level of envelope amplitudes for ¢, (shown by grey color) and @,

(shown by black) (b); the space-time evolution envelope amplitude ¢, (c) and @, (d) at x=2.5
10°s™ (V,=0.3 10°cm/s)

and backward waves which is defined by value coupling between waves. Features of wave
evolution depending on coupling parameter and group velocity and the areas of parameters
corresponding to formation of pulses, similar to Bragg solitons and localized on the limited

length of structure, are investigated.
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Abstract — The simplest wire metallic photonic crystals have been investigated using the
electromagnetic simulations based on the periodic Green’s function and integral equation approach.
The permittivity tensor has been obtained and explored by using the homogenization for the
solutions which correspond to lowest dispersion branches.

Introduction

The wire metallic photonic crystals (MPC) are widely investigated during recent
three decades in connection with the availability of several their specific and unusual for
natural media properties, in connection with the possibility to get the artificial media
(metamaterials) with magnetic characteristics, with negative real part of permittivity or both
permittivity and permeability, and also because of creation on its usage some filtering.
waveguide, focusing, matching and others devices [1-28]. There are following unusual
MPC properties: the strong spatial and time (frequency) dispersions, the negative
refraction, bianisotropy. These properties take place from microwaves to optical waves. We
understand any periodically located metallic objects or such objects periodically embedded
into dielectric matrix (background) when we say about MPC. We assume for simplicity
that the background is the homogeneous dispersionless (so, the lossless) and with real
scalar permittivity & . From numerous objects of research, which were earlier have been
considered in a great number of works devoted to MPC, we choose the elementary simplest
linear noncontacting wire inclusions. Such MPC are anisotropic, but they have not
bianisotropy and the magnetic properties (in thin wire approach). The similar choice is
caused by the fact that the rigorous electrodynamic analysis of similar structures is highly
not simple. Most investigations of MPC are based on different approximate models, or by
several software tools (which usually are constructed on finite difference or finite-elements
methods).

We have used the approach based on the periodic Green’s function (GF) and
integrodifferential or integral equation methods (IE) (see [29,30]). We also use the thin wire
approximation. This means that their radius » much smaller of all structure dimensions.
And, at the same time, the transverse (or azimuthal) current components (and
correspondingly the magnetic properties) may be neglected and the problem may be
reduced to one-dimensional IE. The one out from three homogenization methods earlier
developed in [31-36] has been applied, that allows one to get the effective electrophysical
parameters of structures. It is the effective permittivity tensor (EPT) in our case. The accent
here has been made to receive the analytical results. The rigorous numerical models for any
prescribed accuracy are also were considered. The paper results have been compared with
the data of similar publications.

1. Problem statement
Let's consider the three-dimensional (3-D) periodic MPC consisting from thin

metallic wires of length / and radius », which are periodically embedded in dielectric
background with permittivity & and located in Cartesian system x , y , z with
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corresponded periods a, b and ¢ (fig. 1). The wires are thin, so » <</, r << min(a,b,c).
As the particular case let us also consider the two-periodic (2-D) such MPC with infinitely
long wires (with infinitely large periodc— o). This case is realizing in reality from the
considered above when the wire length / and the period dimension ¢ are much lager the
remaining dimensions a and b, or we have only one long sell in z -direction. In such case
one may take into consideration the infinite /. Then there are the traveling current waves

along the wires with the dependence exp(ia)t—ikr) and some phase shifts, in which

connection the current density for wire 1 in the zero number cell is

J =2,15(x)5(y)exp(~ik.z) . (1)

Fig.1. The MPC in the form of 3-D periodic cells with one linear wire inclusion per sell

Here z, denotes the unit normal vector of z-axis. Further for MPC we will use the scalar
GF of periodically located and phased sources (the periodic GF) [29,30]. The free waves
(eigenwaves) of MPC creates on the metallic wires the phase shifted currents, which for
one's turn support (excite) the wave. In accordance with based on the GF and IE approach it
is sufficient to solve the IE in one (zero number) cell of periodicity using only the objects in
this cell. In our case it is only the wire 1 (fig. 1). The current density (1) creates only one z-
component of electric vector potential A_, through which one can express the electric and
magnetic fields. For electric field we have
grad(div) +kj e

iweg,&

z,A, . ()

Further we will need only the lectric field £, component as only it is present in the
boundary conditions owing to small . After the integration of (1) with the GF we get the
A_, that according to (2) gives

kzg k2 0 exp( ik ,x— lkyny ik z)
za)gogab Z‘w ,1_2_;0 ky, vkl +k:—kye

Here k,, =k, +2mn/a and k, =k, +2n7z/b correspond to spatial harmonics, the time

E. = (3)

exponent is omitted (there and everywhere). Let us note that instead of surface current
density on the wire we have used the linear axes current owing to small », so we transfer
from surface IE to linear one. If the wire impedance is finite, and frequencies are high
enough, it is necessary to use the volume distribution of current density of type (1). It, in
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particular, concerns infra-red and optical ranges where the nanodimensional metallic wires
should be modeled as plasma. To the dispersion equation (DE) from (3), it is enough to
impose the boundary condition on any line on wire surface, for example, for x =r, y=0.

In general case we must write
E(x,y,2)=ZJs(x,5.2) . (4)
Here the points x,y belong to the surface, Z is the surface impedance, J is the surface

current density. In our case it is necessary to consider the surface current density as uniform
Jo=1/ (ZW)exp(—ikzz) and connected with a linear current /. It is possible to take the

surface impedance in the Leontovich form or zero (in approach of ideally conducting
wires). It is convenient to put z =0 in the equation (4). Then the boundary condition (4)
may be taken as averaged electric field on four symmetric points of the circle, or as the
condition averaged on an azimuthal angle in the cylindrical system connected with a wire.
In both cases we get the analytical DE in which one of the sums can be calculated
obviously [29,30].

So, we have the DE of the type

F(ky,K)=0, )
which (at the given k) defines the relation of wavenumber k, and transverse wavevector
components k&, and k,. Let us notice, that it really depends on a square of wave number.

Setting the specified values of wave vectors, it is possible to construct a dispersive surface
k,=f (kx,ky) for everyone k, [29,30]. Generally, the DE defines a three-dimensional

hypersurface in four-dimensional space. It is multisheeted surface for ideally conducting
wires which also consists of not connected each other sheets. Accordingly, there are the
forbidden zones for k, (bandgaps). The periodicity is broken, and the specified surfaces

incorporate in case of a photon crystal (PC) with losses [29].

To receive the electrophysical parameters we will take advantage of one of
homogenization methods, described in [31-36] and based on calculation of the dipole and
the higher multipole moments. As electrophysical parameters it is understood the
permittivity and the permeability defined on the basis of strict electrodynamic model,
depending from k, and k.

It means the account of time and spatial dispersions. Further, we will define only the dipole
contributions to polarization P. It is known that the metallic inclusions can lead to presence
of magnetic properties [5]. They appear if to consider the finiteness of » and the presence
of azimuthal currents on the wire inclusions. In our case of thin wires always = I, and the

EPT may be written as

e 0 O
&k, k)=[0 & 0 |. (6)
0 0 ¢,
The required component is connected with unique z-component of polarization vector
P
&,k K)=1+—"—, (7)
’ g, <E Z>

where the Dirac bracket means the averaging on a cell of electric field z-component (3).
The Homogenization procedure assumes the averaging, i.e. the replacement quickly
oscillated fields like (3) on their certain effective values. As ways of averaging can be
much, the homogenization is ambiguous procedure. In particular, it is necessary for us to
average some functions of type exp(— ik x). As an averaging interval it is possible to take

xm
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(0, a), and the complex values thus turn out. We will take these intervals symmetrically:

(—a /2,al 2) . Then the average exponent value is

al2
exm(kx,a):<exp( zkmx =— I exp(—z{k +2
a

-al2

H g 2 (—1)"sin(k,a/2) o ®
a

a k. +2mm/a

Averaging on z we will fulfill so:
1% sin(k_L)
e.(k.,L)=(exp(-ik.z))=— |exp(-ik.z)dz =———.
(k)= exp(-tkz) = ool )iz =1
This quantity as function of L decreases and oscillates with the period 27/ k. Therefore,
we will average it on the specified period:

e.(k.)=(e.(k..L))= ;‘ﬁ f %dL zési(ﬂ). (9)

—nlk,
Let's notice that it does not depend from L. Taking divergence of (1), we will find the
charge density
p=—k15(x)5(y)exp(-ik.z)/ @ . (10)
The delta-functions presence says that actually we have a linear charge and a linear current.

The polarization vector has only one z-component
L

P.(k.,L)= > ;’;b - j zexp(—ik.z)dz i)%{— cos(k})+%} : (11)
-L z

The terms in (11) as functions of L are even, the first term oscillates with the period
27 /k_, and the second one oscillates and also damps at the big lengths. Therefore, we will

average the result on the oscillation period:
ik, .
_k IP “1i(x). (12)
" steoab

We have received the result, Wthh is not dependent on k_. At the conclusion of (12),
however, the length L was assumed big, i.e. the k. =27 /L is sufficiently small. So, we
have

ke —k2)e. (k. -k, ,0)
E)=1 ( : 13
()= iwe jeab m_Z_MZ k2 +k2 +k2 kie (13)
Now the permittivity is defined by the formula (7) in which it is necessary to replace the
polarization with its average value (12). Let us notice that we averaged the polarization and
a field by the identical method. We will result the received form:

mb[sin(kxa / 2)sin(kyb / 2)]_1

e (kyk)=1+ (14)

o) ¥ -

el (SR S SR 2P

xm

It is necessary to notice that at averaging of a field we integrated on all cell volume. For
ideally conduction wires the field inside them is absent, and their own volume can be
excluded. Corresponding specifications, however, are insignificant, as the field satisfies the
approached boundary condition (4), i.e. it is negligible small both on a surface, and inside a
wire. The error thus turns out the second order on »/a. We will make one more important
remark. The terms are entering into (14) are not independent. They are connected by means
of DE (5). For example, setting k,, we choose the dispersion surface. If the wave number

gets to a bandgap, the permittivity is not defined, as there are no any real solutions of DE. It
is possible to consider its big negative that corresponds to absence of propagation of a wave
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(attenuation). Further we will specify, how it to define and in this case. Having set k,, k,
and one of tangential component of wave vector, we find another from (5). Then their
substitution in (15) defines EPT (6). It is different for different dispersion surfaces, and also
depends at given k,=w/c , generally speaking, on two transversal wave vector
components (if &, is set). The DE (5) is periodical on k, and k, with the periods of a

return lattice 27 /a and 27 /b accordingly. That also concerns to (14). This formula may
be rewritten down in the form:

k2 (o, k, k, k. )
MCL LT (15)
kye—k;

The expressions like (15) have been received in a number of works from various qualitative
and modelling reasons [1-3,5,11,12,14,18,20-22,28], including its kind was considered at
k. =0 [11,12]. In this case the PC behaves as plasma with cutoff on plasma frequency

gzz(k()’k)zl_

o, =ck, (a)p,kx,ky,kz). This frequency usually is displaced into high-frequency region

with growth of k’: a)=c\/k; (a),kx,ky,kz )+ k?/& [29]. Let us analyze the relation (14).
k|) is defined basically by a

zero term. At k, >0, k, -0 we have ¢_, (k,,k)—> 0 that corresponds to low-frequency

The series converges rather quickly, and its sum (at small %,

cutoff. And the cutoff frequency increases when k_ is increasing. The same concerns to the
case k., =2r/a, k,=2x/b, and to similar points owing to periodicity of (14) on
transverse wave vectors components. At small &, &, as it is easy to see 0< ¢, (ko,k)< 1.
For MPC configuration a=b=c,r/a=0.001, £ =1 we have the estimation kpa =1.43.
On lower frequencies according to model (15) the ¢_ is negative and can aspire to enough
big negative values at k, —0 (it is supposed thatk_ =0). If k,ve =k, and k2 +k> >0

that the expression (14) aspires to infinity. It corresponds to that the free wave cannot
propagate along the wires. The flat wave excites by a incident source passes through finite
such MPC structure almost without reflections as its electric field is perpendicular to the
wires and does not induce at them any currents. However, free eigenwaves in infinite
structure should induce such currents, which support them. It cannot be carried out in this
case. The value k_ is real in the absence of losses and defines a wave of a current (1). If

kO\/E > k_, this wave fast, and at kO\/Z <k, itis slow. If k] +k_ >0, that the current wave

can be only fast, i.e. k, < kox/g . The definition of effective permeability at k, <k, or in
the next bandgap also can be received by the specified method. It is necessary for this
purpose to search the imaginary roots k, and k,, or, setting their values imaginary, to
define k,, and further to spend the considered averagings at the calculation of dipole
moment.

2. Uniaxial, biaxial u triaxial MPC with non-connected wires

From stated above it is clear that the wire orientations defines its contribution into
the electric dipole moment in a corresponding direction. Further, we will consider non-
connected wires of finite length. Connected (contacting) wire PC demand the account of a
continuity of a current (under the Kirchhoff's law) that complicates the consideration [18]
and makes a subject of separate research. We will consider the elementary structure fig. 1.
Now the current density we will write down as
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3 = 2,8()5()3" 1, cos(k.2). (16)

s=1

Here k = (2S—1)7Z’/ [, and the coordinate system zero in comparison with fig. 1 is shifted

in the wire centre so on its ends the current is zero. Using the approach stated above, we
will find

2 X - k(K2 = k2 Jexpl= ik, x+ K,y + k2]
E = kI, cos = = — . 17
* iwesab S Z( 1y " ;w ( 2 j (k2 =2 Ji2, + 2, + K2~ ke (17
The component (17) should turn in zero on the wire surface. Applying the Galerkin method,
we have

l
[E.(x..2)cos(k,z)dz = 0. (18)

-1
In the relation (18) the point (x, y) belongs to the circle: x° +y° =r’. It is possible to take
any point of this circle. Then the relations (17) and (18) lead to system of the linear
algebraic equations (SIAE) which determinant A should be equal to zero. Actually
F (k,), k) = A =0 is the required DE. It poorly varies at movement of the chosen point on a
circle. It is convenient to impose boundary conditions in four symmetric points
x=xr,y=0 and x=0,y=1r . Thus instead of exponent in (17) we receive
a, (k. k) cos([km +kynJr/ 2)cos([km —kynJr/ 2), and the component (17) depends only

on coordlnate z and has decomposition

23 25

Now the matrix elements according to (18) can be written down so:

lszZS COS(k Z)dz_ﬂ s+’ z cos [kzklj(k (kzg kzzk)amn(k k )

2 2 2 2 2 :
—1/2 Ogab m,nk=—0 Zk k 1 + kyn + k kO EJ

We, however, will average on all points of a circle, having written down x = rcos(go) ,

y= rsin(go) , and having integrated on the angle. Thus the Bessel functions appear owing to
the formula [30]

27

L exp(tir(k,, cos(p) )+k,, sin( ))d(z) J(qlkfm+kf,n).

27y
It corresponds to change the entered before term so: «,, (kx,ky): Jo (lqlkfm +kf,n ) As the

series converge enough quickly, the difference of both terms at small » and for low
numbers of indexes is insignificant. However, such averaging leads to improvement of
series convergence. It is seen that the singularity at &k, = £k, is removable. However when
the square bracket in the denominator of (17) makes vanish, the matrix elements have
poles. Often the specified poles are near to DE roots that complicates a finding of the last.
The elimination of poles is possible by the addition of a small imaginary part to wave
number: k, — k,—io . However, such addition leads to false roots. We will notice that the

specified way at 6 — +0 in case of free space GF allocates its demanded kind, satisfying to
the radiation condition [37]. In case of PC it is not necessary to impose a radiation
condition: in the exponent of periodic GF it is possible to take both signs:
exp(+ik,,, (r—r')) as there is no allocated direction of radiation. Eigen direct (forward)
and return (backward) waves (without a source) are indiscernible [29]. The specified poles
correspond to conditions k& = k., +k;, +k; which divide the dispersion branches. In
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particular, at m =n =k =0 we have .|k’ +ky2 +k> = ikox/z. For a wave with k£, =k, =0

the straight lines separate the branches of slow and fast waves of the first zone. We will
notice that for the series with amn(kx,ky) in form of cosines it is possible to sum up

asymptotically on two indexes at their big values. However, such summation is rather
intricate and leads to inconvenient relations. The initial relations are convenient for code
parallelization, as it has been made in the calculations.

The dipole moment of unit volume is

l. al2 b2 /2 dJ
[ | | z=zaxdyaz. (19)
abcw =, 5,5, dz

Calculating it, we will receive

21 {~lcos(k 1) +sin(k,[)/k,} .

The averaging is not required for thls, as there is one wire per a cell. Averaging a
component of electric field (17), one can find

<EZ> — 2 Z k I z COS(kZ lj (kzg kzzk )exm(kx’a)eyn(ky’b)ezk ' (20)

iwe gab S = (k2 — K22, + K2, + K~ ke J

xm

Z

abca)

Accordingly, zz-component of tensor (6) is defined under the formula (7). Thus, at first it
follows, having the set &k, k,. k., to define the k, from the DE. There may be several

values at finite number of basic functions in (16). It is necessary to choose that is need, for
example, the lowest from them. Further we set the amplitude /, =7 (a wave is defined
accurate within any amplitude), and then we will express through it the remained
amplitudes of harmonics of a current as the solutions of SLAE which order is smaller on
unit. Then all defined terms we substitute into (20), and then we define the permittivity.

The triaxial MPC has three wires per on a cell of periodicity in the form of a
parallelepiped with the edges a,b,c. The wires lengths are /,, /,, /;, Such MPC is

characterized by the diagonal tensor of effective permittivity:

e. 0 0
&k, k)=| 0 &, 0 | 1)
0 0 ¢

Basically, the wires can be located asymmetrically. Besides, such wires are possible on the
edges (sides) of a cell and inside it, thus their orientation may be any. It leads to
nondiagonal tensor like (21) as arbitrary oriented wire gives the contribution to all dipole
moment components. However owing to the Onsager-Cazimir theorem under the absence
of dissipation and because of self-conjugacy it is had ¢, (k,.k)= ¢, (k,,k). It is symmetric
with all real tensor components if losses in dielectric background and in wires are absent.
However for loss structures the tensors like (2) are already non-Hermitian, and the

Onsager-Cazimir condition should be altered so: ¢, (k,.k)=¢,, (k,.k)—i¢., (k,.k). The
presence of N, wires per a cell leads to the system of coupled one-dimensional IEs and to
DE in the form of equality to zero of a determinant of SLAE, corresponding to
discretization of the equations. The determinant order under the account of several current
harmonics on each wire at N >3 is already enough essential factor, which is worsening
the search of its complex roots in three-dimensional complex area k that becomes rather
not trivial problem. The dispersion is defined then by a hypersurface in six-dimensional
area. The loss are very essential for microstructured and nanostructured MPCs in terahertz,
infra-red and optical bands. Such MPCs have no sharply expressed bandgaps, therefore the
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tensor &(k,,k) is possible to define in all necessary area of frequencies and wave vectors.

The corresponding components of EPT are zero on the borders of bandgaps for lossless
systems. In the bandgap the vector k is purely imaginary (for 3-D structures), or has
imaginary some from its component (for 1-D and 2-D structures) [29]. Accordingly, the
wave in the specified directions fades. Such attenuation has the reactive (nondissipative)
character, thus the periodicity is not violated. Once again, we will notice that in periodic
and dissipative photonic crystals (PC) the periodicity in electrodynamic sense is broken: the
wave propagates with attenuation. This is basic PC difference from usual solid-state
crystals for which the local probability density is conserved, as the global probability, i.e.
the number of particles, are also under the conservation. As consequence of it we have the
periodicity (to within phase factor) of Bloch waves of probability density and the self-
adjoint problem. The violation of periodicity here is possible only by dislocations and
finiteness of structure, thus a problem again self-interfaced. There is the radiation in finite
PCs, therefore eigenfrequencies of resonators based on such PC are complex (like the
frequencies of open dielectric resonators).
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Fig. 2. Dispersion approximation of 2-D-P WPC according to the simulation results for DE
(a=b=1,k=0,r/a=0.001, e =1)

3. Numerical results

Further everywhere the following configuration is considereda=b=c,s=1. The
dispersion for MPC in the form of infinitely long and parallel located 2-D periodic wires
has been received in the works [29,30]. On the basis of DE solutions the approximations of
two-dimensional surfaces k, = f (kx,ky) are executed at the value £, =0. For the case
a=b=1,r/a=0.001, ¢ =1, and for site of the first sheet of the dispersive surface with
forward wave such approximation is presented in the fig. 2. In the fig. 3 the calculations
under the formula (14) are resulted for the same case when the k, is defined by the surface
of fig. 2. It is visible that, in the field of small wave vectors, the component &_ is
essentially less than the unit, and the wave is fast. It is confirmed also by the dispersive
characteristic as for small values |k| the wave number always has finite value which greater

than kp .
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Fig. 3. The component &_ versus wave vector components in the main sector of first propagation

band at k£, =0 (the results correspond to fig. 2)
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Fig. 4. The dependence of normalized wave vector component from normalized frequency for 2-D-
P MPC with the lattice @ =b forr/a =0.005, k, =0 and different k.a values: 0 (curve 1); 1

(2:2(3);3(4)

With increase of |k| the wave becomes slow with small retardation n=,/¢_ ~1.2

that corresponds to the permittivity component a little more than unit. Naturally, owing to
periodicity in the space of wave vectors the same periodicity takes place for EPT. In the
bottom forbidden zone &, <k, the components k, and &, are imaginary, therefore the sign
before the sum in the formula (14) changes and the component &_ becomes negative. The
same is for the next top forbidden zone (bandgap) which in our case is 2.93 < k,a <3.4.
Accordingly, for each of k, values in these areas it is possible to construct the surfaces ¢_,

as functions of imaginary components of wave vector, using the relation (14). Thus the
minimum (maximum on the module) value in the lowest bandgap in the considered case
has been obtained as ¢_ =—1.045.
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In the fig. 4 the dependences of influence on dispersion data from k_ value are
resulted. The dependence of dispersion on a thickness of wires is given in the fig. 5. The
dispersion results (band structure) of MPC with finite length are resulted in fig. 6 for two r
values. This problem already demands the big computing resources, especially if / ~ ¢ (for
what the account of a great number of harmonics in (16)is necessary), and can lead to a
determinant of a high order. In the presented results with //a = 0.6 it is enough to consider
1-3 harmonics, and the difference on accuracy for 1 and 3 harmonics makes less than 1 %,
and the computing times differ in 6 times. Strong truncation of three-dimensional series
brings errors, which can lead to the admission of roots or to their essential change.
Numerical research has shown that these effects vanishat N =M =K >20 (N,M,K - the
numbers of terms with positive indexes in the sums). All calculations have been executed at
N=M =K =30, i.e. the 61° =226981 flat waves have been taken into consideration. The
calculation with N = M = K =101increases speed more than in 200 times, thus accuracy of
roots definition worsens on 2-3 %. Let us notice that the series truncation brings effect of
radiating losses, as the finite PC structure with eigenmodes is radiating one. The presence
of the poles, sometimes very close approaching to roots, complicates search of the last. The
procedure of smoothing of poles (by introduction of infinitesimal losses) and of false roots
avoidance has been developed.

For the first dispersive branch fig. 6 also has been calculated the component &_

(fig. 7). It changes from 1 at k, =k, =0 (the wave propagates with a velocity of light) to
values 1.2 (fig. 6,) and 1.3 (fig. 6,) at k,a=k a=7x of cutoff frequency. In the first
bandgap it is negative. The Fig. 7 shows its dependence from k, at k, = 0. It is necessary
to have in view of that in this case k, and k_are unequivocally connected by a dispersive

curve up to the beginning bandgap point k£ a = 7. As it is shown in the works [28,30], the
introduction of losses (even infinitesimal) deforms dispersive branches as follows. The
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direct (forward) and return (backward) branches in the lowest propagation band are
disconnected, the bandgap vanish, and in them the forward lines of lowest frequency branch
close up with the forward higher branches and accordingly the backward higher branches
close up with the backward lowest ones. There is a small attenuation in the propagation
bands, and in the former bangaps there is the wave propagation with small phase velocity,
large group velocity and strong attenuation. Under the infinitesimal attenuation, the group
velocity in the bandgaps becomes infinite. It is connected by that zero interval of wave
vectors corresponds to finite band interval Ak, (in our casek.a =77, Ak =0, and Ak, is

finite). Therefore the transition from one branch to another goes on a vertical line k.a =7
(see fig. 6), thus k, changes within the bandgap strip. Accordingly, the normalized group
velocity is the tangent of tangential line angle to this line, i.e. v, =c- tan(;z/ 2). Actually at

such movement along one of dispersion curves fig. 6 the dependences 1 and 2 in the fig. 7
are constructed, thus for the first one the component £ _is imaginary (see fig. 6), and the

., 1s negative (for the second curve accordingly in the region 2.66 < k,a < 3.16).

zz

The transition to the following branch in propagation band (k,a =3.21) becomes

ambiguous. The presence of losses removes this ambiguity: movement always goes along
the direct of return branch either a forward wave, or backward. It and the attenuation
connected with it break periodicity of fields, which cause the described effect.
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Fig. 6. Band structure of 3-D-P wire MPCat k. =k, =0, 1//a=0.6 for r/a=0.01 (a)n
r/a=0.06 (b)
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Conclusions

The electrophysical parameters of the elementary wire MPC in the form of linear
wires of infinite and finite lengths have been obtained by the method of the integral
equations formulated on the basis of GF of periodically located sources. The case of thin
ideally conducting and not contacting wires is considered. One of the homogenization
methods, using the calculation of averaged on a cell multipole moments and the averaging
of fields is applied. It is shown, that except of homogenization ambiguities the construction
of effective permittivities in the absence of losses is also ambiguously in connection with
necessity of a choice of a corresponding dispersion branch. This ambiguity disappears
under the wave diffraction on the finite (i.e. quasiperiodic) structures when at a falling
wave have the set &, and k. The results of plasma frequency estimation in the formula (15)

are in good conformity with earlier published models. This also corresponds to the wave
retardation, which is defined from the dispersive curves (surfaces). The case / = ¢ demands
taking into account of a great number of current harmonics in the (16) that simulates the
capacities of corresponding gaps between wires. Such MPC at high frequencies with finite
wires length / is similar to PC with the infinite ones. Accordingly, the dispersive curve is
bent in high-frequency range, however the low-frequency cutoff is absent. It is not real to
use the resulted algorithm for a limiting case of wires with infinitesimal gaps (i.e. for
transition to the first of the considered problems). It is easily to take big ¢ and / values. The
method can be extended to any wire configurations of MPC structures, including ring,
spiral, helix, Q2 elements etc., and also on dielectric and magnetic PC. Owing to symmetry
to the centre of wires we took the ymmetric distribution of a current (16) in the form of
decomposition on cosine. Thus, the plane z = 0 is the electric wall (as well as the planes
periodically displaced on c¢). It is possible to use the decomposition also on sine that will
give the magnetic walls. The currents should be decomposed in the absence of the
symmetry in a general Fourier series taking into account the boundary conditions on the
wires ends. The account of losses will lead effective complex permittivities and
permeabilities. However, it does not mean the conductivity presence: specified dissipation
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is connected with a phase shifts between the polarization (electric and magnetic) currents
and the fields. The conductivity should exist in physical structures of MPC with nanowires,
and its mechanism is connected with quantum effects, and may have the jump character.
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