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ВВ  ВВ  ЕЕ  ДД  ЕЕ  НН  ИИ  ЕЕ    
 

  Компьютерное моделирование становится главным и мощнейшим инструментом исследования 
сложных систем и структур. Использование строгих компьютерных моделей позволяет адекватно произ-
водить их анализ, синтез или оптимизацию и зачастую вытесняет  натурный эксперимент. Для большого 
числа рассматриваемых задач проведение натурного эксперимента чрезвычайно сложно или невозможно 
вовсе, поэтому развитие методов математического моделирования является чрезвычайно важным и акту-
альным.  

В прикладной электронике  и электродинамике, включая и оптику, использование строгих мето-
дов анализа и синтеза при моделировании означает применение алгоритмов на основе уравнений Мак-
свелла и строгих решений уравнений движения. Важным элементом, влияющим на адекватность моде-
лирования, служит корректное введение материальных уравнений и уравнений движения частиц.  

В последнее время все большее значение приобретают автоматизированные системы анализа и 
проектирования приборов, устройств и структур СВЧ, КВЧ и оптических диапазонов. Применение элек-
тродинамических методов происходит для всех частот используемых электромагнитных волн, включая и 
оптический диапазон, причем в оптике традиционные методы анализа вытесняются строгим электроди-
намическим рассмотрением. Наряду с традиционными частотными подходами к моделированию разви-
ваются и пространственно-временные методы, что характеризует бурный прогресс прикладной неста-
ционарной электродинамики. Другими актуальными современными направлениями, представленными в 
сборнике, являются моделирование наноструктур (включая квазипериодические структуры) и примене-
ние электродинамических методов к нелинейным задачам. 
 Восьмой выпуск сборника продолжает серию публикаций трудов научных семинаров объеди-
ненной первичной ячейки (IEEE MTT/ED/AP/CPMT Saratov–Penza Chapter) входящей в международную 
научную организацию Institute of Electrical and Electronic Engineers. Указанная ячейка создана в 1995 г. в 
Саратове и Пензе. В сборник вошли труды, представленные в 2007 г. на очередном одиннадцатом семи-
наре (Saratov–Penza Chapter Workshops) данной первичной ячейки. С 2003 года эти семинары именуются 
как «Workshop on Electromagnetics of microwaves, submillimeter and optic waves» и ежегодно в сентябре 
проводятся в рамках международной конференции «Saratov Fall Meeting» в Саратовском государствен-
ном университете. 
 
 

________________________________ 
 
 

 
 

II  NN  TT  RR  OO  DD  UU  CC  TT  II  OO  NN  
 
 

 In recent time there was an increasing development of Computer Aid Design (CAD) methods and rigor-
ous approaches for microwave electron devices, units and elements all over the world and in Russia particularly. 
These methods have been applied both for linear and nonlinear systems and structures in time and spectrum do-
mains. There is growing interest in electromagnetic and optics to nanostructures and metamaterials.  
 The correct introduction of material and motion equations and using of strict electrodynamic models 
play important role in adequate numerical simulation of structures. Recently the nonstationary approach for elec-
tromagnetics and electronics stays more desirable and applicable. The nanostructures such as photonic crystals 
and metamaterials play the important role in modern science and cause the different methods of its simulation. 
These directions of modeling is also have mirrored in the present issue.   

In 1995 on July 11 the IEEE Joint MTT/ED Chapter has been formed in Saratov and Penza under the 
sponsorship and help of Electron Devices and Microwave Theory and Techniques Societies (ED–S and MTT–S). 
Then it has been supported by Antennas and Propagation and Components, Packaging, and Manufacturing 
Technology Societies (AP–S and CPMT–S), and now it is named as IEEE MTT/ED/AP/CPMT Saratov–Penza 
Chapter included into the IEEE Russian Section. 
 This issue contains the papers presented at the 11-th IEEE MTT/ED/AP/CPMT Saratov–Penza Chapter 
Workshop named as “Electromagnetics of Microwaves, Submillimeter and Optic Waves” which has been held in 
conjunction with Saratov Fall Meeting at the Saratov State University in the September, 2007. 
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THE ACOUSTICAL DEVICES SYNTHESIS AND OPTIMIZATION USING 
THE VARIATIONAL METHODS 

 
A.A. Gybenkov, Member IEEE 

 
Saratov State Technical University, Saratov, Russia 

E-mail: agubenkov@ieee.org 
 

Abstract – The variational method for the acoustical devices synthesis was offered. The given method 
also is based on the variational method for the acoustical devices analysis using bilinear stationary func-
tionals. The generic variational approach for the analysis and synthesis was suggested. The common pro-
cedure of the functionals minimization and usages of their stationary properties makes the given approach 
especially effective as the computation. The given approach can be used also for the acoustical devices 
optimization.  

 
1. Introduction 

 
The optimal devices synthesis problem is rather actual task at present. The creation of the 

device's mathematical model is the basic difficulty appearing at the solution of the devices syn-
thesis problem. All synthesis procedure depends from a select of the adequate analysis model [1]. 
It is desirable, that analysis and synthesis methods were structurally similar. Therefore they 
should be based on the similar methods. The universal and optimal variational methods are the 
most suitable for this purpose. The creation of the generic variational approach for the analysis, 
synthesis and optimization problem solving in mathematical simulation is the main goal of this 
paper. 

 
2. Solution of problem 

 
The common analysis problem definition is featured by the operator’s equations:  

). ),( (       ), ),( ( SrruuFuMVrruufuL ∈==∈==  (1)
Here u is a variable column-vector, f and F are the given vectors. 

Using the variational method the device analysis problem can be reduced to a determination 
of the function u, supplying a stationary value to a bilinear functional of the following type [2]: 

( ) ( ) ( ) ( ) ( ) .,,,,, SSVV yRuPwFMuzuwfLuwuI −−+−−=  (2)
Here the P and R are the operators determined from generalized Green's formula: 

( ) ( ) ( ) ( )SVSV NwRu,Kwu,PwMu,wLu, +=+ . 
Let the ( )V.,.  and ( )S.,.  are the inner products. 
The w is the conjugate problem's solution such that: 

). ),( (       ), ),( ( SrrwwyNwVrrwwzKw ∈==∈==  (3)
We can define the bilinear functional (2) by choosing the conjugate problem (3) such that 

the stationary value of the functional can be made equal to any characteristic parameter or any 
required function of the problem. 

The above-said variational approach allows to build a reasonable method of solution of the 
devices synthesis problem, besides the solution of the analysis problem. Let the considered 
acoustical device's construction is characterized by a finite number of the geometrical sizes 
( )mttt …,, 21  or the geometry vector t. Every possible physically implemented populations of the 
geometrical sizes will organize m-dimensional bounded set: 

( ){ }mittttt im …… ,2,1,0;,, 21 =∞<<==Θ . 
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Hence to each set Θ member there matches some device with the specified geometrical dimen-
sions. These dimensions uniquely define the characteristic device’s parameters ( )kccc …,, 21  
same as eigenfrequencies, scattering matrix elements, coupling coefficients et al. Special interest 
at engineering calculations represents searching such geometrical sizes of the estimated devices 
for which its characteristic parameters would coincide with desired preset values ( )00

2
0
1 ,, kccc … .  

Therefore the synthesis problem is considered in the following statement. Let ( )00
2

0
1 ,, kccc …  

are the desired values of the characteristic parameters. The synthesis problem consists in determi-
nation of the acoustical device’s geometrical sizes ( )00

2
0
1 ,, mttt …  for which  characteristic device’s 

parameters ( )kccc …,, 21  would coincide with desired values. We assume that solution of the 
problem exists. 

For solution of the devices synthesis problem the following functional is offered 
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Here Ii is the bilinear functionals (2) for parameters ci determination, V is the device’s volume, S 
is the device’s boundary, Sj are the selected boundaries parting field on partial subregions. Last 
three items in the functional (4) be analogous to Lagrange regularizing [3]. 

The functional ( )tuF ,  reaches the exact low boundary, equal to null, when the function 
0uu =  is an exact solution of the boundary-value problem (1) and computed characteristic pa-

rameters for given geometrical sizes coincide with the desired values. 
The unknown function u is approximately replaceable as the expansion in the complete 

function system nu : 

.
1

∑
=

=
N

n
nnuau  (5)

Substituting this expansion in the functional (4), we’ll have a functional depending on the geo-
metrical sizes ( )mttt …,, 21  and the expansion coefficients ( )Naaa …,, 21 . Then solution of the 
acoustical devices synthesis problem is reduced to the simultaneous determination of the vectors 
a and t supplying a minimum to the functional (4). The process of minimum's searching can be 
fulfilled by any of known methods [4]. 

The exactitude of the determining unknown sizes t depend on amount of the terms of series 
in the expansion (5). The approximate solutions u and t will be approaching to exact solutions on 
the assumption +∞→N  and 

( ) 0,inf →tuF . (6)
Generally the solution of the device’s synthesis problem is not unique. The process of the func-
tional (4) minimization will select only one of the possible solutions. If it is not enough, we can 
easily select that solution from the assemblage Θ which is advisable. For this purpose some of the 
vector t components can be fixed, proceeding from physical, constructive or technological rea-
sons. 

Let the processes in the acoustic device with an enclosed volume V, limited by a surface S, 
are described by the vector equations of the elasticity theory [2,5]: 

 
.:j,j TsFT S ωυυρω =∇−=•∇  (7)
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Here υ  is the velocity field vector, T  is the stress column-vector: 
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ρ  is the mass density, s  is the fourth-order elastic compliance tensor, the double dot indicates 
the usual double scalar product ∑= JJi TsTs : , t  indicates the transpose operation, •∇  and S∇  
are the symbolic operators [5], fGg ,,  are the body force distribution functions, w  is the im-
pedance operator, ω  is the frequency. Let the surface S present as 321 SSSS ++= . Suppose 

g=υ  in 1S , GT =  in 2S  and Twf :+=υ  in 3S . The tangents components of the fields should be 
continuous inside of the volume V. 
 

3. Simulation results 
The interesting result for the given mathematical exposition of the acoustical problems is 

obtained, when the synthesis problem has the unique solution obviously. The synthesis example 
of the three-dimensional acoustical solid-state resonator from the isotropic materials is presented 
by figure 1. The resonator’s materials are a chalcogenide glass in an aluminium environment. All 
material constants was taken from [6]. 

The one-parametrical synthesis is carried out at the set wavenumber 0k  and the predeter-
mined typical configuration (fig. 1) of the acoustic resonator. It is required to determine the un-
known parameter 0P , setting a structure for predetermined type of the resonator. 
 

 
Fig. 1. The acoustical resonator's synthesis outcomes on the given eigenfrequency 

 
The wavenumber’s value was determined through the modified bilinear functional (2) for 

determination of the acoustical device’s eigenfrequencies on a method explained in [2]: 
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Here n  is the normal to surface S , the sign ( − ) above the functions denotes the complex conju-
gation, the sign ( ∗ ) above the functions is the sign of membership to the Lagrange conjugate 
problem [4]. All sizes of the three-dimensional resonator are measured in the units ][A . The wave 
numbers are measured in the conventional units of the reciprocal wave length ][ 1−A . 

The multiparameter synthesis is considered on an instance of the acoustical waveguide 
transformer's synthesis problem. Let's note, that the synthesis and optimization problems can be 
combined at the successful statement of the problem when the initial parameters are obviously 
chosen as optimum (ideal).  

The results of the homogeneous three-sectional quarter-wave acoustical transformer's syn-
thesis on a standing wave ratio (SWR) parameter are presented by figure 2. The ideal SWR value 
is equal 1. The waveguide’s material is a copper. 

 

 
Fig. 2. The acoustical benched quarter-wave waveguide transformer's synthesis outcomes 

 
The real SWR was computed by the formula: 

.
1
1

R
R

SWR
−
+

=  

Here for simplicity we suppose 11
11RR = . The value of 11

11R  was determined through the bilinear 
functional (9) for determination of the scattering matrix elements explained in [2]: 

[ ] −−∇+−•∇=− ∫ ∗∗ VTTsTR
V

Skmkm d):j()j( ωυυυωρδδ αβ
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dd
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∫∫
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−−−−
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SS

SnTSnTTwC

SnTSnT

υυ

υυ

 
(9)

Here  αβδδkm  are the Kronecker deltas, ∑=−=
i

iSSTwC 0
00 ,:υ . 

All sizes of the waveguide’s longitudinal section at the figure 2 are measured in the mi-
crometers ( 020,330 =t , 567,371 =t , 248,522 =t , 568,723 =t , 550,824 =t , 7040 == λL , the 
waveguide’s width = 165).  Here 0λ  is the medial wave length. The maximum flat characteristic 
curve of the acoustical quarter-wave transformer was obtained.  

The offered variational approach using the functionals (4), (8) and (9) allows to obtain the 
synthesized acoustical devices with an inaccuracy of the characteristic parameters no more than 3 
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% at the small amount (about 50-100) of the coordinate functions. Thus the theoretical estimation 
of the inaccuracy can be rather simply obtained [7, 8]. 

 
4. Conclusion 

 
In summary, the above-said variational method for the acoustical devices synthesis and op-

timization prove to be ideally compatible with the variational analysis method. The common 
variation approach enable designing the universal and effective algorithms [9] for computation of 
the typical variable dimensions of the construction offered by a researcher. However the success 
of the device's optimal construction's searching depends on the practical experience, erudition, 
scientific intuition, ingenuity of the researcher. The unsuccessful device's configuring cannot be 
cancelled by perfection of its parametric optimization. 
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NEW APPROACH FOR PULSES IN STRUCTURES WITH DISPERSIVE NONLINEAR 
INHOMOGENEOUS MEDIA 

 
M.V. Davidovich1, Senior member, IEEE, Yu.S. Myasoedov1, J.V. Stephuk2 

 

1Saratov State University, Saratov, Russia 
2Saratov Region Government, Russia 

E-mail: DavidovichMV@info.sgu.ru 
 

 
   Abstract – In this paper the method of spatio-temporal series for integration of Maxwell equations or 
wave equation has been developed using the finite element approach.  

 
1. Introduction 

 
As a result of development of nonstationary electromagnetics the necessity of effective 

numerical methods for nonstationary waves (pulses) propagation and diffraction is arising. The 
problems of pulse excitations and propagations are interesting both for linear and nonlinear dis-
persive media. Usually the only set pulse propagation is considering using the method of propa-
gator Green’s function (GF) and rare – by the spectral integral calculation. These methods are not 
suitable for the diffraction on structures and for nonlinear media. Furthermore, the GFs are ex-
plicitly known only for several (three) ideal (lossless) dispersion lows [1], whereas in the real 
dispersive media always there are losses, and the variety of the dispersion lows is sufficiently 
large. There are some difficulties to realize the mod-matching method for piecewise nonuniform 
media (or structures) and for nonhomogeneous ones in nonstationary case. At the same time the 
media must be nondispersive. The usage of inverse Fourier transform to inverse the spectral solu-
tion is practically unreal even in the case when there is the simple analytical solution, not to men-
tion even about numerical spectral algorithms. The most universal approach here is the special-
time integral equation (IE) or integrodifferential equation (IDE) method based on special-time GF 
of free space or structures. It, particularly, eliminates paradoxes of “super-light velocity” in pulse 
propagation and tunneling [2-5]. In this paper the method of spatio-temporal series for integration 
of Maxwell equations or wave equation has been developed using the finite element approach. 
 

2. The flat pulses - 1D problem 

So, let the electromagnetic pulse is the flat, i.e. has only two mutually transverse filed 
components: ( ) ( )ztExztE ,, 0

GG
= , ( ) ( )ztHyztH ,, 0

GG
=  and is exciting by electric current with the 

density ( ) ( )ztJxztJ ,, 0
GG

= . It needs to note that propagation problem always must be connected 
with the excitation problem. But, in principle, one may set the fields at the time 0t  and build them 
for the time moments 0tt >  using the homogeneous equation. But, one must not set such fields 
arbitrary. As a rule, one sets the pulse form by some time-depended function at the point 0=z , 
indirectly proposing that there is a certain  source.  Further its change is considering at 0>z . The 
introduced functions satisfy the Maxwell equations: 

( ) ( ) ( )ztJztDztH tz ,,, +∂=∂− ,        ( ) ( )ztBztE tz ,, −∂=∂   ,                     (1) 
where ( )zz ∂∂=∂ / , ( )tt ∂∂=∂ / ,  and  D and B denote the inductions of field. Let consider the 
nonmagnetic media: HB 0μ= . The frequency (time) dispersion assumes the integral relation the 
inductions and field: 

( ) ( ) ( ) ( ) tdztEEzttztEztD
t

t

′′′+= ∫ ,,,,,,
0

00 κεε  .                            (2) 
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Here ( )Eztt ,,, ′κ  is the relative dielectric susceptibility operator kernel, which is the function of 
two times and may depend on z (inhomogeneous medium) and field (nonlinear problem). The 
time 0t  corresponds to the beginning of filed creation, therefore on always may set 00 =t  (the 
problem with the entry conditions), or −∞=0t  (the problem without the entry conditions), i.e. the 
long time-scale process. Naturally, the second case contains the first if one regards that under 

0<t  all quantities are zero. If ( ) ( ) ( )ttEzEztt ′−=′ δκκ ,,,,  then we have the no dispersive prob-
lem: ( ) ( ) ( )ztEEzztD ,,, 0εε= . Then the equations (1) may be reformulated as one wave equation: 

( ) ( ) ( ) ( )ztJztE
c

EzztE ttz ,,,, 2
2

2 ∂=∂−∂
ε  .                                   (3) 

This is also the equation for inhomogeneous nonlinear string and for the linear case it has the 
D’Alambert solution [6]. In the dispersive case both the first kind equation system and the second 
kind wave equation are the IDEs as  

( ) ( ) ( )( ) ( ) ( )∫ ′′′∂+′+∂=∂
t

t
ttt tdztEEztttdztEzttztEztD

0

,,,,,,,,,, 000 κεκεε  .           (4) 

Thus as usually (by virtue of homogeneity in time) the kernel is the function of times difference 
tt ′− , and the expression (4) may be transform as: 

( ) ( ) ( ) ( ) ( ) ( )∫∫ ′′∂′−+−=′′′−∂ ′

t

t
t

t

t
t tdztEEzttztEEztdztEEztt

00

,,,,,,0,,, 000 κεκεκε  . 

Let seek the solutions of all equations in the form of spatio-temporal series: 

( ) ( ) ( )∑
∞

−∞=

=
n

nn zutaztE , ,    ( ) ( ) ( )∑
∞

−∞=

=
n

nn zvtbztH ,  ,                            (5) 

where ( )zun , ( )zvn  are the full basis function systems meeting the boundary conditions (if there 
are). For example, if one consider the plane-parallel Fabri-Perot interference spectroscope (reso-
nator) with reference planes at 0=z  and lz = , then it mat be taken ( ) ( )lznzun /sin π= , 

( ) ( )lznzvn /cos π= . In this case the summation in the first sum may be performed from 1, and in 
the second one – from 0. The disadvantage of such submission is that the relations (5) must be 
zero before the pulse front that is not implemented for finite numbers of terms in the series. 
Therefore in real numerical simulation there is the nonphysical forerunner with super light veloc-
ity. For infinite region the presentations (5) may be written by Fourier transforms, that essentially 
takes place under the pulse propagation analysis by spectral approach. We will use as such func-
tions the 1D finite elements (FE) 

( ) ( ) ( )znzuzvzu nn Δ−== 0 ,  ,...2,1,0 ±±=n , 

( ) ( )
⎪⎩

⎪
⎨
⎧

Δ>
Δ≤Δ−

=
.,0
,,/1 2

0 zz
zzzz

zu                                                 (6) 

 These continuous FEs are defined on three nodes of 1D uniform grid with the step zΔ . They are 
differentiable inside the region: ( ) ( )znzzzuw nn Δ−Δ−=′= −22 . In the boundary nodes its deriva-
tive suffers the jumps from zero to zΔ/2  at the left and from zΔ− /2  to zero at the right. The 
second derivative in the region is constant and equal to 2/2 zΔ− , and outside it is equal to zero, 
i.e. is the piecewise constant. However, this derivative is not determined in the center. Therefore 
the convergence of derivative decompositions is root-mean-square, and for the mentioned basis 
the completeness is understood in terms of 2L  spaces. The introduced FEs are biorthogonal: 

0, == mnnm uuA ,   1>− nm , 

( ) ( )∫∫
Δ

=Δ====
z

nnnnn zdzzudzzuuuA
0

2
0

2

15
162, α ,                               (7) 
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( ) ( )∫
Δ

±±± =Δ====
z

nnnnnn zdzzuzuuuAA
0

101,11, 30
11, β . 

Substituting the expansions (5) into (1) and using the equations (2) and (7) one gets the coupled 
system of ordinary first-kind differential equations for coefficients: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

,,

0

11
0 ∑ ∑ ∫

−= −=

−−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
′′′−++−=

==∂=′

M

Mm
m

M

Mk

t

kmkkmkkmknm

nntn

tdtdtattKtbBtaCA

batftata

ε
             (8) 

( ) ( ) ( ) ( )taBAagtbtb
M

Mm

M

Mk
kmknmnntn ∑ ∑

−= −=

−−−==∂=′ 11
0μ  .                             (9) 

Here the basis functions nu  have been used, the start time is 00 =t , and the matrix elements in 
(8), (9) have the forms: 

⎪
⎩

⎪
⎨

⎧

>−
±=

=
=

,1,0
,1,

,,

mn
mn

mn
Anm β

α
              

⎪
⎩

⎪
⎨

⎧

>−
±=

=
=

,1,0
,1,2/1

,,0

mn
mn
mn

Bnm ∓  

( ) ( ) ( )∫= dzzuzuEzC kmmk ,,00 κε ,         ( ) ( ) ( )∫= dzzuztJtd mm , ,                (10) 

( ) ( ) ( ) ( )∫ ′−′=′− dzzuzuEzttttK kmmk ,,0 κε . 

For the linear homogeneous media and structures mkmk AC 0ε= , and the equation (8) is simpler. It 
is simplest for the dispersion off media, and without the excitation current it takes the form (9) 
with the substitution electrical and magnetic magnitudes. It is convenient to write down the rela-
tions (8), (9) in matrix form by introducing the matrixes A , B , C , K and the vectors 

( )MM aaaaaa ,,,, 101−−= , ( )MM bbbbbb ,,,, 101−−= , ( )MM dddddd ,,,, 101−−= . The numeration is 
such that zero point corresponds to zero index. Namely, let propose that the source is located at 

0=z , i.e. ( ) ( ) ( )ztIztJ δ=, , ( ) ( ) 0mm tItd δ= . Here ( )tI  is the desired function which is equal to 
zero at negative times. Then the two pulses propagate to the left right from the source with the 
maximal velocity c . This implies that the excitation is placed only in the region ctz < , i.e. it 
may take into account in (8), (9) only ( ) 12 +tM  points. For finite region the maximal number of 
FEs is finite. It is equal its value for the time when the pulses reach the boundary. In nonlinear 
case the matrixes C and K depend on vector a . 
 The Euler, Runge-Kutt and Størmer methods are applicable to solve the system (8), (9) 
introducing the discrete time tmtm Δ= , ,...2,1,0=m  which is adjusted with discrete coordinate: 

tcz Δ=Δ . It is necessary for this to determine the inverse matrix 1−A  of three-diagonal matrix A  
with numbers α  on the main diagonal and β  upper and lower. To solve this system on can use 
the screw die method. Let get the analytical solution for this for the matrix A  with the dimension 

12 += Mn . For it’s let consider the determinant nΔ  for 3,2,1,0,1−=n . we have: 01 =Δ− , 
10 =Δ , α=Δ1 , 22

2 βα −=Δ , 23
3 2αβα −=Δ . Decomposing the determinant nΔ  by the first 

line (or column) elements one get the recurring relation 
2

2
1 −− Δ−Δ=Δ nnn βα .                                                (11) 

It shows that the determinant has the structure 

( ) ( ) ( )
( )

( )
( ) ( )⎪⎩

⎪
⎨
⎧

++++++=Δ −
−

−−−

.,
,,

...... 2/1
2/1

2/2244
2

22
1 oddisnc

evenisnc
ccc nn

n

nn
nkknn

k
nnnnn

n β
β

βαβαβαα  

The recurring relations may be written also for the introduced coefficients: 
( ) ( ) 11

11 −= −nn cc ,   ( ) ( ) ( )2
1

1
22

−− −= nnn ccc ,  ( ) ( ) ( )2
2

1
33

−− −= nnn ccc , …,                (12) 
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wherefrom it follows ( ) ( )11 −−= nc n . The inverse matrix elements are the form  
( ) nkl

lk
klA Δ−= +− /11 μ  .                                              (13) 

The determinant is elementary computing by (11) or (12), and the main problem is to calculate 
the minors klm . As will readily be observed for this, the minor matrix in generally is four-
diagonal and has the quasi-block structure in the form three blocks on the main diagonal. The two 
elements β  which are located near the main diagonal in the contact spots of central block and 
outermost blocks disturb such three-block structure. But they don’t influence on the determinant 
value. And so, the minor is equal to the product of block determinants, i.e. 

⎩
⎨
⎧

≤ΔΔ
≥ΔΔ

=
−

−
−

−
−

−

.,
,,

1

1

lk
lk

ln
kl

k

kn
lk

l
kl β

β
μ                                                 (14) 

In particular, ln
l

ll −
− Δ== 1

11 βμμ . If  nl =  then the minor matrixes become upper and lower tri-
angular matrix correspondingly with the elements β  on the main diagonal. 

There are the modifications of matrix structure for the presence of boundary. Let one seek 
the solution for Fabri-Perrot resonator with the size l2 . To impose the zero boundary value at the 
ideal electric screens at lz ±=  it is necessary to leave out two nodes in the indicated points of 
electric filed expansion, but keeping theirs for magnetic field. In this case the summation in (8) 
from the moment of touch the boundary are realizing from  ( )1−− M  to ( )1−M  (here 

zlmM Δ== /max ). If the boundary condition is impedance, that it is necessary to add the corre-
sponding bond of amplitudes 1+Ma ,  1+Mb  and  ( )1+− Ma ,  ( )1+− Mb  for the outermost points, at that it 
must be taken ( ) ( ) 2/1,1 α=+±+± MMA . These relations allow getting the inverse matrix here. Just, 

denoting its determinant as nΔ~ , one gets 22
2 4/~ βα −=Δ  and the recurrence relation  

4
4

2
3

2
2 4/~ βαβα −−− Δ+Δ−Δ=Δ nnnn , 3≥n , and also the expression for minors  

( ) ( )
( ) ( )⎩

⎨
⎧

≤Δ−ΔΔ−Δ
≥Δ−ΔΔ−Δ

=
−−−−

−
−−

−−−−
−

−−

.,2/2/
,,2/2/

2
21

2
32

2
21

2
32

lk
lk

lnln
kl

kk

knkn
lk

ll
kl βαββα

βαββα
μ                           (15) 

 The problem of integration of equations (8)–(9) now is formulated in the following way. 
At the start time 00 =t  the filed is absent, i.e. ( ) ( ) 000 == nn ba  for all n . We interest in values of 
these coefficients in time moments tmtm Δ= , ,...2,1=m . The problem dimension N  or the num-
ber of special points is increased on 2 in each moment. Thus, 12 += mN , and the all matrix or-
ders are odd. The fourth order Runge-Kutt method is more appropriate to provide the good accu-
racy and simplicity. The simplest case is when the step of integration is equal to tΔ . So, the vec-
tors ( )ma , ( )mb  at the step m must be used to calculate the matrix elements at the step 1+m . As 
the function in the right part of (8) contains the integral with variable upper bound, let consider 
the calculation of Runge-Kutt coefficients. The calculation in the regions ( )( )tmtm Δ+Δ 2/1,  and 

( )( )tmtm Δ+Δ 1,  which is carried out using two-point trapezium formula for fist point  tmΔ  gives  

( )( ) ( )[ ]
( )

( )[ ] ( ) ( )[ ]2/2/2/02/2/2/1 1

2/1

2 tKKtptmatdtqtattmK mkmkkk

tm

tm
kkmk Δ+Δ+Δ≈′Δ+′′−Δ+∫

Δ+

Δ

. 

Here 1kp  is the first Runge-Kutt coefficients for ( )( )tmak Δ+1 . If the functions 
( )( )ttmKmk ′−Δ+ 2/1  are analytically integrable then the second multiplier in this formula is ex-

actly determined. 
 

3. Volume pulses - 3D problems 
 

 Here we will consider the closed bounded 3D regions V0 (the shielded resonators with sur-
face S0 ) and the corresponding solutions for confined structures in free space (the open dielectric 
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resonators of volume V0  with surface S0 ). In the fist case the Pointing vector on S0 is zero as the 
surface consists from ideal electrical and/or magnetic walls, and in the second case it is the 
boundary of dielectric body and may be shielded only partially. We consider that the structures 
are exciting by incident electrical current with the density ( )trJinc ,G

G
, which is spreading in the cer-

tain volume V. Correspondingly there is the  incident charge density  

( ) ( )∫
∞−

′′⋅∇−=
t

incinc tdtrJtr ,, GGGρ   . 

For shielded hollow resonator in free space the solution is defined by tensor GF [7]: 

( ) ( ) ( )∫ ∫
∞−

′′′′′′Γ=
t

V
inc

ee tdrdtrJtrtrtrE GGGGGGG ,,|,,  .                               (16) 

Here the sign in (16) and for GF is opposite as compared with [7]. The dielectric inclusions are 
taking into account by introducing of volume polarization currents and the metallic ones - by sur-
face electric current density. Neglecting the spatial dispersion one can write the material equation 
[8] with help of susceptibility as 

( ) ( ) ( ) ( ) ( ) ( )∫∫
∞−∞−

′′′−=
⎭
⎬
⎫

⎩
⎨
⎧

′′′−+=
tt

tdtrEttrtdtrEttrtrEtrD ,,ˆ,,ˆ,, 00
GGGGGGGGGG εεκε   .          (17) 

Then for the polarization current we have  

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

′′′−′++=−= ∫
∞−

t

t
e
P tdtrEttrtrErtrEtrD

t
trJ ,,ˆ,0,ˆ,,, 00

GGGGGGGGGGGG
κκεε

∂
∂  .      (18) 

The expression (18) corresponds to taking of limit under the tendency  ′t  to t from the left, and 
so ( )0,ˆ +rGκ  determines the momentary contribution to polarization current. The electric suscepti-
bility has the jump at zero as ( ) 00,ˆ =rGκ . The integral determines the contribution to polarization 
current from the delayed field. If the process is slow so one may neglects of polarization delay, 
that no dispersion ( ) ( ) ( )trtr δεε GG

=,ˆ  and ( ) ( )( ) ( ) ttrErtrJ e
P ∂∂εε /,1, 0

GGGGG
−= . The metallic bodies 

bring the surface current density SJ
G

 on its boundaries S, which may consist from closed and open 
surfaces inside the V0  and from open parts of S0 . Therefore in general case instead of (16) the 
problem is described by IE in 4D spatio-temporal region: 

( ) ( ) ( )∫ ∫
∞− +

′′′′′′Γ=
t

VV

ee tdrdtrJtrtrtrE
0

,,|,, GGGGGGG  ,                                      (19) 

where ( ) ( ) ( ) ( ) ( )ντ δ xtrJtrJtrJtrJ SPinc ,,,, GGGGGGGG
++=  is the full current density, and the integration is 

taken over all volume occupied by the structure and the current. Here ( ) rrr GGGG
×=ντ , ( )rGGν  is the 

normal vector to S, x ν  is the normal coordinate from the surface. The delta-function picks out the 
surface integral in (19). The field (19) must satisfy all boundary conditions that leads to the sur-
face-volume special-time IDEs. For structures in the free space it is need to use the free-space GF 
[7] which owing to space and time homogeneity depends only from   differences of  arguments 
and has the form 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−′−
−′′′′−′′−

∇⊗∇
=′−′−Γ ∫

∞− t
ttrrGItdttrrGttrr

t
ee

∂
∂μ

ε
,ˆ,, 0

0

GGGGGG      .       (20) 

Here Î  is the unit tensor and the scalar GF has the presentation [7] 
( ) ( ) ( ) ( ) ( )crtrgcrtrtrG //4, 1 GGGGG

−=−= − δδπ   .                                    (21) 
This GF may also be presented as 
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( ) ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

+
−

⊗−−
−′

⊗−=Γ 20000
0 //3ˆ/ˆ

4
,

r
crtc

r
crtrrI

c
crtrrI

r
Ztree χδδ
π

GGGGG  .  (22) 

Here 000 /εμ=Z , rr G
= , rrr /0

GG
= , ( )tχ  is the step Heaviside function. Here the sign of first 

term in (22) is opposite as compared with the expression (34а) in [7]. It is caused by the fact that 
the operators of differentiation and integration with delta-function are anticommutative: 

( ) ( ) ( ) ( ) ( )∂ ∂ δ δ/ t t t f t dt f t t t f t dt− ′ ′ ′ = ′ = − ′ − ′ ′ ′∫ ∫   . 

The GF (22) satisfies the radiation and causality conditions.  
 For shielded resonator the expressions are similar but in (22) instead GÎ  it is necessary to 
consider the diagonal tensor GF ( )trtrG ′′,|,ˆ GG . Its diagonal elements are the solutions of wave 
equation under the three different dipole orientations [9]. Let consider at first only the volume IE.  
Then the (19) may be written as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) tdtdrdtrEttrtrtr

tdrdtrErtrtrtrEtrE

t

V

t

t
ee

t

V

ee
inc

′′′′′′′′′−′′′′′Γ+

+′′′′+′′′Γ+=

∫ ∫ ∫

∫ ∫

∞−

′

∞−

∞−

0

0

,,ˆ,|,

,0,ˆ,|,,,

0

0

GGGGGG

GGGGGGGGGG

κε

κε

      ,     (23) 

( ) ( ) ( )∫ ∫
∞−

′′′′′′Γ=
t

V
inc

ee
inc tdrdtrJtrtrtrE GGGGGGG

,,|,,    . 

This equation has the operator form inEEL
GG

=ˆ , where the integral operator is introduced as 

( ) ( ) ( ) ( ) ( )∫ ∫ ∫
∞−

′

∞−

′′
⎭
⎬
⎫

⎩
⎨
⎧

′′′′−′′′′′Γ++′′′Γ−=−=
t

V

t

t
eeee tdrdtdttrtrtrrtrtrLL

0

,ˆ,|,0,ˆ,|,1̂ˆ1̂ˆ
00

GGGGGGG κκε .  (24) 

Here 1̂  is the unit operator and the bracket indicates that the depended on source coordinates 
function substitution is necessary. The derivative of delta-functions transforms (23) and  (24) into 
IDE and integrodifferential operator (IDO) correspondingly. 
 The GF (22) has strong singularity ~ r −3 . To overcome this let transform the equation 
(23) as 

( ) ( ) ( ) ( )trKtrFtrEtrE inc ,,,, GGGGGGGG
++=    ,                                      (25) 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫
∞

∞−

′

∞−

′′
⎭
⎬
⎫

⎩
⎨
⎧

′′′′′′′−′′′+′′+′′′⋅∇∇=
0

,,ˆ,0,ˆ,|,
~̂

,
V

t

tt tdrdtdtrEttrtrErtrtrGtrF GGGGGGGGGGG κκ  ,  (26) 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫
∞

∞−

′

∞−

′′
⎭
⎬
⎫

⎩
⎨
⎧

′′′′′′′−′′′+′′+′′′′=
0

,,ˆ,0,ˆ,|,ˆ1, 2
V

t

tt tdrdtdtrEttrtrErtrtrG
c

trK GGGGGGGGGGG κκ  .   (27) 

Here ∇∇ ⋅  is operator grad div⋅ , ( )trtrGt ′′′ ,|,ˆ GG  is the derivative, and ( )trtrGt ′′,|,
~̂ GG  is the antideri-

vative of diagonal GF ( )trtrG ′′,|,ˆ GG . In (27) the sign “minus” from (20) is changed by “plus” ac-
cording to similar considerations, since the GF for shielded resonator may be presented as the 
sum of singular part such (22) and regular part, at that 

( ) ( ) ( )crrttrrgtrtrGt /,ˆ,|,
~̂

′−−′−′=′′ GGGGGG χ    ,                        (28) 

( ) ( ) ( )crrttrrgtrtrGt /,ˆ,|,ˆ ′−−′−′′=′′′ GGGGGG δ   .                        (29) 
Therefore let such transforms are made for free-space GF (20). Then all GFs depend on coordi-
nate differences. Calculation the time integral in (27) we get 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) .,/,ˆ

/,0,ˆ/,0,ˆ1,

/

2
0

rdtdtrEtcrrtr

crrtrErcrrtrErrrg
c

trK

crrt

t

V
tt

′
⎪⎭

⎪
⎬
⎫
′′′′−′−−′′+

⎩
⎨
⎧

+′−−′+′′+′−−′′+′′−−=

∫

∫
′−−

∞−

GGGGGG

GGGGGGGGGGGGGG

GG

κ

κκ

  (30) 

The kernel in (30) has the weak singularity like the single layer potential determined by the func-
tion ( ) ( ) 14 −= rrg πG , and the sign in (30) corresponds to the sign in (30). 
 The integration in (26) with GF ФГ (28) by the time ′t  selects the semi-infinite region 
( )crrt /, ′−−∞−

GG  as all fields are equal to zero in the ancient history. Therefore the Heaviside 
function in (26) may be omitted otherwise the infinite upper bound ∞  must bee taken. We trans-
fer the differentiations in (26) on the integrand, i.e. on the source point coordinates using the 
identity 

( ) ( )( ) ( ) ( ) ( ) ( )( )tratrrftratrrftratrrf ,,,,,, ′′−⋅∇−′⋅∇′′−=′′−⋅∇′ GGGGGGGGGGGG  ,             (31) 
(here ( )trf ,G  и ( )tra ,GG  are the arbitrary functions) and transform the divergence according the  
Gauss (divergence) theorem: 

( ) ( ) ( )∫ ∫
∞−

=′′′′′−′−⋅∇∇=
t

V

tdrdtrattrrftrF
0

,,, GGGGGGG  

( ) ( ) ( ) ( ) ( ) =′′′′⋅∇′′−′−∇+′′′′′−′−−∇= ∫ ∫∫ ∫
∞−∞−

t

V

t

S

tdrdtrattrrfSdrtrattrrf
00

,,,, GGGGGGGGGGG ν     (32) 

( ) ( ) ( )( ) ( ) ( ) .,,,,
00

∫ ∫∫ ∫
∞−∞−

′′′−′−∇′′′⋅∇′−′′′′′−′−∇′=
t

V

t

S

tdrdttrrftraSdrtrattrrf GGGGGGGGGGG ν  

Here zzyyxx ′+′+′=∇′ ∂∂∂∂∂∂ /// 000
GGG  is the gradient operator in stroked (source) coordinates, 

( ) ( ) ( ) ( ) ( )∫
∞−

′′′−′++=
t

t tdtrEttrtrErtra ,,ˆ,0,ˆ, GGGGGGGG κκ    ,                 (33) 

( ) ( ) ( )rgcrttrf /, −= χG   .                                            (34) 
And so, 

( ) ( ) ( ) ( ) ( ) 2//,
rr
rrrrgcrrt

rrc
rrrrgcrrttrrf GG

GGGGGG
GG
GGGGGGGG

′−

′−′−′−−+
′−
′−′−′−−=′−∇′ χδ  ,    (35) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ } .,ˆ,,,ˆ

0,ˆ,,0,ˆ,

∫
∞−

′′−′∇′+′⋅∇′−′+

+⋅+∇+⋅∇+=⋅∇
t

tt tdttrtrEtrEttr

rtrEtrErtra

GGGGGG

GGGGGGGG

κκ

κκ
                  (36) 

The time integration in (32) with delta-function in (35) is elementary fulfilled and the fist term in 
(35) gives the coordinate surface and volume integrals. The relations (34)-(35) impose the causal-
ity condition on the terms in (32) as the retarded functions. In particular, the upper bound is 

crrt /′−−
GG . 

 The equation (25) is IDE for the electric filed. The divergence may be eliminated from 
(35). For this take the divergence from (17). According to Maxwell equations we have 

( ) ( ) 0/,/, =⋅∇=⋅∇ ∂∂∂∂ trDttrD GGGG , wherefrom ( ) ( )r–trD GGG
=⋅∇ , . As in distant past ( −∞=t ) the 

field was absent, we have the condition ( ) 0=rc G . Therefore for the divergence we get  
( ) ( ) ( ) ( ) ( ) ( ){ } ( )

00

,,,ˆ,ˆ,,,
ε

ρκκ
ε

trtdtrEttrttrtrEtrEtrD inc
t GGGGGGGGGGG

=′′⋅∇′−+′−∇′+⋅∇=
⋅∇

∫
∞−

 .   (37) 

From this IE it is defined by Fourier method as  



16 

( ) ( ) ( ) ( )
( ) ( ) ωω

ωκ
ωκωεωρ

π
dtj

r
rtrEtrtrE inc∫

∞

∞− +
∇−

=⋅∇ exp
,ˆ1

,ˆ,,/,,
2
1, 0 G

GGGGGG   .                  (38) 

Here we introduce the momentum spectra which are defined over the region ( )−∞, t , and 
( )ωκ ,ˆ rG∇ , ( )ωκ ,ˆ rG  are the kernel ( )tr ,ˆ Gκ∇  and  ( )tr ,ˆ Gκ  spectra correspondingly. Owing to the fact 

that both kernels are zero for 0<t , these spectra are defined using the positive times as 

( ) ( ) ( )∫
∞

−=
0

exp,ˆ,ˆ dtjtrr ωκωκ
GG   . 

 Let get the IDE for the dispersion off case for which  
( ) ( )( ) ( ) ttrErtrJ e

P ∂∂εε /,1,1
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GGGGG
−=− ,                                        (39) 

therefore in the figure brackets in (26)-(27) according to (18) it is need to replace by (39).  So, 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )[ ]

( ) ( )( ) ( ) ( ) ,/,1

/,1

/,1

,1,

0

0

0

0

∫

∫

∫

∫ ∫

′′′−−′−′′−∇−

−′′−−′−′⋅∇′−∇=

=′′−−′−′′−⋅∇∇=

=′′′′′−′′−⋅∇∇=
∞−

S

V

V

t

V
t

SdrcrrtrErrrg

rdcrrtrErrrg

rdcrrtrErrrg

tdrdtrErrrgtrF

GGGGGGGGG

GGGGGGGG

GGGGGGGG

GGGGGGGG

νε

ε

ε

ε

                        (40) 

( ) ( ) ( )( ) ( )∫ ′′−−′−′′−−=
0
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2 //,11,

V

rdtcrrtrErrrg
c

trK GGGGGGGGGG ∂∂ε .                 (41) 

 The singularity of IDE (40) is reduced as compared with the initial IE. It is integrable, 
therefore the piecewise constant FEs are applicable to this IDE. Also the IDO may be constructed 
for the IDE (40). Let  L̂  is the such IDO. According to FEM it is necessary to determine the sta-
tionary values of functional [10] 

( ) ( ) ( ) ( ) ( ) ( )incincinc EEELEEEEEELEt
GGGGGGGGGG

,2ˆ,,,ˆ, −=−−=Φ  ,                        (42) 
where the parenthesis denote the scalar product as volume integral from the multiplication of 
functions (for real ones). Let use the volume decomposition on the FEs: 
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The indexes i=1, 2, 3 correspond to Cartesian coordinates x, y, z. Let consider the vector rectan-
gular volume FEs ( ) ( )rVxrV nn

GGGG
01 = , where ( )rVn

G  are the scalar ones. As the result we have the 
system of ordinary integrodifferential equations  
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The functions (45) satisfy the conditions ( )g t tnm
ik , ′ = 0  for tt ≤′ , ( )f t t tnm

ik , ,′ ′′ = 0  for ′′ ≤ ′t t , and 

( )f t t tnm
ik , ,′ ′′ = 0  for ′ ≤t t . The delta-function derivative presence leads to the appearance deriva-
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tives ∂ ∂a tmj /  in (45) and (44), and the reduction of singularity leads to functions ( )rVni
GG

⋅∇  in the 

decomposition. But they may be eliminated using (38). For homogeneous dielectric 0=⋅∇ E
G

, 
and this case don’t exist. When the dispersion is absent then (38) becomes 
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ε
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εε
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,,,

0

  .                                  (46) 

Thus, the nonstationary problem is reduced to the system of ordinary differential equations for 
the time-depended coefficients which easy solved numerically 

 
4. The expressions for matrix elements 

 
 The piecewise constant FEs are preferable for homogeneous dielectrics because the opera-
tor (24) transfers such FEs from the discontinuous function space L2 into the same space (the test 
and weight functions belong to unified gilbert space). The more smooth (high order) FEs are ad-
visable for inhomogeneous dielectric but lead to complicated expressions. Thus,  
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Here 01 xx GG
≡ , 02 yx GG

≡ , 03 zx GG
≡  ate the unite ort-vectors, δV n  is the volume element. If the dielec-

tric is homogeneous we have 
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,ˆ1exp,ˆ, ωκωεωε rdttjtrr GGG   ,                                   (48) 

where ( ) ( ) ( ) ( ) 0,,ˆ =+= trtttr GG κχδε  for t < 0. The dispersion law usually is expressed by extinc-
tion in time functions, such as set of exponents. The simplest law has the form 

( ) ( ) ( )ttt αχκκ −= expˆ 0 . The corresponding spectral permittivity is 
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The complex permittivities expressed by (48) satisfy the Kramers-Kronig correlation [8].
 For free space with homogeneous dielectric one has ( ) 00ˆ κκ =+ , ( ) ( )ttt αχακκ −−=′ expˆ 0  
and 
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Using the relation ( ) ( ) rrrgrg /0
GGG

−=∇  one can reduce the singularity in the first term by adding of 
surface integral and transferring the differentiation to square brackets. 
 The GF Γ ee  for the case of closed shielded hollow resonator may be obtained by the full 
orthogonal solenoidal and potential vector-functions expansion ( )rEn

GG
, ( )rn

Gϕ∇  [11,12]: 
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Here N n
e

n n n, , ,λ ν Ω  are the given coefficients (e.g., N n
e  are the norms of functions nE

G
, Ω n   are 

proportional to resonant frequencies), and time GFs have the form 

( ) ( ) ( )
g t t

t
n

n

n

= χ
sin Ω

Ω
  . 

As ( )gn 0 0= , the term with delta-functions may be omitted. The knowledge of functions nnE ϕ,
G

 
is necessary to determine the matrix elements. 

 
5. The difference scheme and numerical results 

 
 To solve the equations we will apply the finite-difference scheme method of fourth order 
of step value Δt . For this we decompose the time interval ( )t t0 ,  on elementary intervals with 
step Δt t tk k= − −1 , k=1,2,3,.... Let take the approximation 

( ) ( ) ( )( ) ( )( ) ( )( )a t a t a t t t a t t t a t t tni ni k ni k k ni k k ni k k= + ′ − + ′′ − + ′′′ −
2 32 6/ /              (50) 

in the neighborhood of point tk. The entry conditions are the forms 
( ) ( ) ( ) ( )a t a t a t a tni ni ni ni0 0 0 0 0= ′ = ′′ = ′′′ = . The derivatives are expressed through the left finite-

difference, for instance, 
( ) ( ) ( ) ( )[ ] ( )[ ]′ = = − = −− −a t a t a t a t t a a tni k ni k ni k ni k nik ni kΔ Δ Δ1 1 1/ /   ,  
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These relations lead to finite-difference scheme 
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The matrix elements in (52) may be obviously write out. The number of points t k tk = Δ  in в (52) 
is increasing owing to the dispersion. If the response time is finite, then the memory T K t= Δ  is 
finite and [13] 
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The space points in (52) also influence on the scheme order. The coefficients outside the wave 
front are zero and not used. If the memory T is finite then the coefficients for which the excitation 
went away also are unusable. We will use the cube region which is enveloping the expanding 
with light velocity. For the sell n one must use the retarded on crr mnnm /GG

−=τ  time. The calcula-
tion of matrix elements in (52) is correlated with time integrals such as 
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and with special integrals which are the same as for volume IE method ИУ [14].  
 As the illustration let consider the radiation of point dipole with the current  
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If the field is slow changed during the time τ ε  it may be carried out the integral, and then we get 

( ) ( )trEtrD ,, GGGG ε≈ , ( )ε ε κ α= = +0 1 0 / . 

 
Let 2a is the characteristic problem dimension. Then the following characteristic time parameters 
may be introduces: Δt , T0 02= π ω/ , τ , a c/ , 2a c/ , 1 / α , 1 0/ κ . Versus the В correlations 
between them the solution will be has the different character. The characteristic times T0  and τ  
define the quickness of process. It is clear that the step must satisfy Δt T<< 0 ,τ  to provide the 
good accuracy. The case τ >> T0  with t ~ τ  corresponds to quasi-monochromatic (quasi-
stationary in time) processes. Under the condition ( )a tc/ Δ << 1  the spatial tardiness may be ne-
glected that gives quasi-stationary in space processes. The two last parameters characterize the 
time dispersion (polarization delay) and the typical averaging time τ κε = 1 0/ . Indeed, 

( )ε κ α0 1 0= + /  and has usually the order of unity, so 

( ) ( ) ( )( ) ( )∫
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tdtrEtttrEtrD
ετε

α
τ

,exp1,, GGGGGG . 

Let consider two cases: 1 – the dipole is located at the center of hollow cube with the edge di-
mension 2a which is surrounded by homogeneous dielectric without dispersion; 2 – the dipole is 
located in the center of analogous dielectric cube with free space outside. The solution region was 
the cube with the dimension 4a. Each edge had been splitted on 2N0+1 intervals, and the number 
of problem dimension is ( )3 2 10

3N + . The incident field is  

a

b  
Fig. 1. Component Ez in the plane z = 0 for the di-
pole in the cavity of dimension aω0/c = 10 at time 
instants 12 (a) and 14 (b) 

a

b
Fig. 2. Component Ez in the plane z = 0 for the 
dipole in the cavity of dimension aω0/c = 10 at 
time instants ω0t = 12 (a) and 14 (b) 
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To eliminate the singularities we made the substitution r r→ +2 2δ , where  δ is the special cell 
dimension.  
 

 
   
 The test calculations are present in the Fig. 1, 2 and 3, 4. The simulation is performed for 
the plane z=0, ε = 4 , N 0 50=  and for different times before and in the moment when the pulse 
touch the boundary (Fig. 1, 3), but also after this (Fig. 2, 4). The coordinates are dimensionless 
and defined by the condition a cω 0 10/ =  for which the boundary is located at x y z= = = 10 . 
It is seen that the reflection from the boundary distorts the spherical pulse front. The dispersion 
for the problem 1 will produce the pulse forerunner and the tail after the passing of boundary. 
They will be move with different velocities. For the problem 2 the forerunner will appear at once, 
but after the passing of boundary only the infinitely long damping tail will be changed. The result 
for 1D pulse in dispersive plasma is presenter in the Fig. 5. 
 

 

a

b  
 
Fig. 3. Component Ez  in the plane z = 0 for the 
dipole in the insulating cube of edge aω0/c = 10 at 
time instants ω0t =8 (a) and  20 (b) 

a

b  
Fig. 4. Component Ez in the plane z = 0 for the 
dipole in the insulating cube of edge aω0/c = 10 at 
time instants ω0t =24 (a) and  28 (b) 
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Fig. 5. The distortion of rectangular radio pulse amplitude in plasma under the parameters 

6
0 1028.6 ⋅== cωω , 71014.3 ⋅=pω  

 
6. Conclusions 

 
 The numerical method based on integrodifferential equations and finite element approach 
is proposed to solve the pulse exaltation and propagation problems in dispersive media and struc-
tures. The efficiency of this method has been demonstrated for several structures. 
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   Abstract – Some results of mathematical modelling and experimental investigation of a current 
dynamics in a long high-resistivity GaAs structures under influence of a located optical illumina-
tion are given. 
 

1. Introduction 
 

Devices based on the Gunn effect, also called Gunn devices, are basically used as an os-
cillators and amplifiers at superhigh frequencies (SHF) and extremely high frequencies (EHF).  
At the present time the Gunn oscillators on a set of parameters are the best of all existing solid-
state sources of coherent oscillations up to submillimeter-wave frequencies [1-8]. However, a re-
lentless concern to the Gunn effect investigation is connected not only with incessant researches 
directed to the Gunn oscillators improving, but also it is connected with an interesting and prom-
ising perspectives opening a features of this effect in a n-GaAs or n-InP samples under different 
external influences. First of all, there are perspectives of creation of functional electronics de-
vices. In particular, the intensive development of an optical communication channels and neces-
sity of a processing of optical signals stipulate a major concern to researches of the Gunn effect in 
a semiconductor samples and structures under influence of the electromagnetic radiation of opti-
cal band [9-22]. Optical influence in this case can be considered both as a factor of control and an 
object of control. Such researches were begun practically from the moment of the Gunn effect 
discovering, that is from a middle of 60-th years of the past century, and were concentrated on a 
clearing up of the influence of illumination upon the Gunn effect and the functioning of Gunn 
diodes and oscillators. The detailed and classified analysis of a results of the first researches [9-
15] was conducted in [16,23,24], which apart from other conclusions noted that illumination in-
fluence upon the Gunn effect essentially depends on that, whether the whole sample or only its 
separate parts are illuminated. The improvement of coherency and increasing of the Gunn oscilla-
tions amplitude were observed under illumination of a whole sample at the wavelength corre-
sponding to the fundamental absorbtion [9]. Simultaneous cooling and illumination of samples at 
the wavelength corresponding to the energy interval between deep donor level and bottom of a 
conductivity band led to increasing of the Gunn oscillations frequency [10]. The illumination of a 
part of sample by a laser beam allowed an effective length of a sample to decrease practically 
upon the order of magnitude [11]. Authors of the researches [12, 13] have found a capability of 
the Gunn oscillations exiting and suppressing per increasing of a conductivity near an anode or a 
cathode by light. In [15] it was established that the influence of illumination on a parameters of 
generation is largely determined also by a kind of contacts. 

However, the most of scientific ideas offered and formulated in the researches of that time 
were not realized, in particular, and because of insufficiently developed technology. 

The researches [17-22] concentrated on photoelectric phenomenons in a high-resistivity 
GaAs at high electric fields are of the greatest concern among results of researches of the last 
decade. A new optically nonlinear effect in such semiconductors was predicted in [17]. The es-
sence of this effect is that a travelling interference pattern created on a surface of a semiconductor 
sample by two optical waves with close frequencies excites multiple high-field Gunn domains 
which move phase locked with the interference fringes. This effect was named the photorefrac-
tive Gunn effect.  
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The attempt of the theoretical substantiation of the given effect in a linear approaching 
was made by authors of [17] (a simplified version of Kroemer’s criterion was used), potential ap-
plications of this effect was indicated: optical switching, high efficiency wave mixing, fast and 
sensitive detection of temporal optical signals embedded in noise, and the ability to convert this 
optical information to electric signals directly. 

A different way of creating a sequence of quasilocalized Gunn domains in biased GaAs 
and InP crystals due to illumination by a short pulse of light interference field was offered in [18]. 
Authors of [18] had conducted investigations of the dynamics of spatially modulated nonequilib-
rium electron-hole plasma generated by two interfering short laser pulses and simultaneously 
heated by external dc or microwave -field by means of the Monte-Carlo and extended drift-
diffusion techniques, the numerical data was in good agreement with the experimental results. 

Authors of [19] had also offered a model of the photorefractive Gunn  effect. Their model 
took into consideration the nonlinearity of a charge carriers transport in two-valley semiconduc-
tors. The results of numerical simulation had confirmed conjectures made in [17] that moving 
high-field domains in a sample can be excited by a travelling interference fringes on its surface. 
Those results also had demonstrated a possibility to observe a number of interesting features else. 
It was shown in [20] that the formation of the photorefractive domains grating in dc-biased GaAs 
sample by means of time and space modulated optical illumination leads to arising of a fast opti-
cal nonlinearity. It allows to conduct a modulation of optical information signal at GHz frequen-
cies if only applied constant electric field and nonequilibrium density of charge carriers are large 
enough for such domains arising. The experimental data of [20] were found to be in good agree-
ment with numerical calculations based on the hot electron hydrodynamic model.  

In [21, 22] experimental and theoretical investigations of current spectrum of a long (from 
100 mkm to 10 mm) high-resistivity GaAs and CdTe samples under the influence of uniform and 
localized illumination were conducted. Results of these researches had shown that creation of the 
coherent Gunn current oscillations under influence of illumination is possible in such structures. 
The characteristics of these oscillations greatly depended on the intensity of illumination, the lo-
calization of illuminated region, the value of applied constant voltage and also the degree of ac-
tive area doping.    

In this paper the results of a series of numerical experiments which were conducted on the 
basis of developed local-field mathematical model are given. This model had allowed us to inves-
tigate a features of nonlinear current dynamics in a long high-resistivity n-GaAs samples under 
influence of the uniform and localized optical illumination with a wavelength corresponding to a 
fundamental absorbtion. Also the results of experimental investigation of features of the current 
instabilities in a long epiplanar structures on the basis of high-resistivity gallium arsenide under 
influence of localized illumination are given. 

 
2. Solution of problem 

 
 The investigated structure is a long low-doped n-GaAs monocrystal sample which has a 
shape of rectangular parallelepiped with two ohmic contacts at the face plates and high-ohmic 
region near the cathode («notch») – the Gunn diode. 

The consideration is conducted in one-dimensional approaching. The doping profile is set 
by a piecewise-smooth line representing a combination of «stitched» on the first derivative 
smooth lines defined by algebraic equations of the first and the second order. That allows a con-
vergence of numerical solution to be improved. 

High-doped n+-regions simulate an ohmic contacts and n–-region near the cathode simu-
lates the high-resistivity «notch».  

In this paper structures with a big length of active area L0 (hundreds of micrometers in di-
rection of a current), relatively small concentration gradients of donors and charge carriers, small 
gradients of electric field strength are investigated. These features are not typical for the commer-
cial Gunn diodes. The frequencies of current oscillations in the considered structures reach a 
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hundreds of MHz. All of these facts allow a relatively simple (in a mathematical sense) local-
field mathematical model for the analysis of such structures to be used validly. This model does 
not demand powerful computers and has a small time of calculation in contrast with temperature 
models and Monte-Carlo technique. 

The drift velocity of electrons vn is considered as a local and instantaneous function of 
electric field strength E. It is given by known analytical expression 
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where μn = 8000 cm2/(V·s), vs = 0,8·107 cm/s, Eap = 3,8 kV/cm – approximation parameters of 
vn(E) dependence for GaAs at 300 K. Diffusion coefficient of electrons Dn is considered as a con-
stant, its value is 300 cm2/s. 

The one-dimensional coordinate system is chosen for considered structure. The point of 
origin (x = 0) is situated on the cathode contact, x axis is directed to anode. 

The continuity equation, Poisson equation and expression of a total current density are the 
initial in the problem. The introducing of generation and recombination parts in continuity equa-
tion allows us to take into account an illumination of the structure. The additional continuity 
equation is recorded for a nonequilibrium holes generated by light, and also the corresponding 
summands are added in expression of a total current density and Poisson equation to take into ac-
count the influence of these holes. 

Besides, the drift velocity of holes as well as for electrons, is considered as a local and in-
stantaneous function of an electric field strength E and is set by analytical expression 
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where μp = 400 cm2/(V⋅s), vs = 0,8⋅107 cm/s – approximation parameters of vp(E) dependence.  
Diffusion coefficient of holes Dp is considered as a constant, its value is 10 cm2/s. 

In the given model it is considered that the recombination of electrons and holes occurs 
according to the linear law, and lifetimes of electrons and holes are equal τn = τp. 

By recording of the initial equations in selected coordinate system we can receive the fol-
lowing set of equations: 
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where E(x,t) – electric field strength; vn(E(x,t)) and vp(E(x,t)) – drift velocities of electrons and 
holes, correspondingly; q – absolute value of electron charge; ε – relative dielectric constant of 
semiconductor (for GaAs ε = 12,9); ε0 – electric constant; ND(x) – dependence of donor concen-
tration on coordinate x; j(t) – density of total current through a sample; n(x,t) and p(x,t) – elec-
trons and holes concentrations, correspondingly; U(t) – voltage applied to a sample; L – length of 
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a sample; x – coordinate; t – time; G(x) – a spatial function defining a rate of generation of an 
electrons and a holes by light. Δn(x,t) и Δp(x,t) – concentrations of nonequilibrium electrons and 
holes: 

),(),(),( 0 txntxntxn −=Δ   ,       ),(),(),( 0 txptxptxp −=Δ   , 
where n0(x,t) and p0(x,t) – equilibrium («dark») concentrations of electrons and holes, corre-
spondingly. 

The equilibrium («dark») concentration of electrons n0 in arbitrary point of time t in any 
point of structure x can be determined via solving of a separate continuity equation for equilib-
rium electrons. At initial point of time (t = 0) n0 is equal to concentration of donors, that is n0(x,0) 
= ND(x). An equilibrium («dark») concentration of holes p0(x,t) = 0. 

For the solving of obtained set of equations the initial and boundary conditions are formu-
lated: 
Initial conditions: 
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where U0 – value of a constant voltage applied to a sample. The first condition is set the electric 
field strength in a sample at the initial point of time. The second condition indicates that initial 
distribution of electrons in a structure corresponds to a doping profile of a sample. According to 
third condition current through a sample at initial point of time is set equal of null.  The latter 
from initial conditions means absence of holes in a structure at an initial point of time. 
Boundary conditions: 
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where Ec – electric field strength on the contacts. Its value is determined during the conducting of 
numerical experiments at voltage U0 for each of the samples of finite length and doping degree. 
In concrete cases this value is set equal of from 100 to 500 V/cm.  First, second and third bound-
ary conditions model a contacts of high-doped n+-regions with metal electrodes of a structure and 
actually mean that layers of n+-regions directly adjoining to metals are neutral and have not a 
space charges. Fourth boundary condition means an absence of holes on the contacts. According 
to latter boundary condition voltage at the diode is set a constant and equal to U0 (mode of a short 
circuit on a variable signal) that essentially simplifies numerical calculations. Moreover, it allows 
us to investigate an influence of charges nonlinear dynamics in the structure on the current spec-
trum without taking into consideration an external circuit influence on it.  

The equations (3) - (6) of the model are approximated with the help of the finite-
difference schemes and are solved numerically on a computer at the indicated initial and bound-
ary conditions. Time and coordinate steps are chosen to maintain a mathematical stability of solu-
tion. These values are much smaller than corresponding characteristic values: the Maxwell re-
laxation time and the Debye length of screening.  

Current spectrum analysis are based on the expansion of j(t) on Fourier series 
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with computation of the steady component j0 and the amplitudes of first four harmonics jk (k = 1, 
2, 3, 4) of a current by formulas: 
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where T – the period of current changing;  t0 – the initial moment of an integrations correspond-
ing to stabilization of solution. The define integrals in these formulas are calculated numerically 
during solution of the set of equations.  
 

3. Simulation results and experimental data  
 

In this section of paper the main outcomes of numerical modeling of space-charge and 
current nonlinear dynamics in considered structure in conditions of local illumination are re-
sulted. By setting of a spatial distribution of light excitation intensity along illuminated region 
with a finite breadth d the locality of illumination was realized. For this purpose spatial function 
G(x) defining the generation rate of electrons and holes by light was introduced and was set iden-
tical for electrons and holes: 
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where x0 – the coordinate of  the middle of illuminated region, Gmax – maximum value of the 
function G(x) corresponding to the middle of illuminated region. 

Conducted experiments had shown that current spectrum of a long n+– n– – n – n+ – GaAs 
structures with a high-resistivity n-region essentially depended on the localization and intensivity 
of illumination and the lifetimes of nonequilibrium charge carriers. The influence of recombina-
tion processes on charge and current dynamics in the structure in conditions of illumination was 
appeared significant in the case of comparability of travelling time of the developed high-field 
region through an active area of the structure and the lifetimes of nonequilibrium electrons and 
holes generated by light. 

Particularly, on the Fig. 1 dependences of the steady component j0 and the amplitudes of 
first four harmonics j1, j2, j3, j4 of a current on the value of constant applied voltage U0 are given. 
These dependences were calculated for the cases of the absence of light illumination of a sample 
and its local illumination (near the cathode and in the middle of active area). The length of active 
area L0 = 500 mkm, the concentration of donors in its major part ND = 4⋅1013 cm-3, the breadth of 
illumination region d = 98 mkm, the maximum value of function G(x) corresponding to the mid-
dle of illumination region Gmax = 7⋅1022 cm-3⋅s-1. The lifetimes of electrons and holes was set 
equal τn = τp = 10-9 s. 

In a course of numerical experiments there was established that the local illumination of a 
sample near the cathode resulted to 20 – 30 % increasing and in a middle of an active area – ap-
proximately to twofold increasing of the frequency f of generated current oscillations in whole 
interval of voltages U0. 
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Fig. 1. Dependences of steady component j0 and amplitudes of first four harmonics j1, j2, j3, j4 of a current 

on the value of constant applied voltage U0 
 

The investigations of charge and current dynamics had shown that local illumination near 
the cathode stipulated an appearing of charged layers on the border of illuminated and non-
illuminated parts of active area. It can be explained by that: a gradient of electric field strength 
was appeared significant on this border and big enough for an arising and rapid transformation of 
a space-charge fluctuation into accumulation layer. For all that, effective length of active area de-
creased, that provided a small growth of oscillations frequency. Besides, the illumination led to 
increasing of electric field strength outside the illumination region because of essential enhance-
ment of conductivity of a structure part adjacent to the cathode. It reduced a threshold voltage of 
generation appearing that is in good correspondence with the known data [23]. Also it influenced 
noticeably on a spectrum of full current moving a maximums on the dependences of harmonic 
components amplitudes of current on the constant applied voltage U0 to the region of smaller 
voltages (Fig. 1). The amplitudes of third and fourth harmonics were the most sensitive to the in-
fluence of illumination.  

The full current spectrum calculated for the case of local illumination of a sample in the 
middle of active area also is given on the Fig. 1. It’s easy to see that in this case the illumination 
more appreciably transformed a current spectrum. The most possible cause of it is significant in-
creasing of conductivity in illuminated region as well as in case of illumination near the cathode. 
At illumination of a structure in a middle of an active area it resulted that the active area was di-
vided by region of influence of light on two parts in each of that a process of formation of 
charged layers took place practically in phase. During the moving the charged layer formed near 
the cathode transformed to dipole high-field domain which then relaxed in the illuminated region 
at any voltages U0. The charged layer formed on the border of illuminated and non-illuminated 
parts of a structure reached an anode. Points of time corresponding to disappearance of the indi-
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cated high-field regions in each of parts of the structure were not concured. Exactly the competi-
tion of these processes determined so composite character of relations in a spectrum of a full cur-
rent (Fig. 1). At high voltages U0 in each of two parts of the active area, so called, multidomain 
mode was observed. This mode is characterized by simultaneous existence of several high-field 
regions. As result of arising of multidomain mode the enhancement of the steady component of 
full current density j0(U0) at high voltages took place (Fig. 1). 

Also experimental investigation of the features of current instabilities exhibition in a long 
high-resistivity epiplanar gallium arsenide structures under localized influence of the optical ra-
diation with a wavelength 650 nm on active area of the structure was conducted.  The experi-
ments had shown that in these structures the arising of current oscillations was possible. The 
form, amplitude and frequency of such oscillations strongly depended on the intensity of optical 
radiation and the localization of illuminated region. 

 

   
 

   
 

Fig. 2. The oscillograms of a current of epiplanar structure with  
L0 = 300 mkm at constant voltage U0 = 96,1 V  

(load resistance is 240 ohms) 
 
For example, on the Fig. 2 the oscillograms of a current of a structure with the length of 

active area L0 = 300 mkm at constant voltage U0 = 96,1 V are shown for four cases: the absence 
of illumination of structure (a), local illumination of the structure near the cathode (b), local illu-
mination of the structure in the middle of active area (c), local illumination of the structure near 
the anode (b). The power of illumination was equal of 3 mW, the breadth of illuminated region 
was equal of 100 mkm. 

But frequency of the observed oscillations of current was appeared approximately up to 
100 times smaller than theoretically predicted frequency of the Gunn oscillations. Theoretical 
analysis had shown that observed oscillations of current in such structures could be stipulated by 
not only intervalley transitions of electrons but also and a number of other physical processes. A 
field-enhanced capture of conduction electrons by deep impurity levels is the most possible of 
these processes, could lead to arising slow recombination instabilities.      
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4. Conclusions 
 

The numerical simulations which were conducted on the basis of developed local-field 
mathematical model of space-charge and current dynamics in the long high-resistivity n+–n– – n – 
n+ – GaAs structures with high-resistivity n-region (the length of active n-area L0: 500 – 800 
mkm, donor concentration ND: 1012 – 1013 cm-3) had shown that spectrum of a current of such 
structures was determined not only by the length of active n-area, the degree of its doping and the 
value of constant applied voltage U0 but also depended on the localization of illuminated region, 
the intensity of illumination and the lifetime of nonequilibrium charge carriers. The part of ob-
tained data is in good agreement with results of experiments described in papers [21, 22].    

The local illumination of investigated structure in the middle of active area influenced es-
sentially on the spectrum of full current. The analysis of nonlinear dynamics of space charge had 
shown that in this case simultaneous existence of several high-field regions of different kinds (di-
pole domains and accumulation layers) in different parts of structure was possible.  The shape, 
dimensions and velocity of these regions significantly depended on the value of applied constant 
voltage U0. On the basis of obtained data it is possible to conclude that recombination processes 
play a noticeable role in dynamics of formation, motion and disappearing of high-field regions in 
the structure in conditions of illumination. The influence of these processes was appeared essen-
tial in case of comparability of travelling time of developed high-field region through an active 
area of the structure and lifetimes of nonequilibrium electrons and holes generated by light. This 
fact showed brightly in behavior of the upper harmonic components of a current. 

The conducted experimental investigation of current instabilities in long high-resistivity 
epiplanar gallium arsenide structures in conditions of localized optical influence on the active 
area of the structure had shown that appearance of current instabilities was possible in such struc-
tures. The shape, amplitude and frequency of these oscillations strongly depended on intensity of 
optical radiation and localization of illuminated region. The arising of current instabilities in the 
investigated structures could be stipulated not only by intervalley transitions of electrons but also 
and a number of other mechanisms. The most probable of these mechanisms is a field-enhanced 
capture of conduction electrons on deep impurity levels. 

Thus, results obtained in this paper open new perspectives of using of Gunn current insta-
bility in long high-resistivity structures based on the multivalley semiconductors such as GaAs, 
InP, CdTe, GaN and others, for creation a different electronic, optoelectronic, and electrooptic 
devices with a wide functional possibilities which can realize a processing and managing of com-
plicate informational signals as at SHF and EHF as at IR and optical band wavelengths. 
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   Abstract – The collinear acousto-optic light diffraction by standing ultrasonic wave along x-axis of lith-
ium niobate crystal in assumption of five-waves approximation is discussed. Graphic pictures of wave 
vector structure illustrating the acousto-optic interaction of optic beams on standing ultrasonic wave com-
posed of two contradirectional waves are represented. In spite of non-reciprocity effects of collinear ani-
sotropic diffraction it is described a modulated light oscillation. On base of numerical computing the dis-
tributions of field strengths of diffracted and passed light are obtained. 

 
1.Introduction 

 
There are many numbers of works devoted acousto-optic devices on the collinear light 

diffraction by acoustic waves. In particular it is presented the filter on collinear acousto-optic in-
teraction [1] where two contradirectional optic beams diffract by two contradirectional acoustic 
waves in an anisotropic medium. The authors of mentioned work are guided by theory for two 
wave interaction of optic beams on moving ultrasonic wave. However diffracted effects taking 
place in present case are not restricted by single diffraction and consist of series of ones witch are 
connected with several interactive waves with different frequencies. With qualitative methods it 
is clear that effect of light diffraction by standing acoustic wave has to be a cause to the ampli-
tude modulation of light. The attempt to describe the noncollinear quasi-isotropic Bragg diffrac-
tion was presented in the paper [2]. The goal of present paper consist in describing of collinear 
anisotropic light diffraction by standing ultrasonic wave using the non-reciprocity effects of col-
linear acousto-optic interaction [3]. The problem is led to system of five differential equations 
followed from Maxwell's equations and connected with existence of four vector diagrams. This 
system is solved by using the method of successive approximation that allows to determine the 
structures of fields on output. 

 
 

2.The graph method  for describing of acousto-optic interaction. 
 

As is well known, electromagnetic fields of incident and diffracted light beams at acousto-
optic interaction are represented how coupled waves which propagate in disturbed by ultrasonic 
elastic medium with exchanging energy between them periodically. There are the synchronism 
conditions for this interaction and they express the relation between values of frequencies and 
phase vectors for the interacting components in view: 

ω2= ω1±Ω,      (1) 
k2= k1±K.      (2) 

Here values with subscript 1 define the incident light and ones with subscript 2 — dif-
fracted light. Values Ω and K  are the frequency and wave vector of ultrasonic. As varying the 
synchronism condition, the expression (1) holds the strict form, but the expression (2) allows the 
presence of a mismatch value (Δk). The intensity of diffracted light falls down as Δk has in-
creased. The relation (2) is illustrated by vector diagrams (Fig. 1). 
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Let’s consider the acousto-optic interaction light on standing acoustic wave along x-axis lithium 
niobate crystal with the assumption that the standing wave is the sum of two contradirectional 
waves with equal amplitudes. The diffraction in view transferring from the extraordinary optic 
beam (ω1, k1) to the ordinary wave (ω2, k2) is illustrated in Fig. 2. It is important to note that 
elastic wave vector K had to be built from the end of vector k1 corresponding to the frequency ω1 
to the origin of wave vector k2 corresponding the frequency ω2=ω1+Ω. As the optic frequency 
increases on frequency elastic wave, the wave surfaces for ω2 must change (in particularly for 
without dispersion medium it has to extend). In Fig. 2 (a) the fragments of wave surfaces corre-
sponding to the frequency ω1 are illustrated with the firm line, for wave with the ω2 — with the 
dotted line. After the first acousto-optic interaction the wave with (ω2, k2) diffracts by counter-
acoustic wave to extraordinary beam is presented by a characteristic (ω3, k3) (Fig. 2 (b)). The last 
diffraction takes place by the participation of the vector k3, corresponding to the frequency 
ω3=ω2+Ω (or ω3=ω1+2Ω). The fragment of wave surface, corresponding to the light frequency 
ω3, is illustrated with the chain line on the Fig. 2 (b). As evident from the Figs.2 (a) and (b), the 
magnitude of the vector k1 is not equal to the magnitude of the vector k3, because the values of 
frequencies ω1, ω3 are unequal each other. This inequality represents the non-reciprocity of col-
linear acousto-optic diffraction. Diffractions have been illustrated in Figs.2 (a) and (b) are dis-
cussed using the (+) significant in the expression (1), (2), but the acousto-optic interaction takes 
place with selection (-) significant between k1 and K too. Using the described graph method, the 
wave diagrams for diffractions deal with optic waves (ω4, k4) and (ω5, k5) are built in Figs.2 (c), 
(d). The expressions for frequencies are given by ω4=ω1-Ω, ω5=ω1-2Ω. Fragments of wave sur-
faces for beams with subscripts 4 and 5 are illustrated by the bold dotted and chain lines corre-
spondingly. Describing the diffraction of light by the standing acoustic wave in lithium niobate 
crystal we use nothing more than the five waves approximation. Wave ultrasonic vectors of the 
optimal diffraction for the cases (a)-(d) differ between each other. Setting a magnitude of acoustic 
vector K the expression (2) is approximately true for each of the four diffractions. If to provide 
the condition of the exact synchronism for the diffraction on the (a) diagram than mismatch value 
for the diffraction (b) will be the difference between available vector K and optimal vector K il-
lustrating on the Fig. 2(b). This difference consists the value of twofold shift of wave surface al-
lowing for the change of the optic frequency on value Ω. It’s possible to denote this mismatch by 
2Δk.  Applying the graph method for the diffraction (b) and (c) we can estimate the values of 
their mismatch. They are 2Δk and 0 correspondingly. As the diffraction efficiency decreases with 
increasing of the phase mismatch and if the mismatch value for the first diffraction is 0 the effi-
cient of acousto-optic interactions between 1-2 and 4-5 waves greater than between 2-3 and 1-4 
ones because the mismatch between 2-3 and 1-4 waves are nonzero values. If the mismatch value 
for the first diffraction is unequal 0 then another mismatch values are functions of the first one. 
Varying the magnitude of ultrasonic wave vector, we can provide the exact synchronism for 

ke k0 

Fig.1. Vector diagram of diffraction and 
wave surfaces of light propagation in lithium 
niobate crystal. 
ke – wave vector of extraordinary light; 
k0 - wave vector of ordinary light; 
K – wave vector of ultrasonic; 
(the optic z-axis is directed upward) 
 

K 
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either of the four diffractions, but not for all at once. The diffraction products consist of the three 
extraordinary waves (with the frequencies ω1, ω1+2Ω, ω1-2Ω) and two ordinary beams (with the 
frequencies ω1+Ω, ω1-Ω). In sum these waves represent a single-tone amplitude-modulated oscil-
lation and a beating. Below the qualitative analysis of acousto-optic interaction of light on stand-
ing ultrasonic wave is confirmed by math treatment.  

 
3. The strict expression of waves mismatch and approximate solving of the wave equation 

corresponding to disturbed medium 
 

It’s possible to denote  that wave mismatchs of the four diffractions written how 
Δk1= k2-k1-K,      (3) 
Δk2= k4-k1-K,      (4) 
Δk3= k2-k3-K,      (5) 
Δk4= k4-k5-K.      (6) 

Replacing by values of the wave velocities and frequencies the right part of the expression (3), 
taking to consideration (1) we will have result 

Δk1= ((ω1+Ω)/сo)- (ω1/сe)-Ω/v.     (3') 
Here сo, сe are the light velocities in a crystal of ordinal and extraordinal beams correspondingly, v 
– is the value of the velocity of ultrasonic propagation along x-axis of lithium niobate. Executing 
the same computations for the (4)-(6) and expressing Δk1 in the right parts of the ones the result 
will be written in the following way 

Δk2= Δk1-(2no Ω)/c,     (4') 
Δk3= Δk1-(2ne Ω)/c,     (5') 
Δk4= Δk1-(2Δn Ω)/c,     (6') 

no, ne –are indexes of refraction for the ordinal and extraordinal beams correspondingly, c – is the 
value of the light velocity in the free space, Δn= no - ne. Expressions (3')-(6') confirm the qualita-
tive analysis of mismatch effects. The mismatch Δk4 is the exception from the rule, but the multi-
plier consisting Δn which less than no and ne in the expression (6') inserts amendments the second 
infinitesimal order in result of the graph method. The existing inequality may be explained by the 
neglect of the difference between extraordinary and ordinary wave surface shifts. 

It is interesting to calculate the values of electromagnetic interaction fields how the func-
tion of wave mismatch, coordinates, time and phase shift between acoustic contradirectional 

Fig.2. Vector diagrams of extraordinary optic beam diffractions by the standing acoustic wave. 
a – diffraction on the codirectional acoustic wave corresponding to the (+) significant in the ex-
pression (1) and (2); 
b - diffraction on contradirectional acoustic wave corresponding to the (+) significant in the ex-
pression (1)and (2); 
c - diffraction on contradirectional acoustic wave corresponding to the (-) significant in the ex-
pression (1)and(2); 
d - diffraction on the codirectional acoustic wave corresponding to the (-) significant in the ex-
pression (1)and (2). 
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waves forming the standing wave. To calculating the fields it is necessary to solve the wave equa-
tion for the medium disturbed by ultrasonic [4]: 

∆E-(1/c2) ∂2[ε0*E]/∂t2=(1/c2) ∂2[ε1*E]/∂t2,    (7) 
E – is the electric vector, ε0, ε1- undisturbed and disturbed parts of permittivity tensor correspond-
ingly. The solution of (7) will be present by the five-waves form 

E= E1+ E2+ E3+ E4+ E5= e1E1+e2E2+e1E3+e2E4+e1E5.   (8) 
Every item of (8) represents the expression 

Ei(x,t)= 0,5(Eiexp(j(ωit- kix))+ c.c.), i=1,2..5.   (9) 
Ei – are unknown slow variable functions of coordinate x, c.c. – is a complex-conjugate function, 
as well (*), e1 and e2  are the unit polarization vectors of light. It’s possible to denote the fields 
with odd subscripts how extraordinary light and with even subscripts — how ordinary light. Let’s 
multiply the equation (7) once time by e1 and the second time by e2 and before to write the result 
of calculation it is significant that 

e1[ε1*e2]= e2[ε1*e1]=χ(x,t),    (10) 
where χ(x,t) is the function, describing the influence of standing ultrasonic wave on light. In ap-
proaching of the small elastic deformation it may be written how 

χ(x,t)=0,5(χ1exp(j(Ωt-Kx))+ χ2exp(j(Ωt+Kx))+c.c.).  (11) 
Taking to account (8) and (9), neglecting the members of the second infinitesimal order and 
choosing synchronous items with use (3)-(6) we obtain the combined equation 

∂E1/∂x= -ja12exp(-jΔk1x)E2-ja14exp(-jΔk2x)E4,  (12) 
∂E2/∂x= -ja21exp(jΔk1x)E1-ja23exp(jΔk3x)E3,   (13) 
∂E3/∂x= -ja32exp(-jΔk3x)E2,     (14) 
∂E4/∂x= -ja45exp(jΔk4x) E5-ja41exp(jΔk2x)E1,  (15) 
∂E5/∂x= -ja54exp(-jΔk4x)E4,     (16) 

where a12=k1χ1*/4ne
2, a14=k1χ2/4ne

2, a21=k2χ1/4no
2, a23=k2χ2*/4no

2, a32=k3χ2/4ne
2, a41=k4χ2*/4no

2, 
a12=k4χ1/4no

2, a54=k5χ1*/4ne
2. 

System (12)-(16) consists of the linear differential equations with variable exponential co-
efficients. For concreteness of solution of the equations, it is necessary to set the boundary condi-
tion. So be it: if x=0 that only E1 is not equal zero, i.e. 

E1=E0, E2=E3=E4=E5=0.    (17) 
The task (12)-(17) have not analytical procedure of solving. Let’s transform it using following 
replacement 

Ei=Ciexp(jλix), i=1,2..5    (18) 
to the system of differential equation with standing coefficients: 

∂C1/∂x= -ja12C2-ja14C4,     (19)  
∂C 2/∂x= -j Δk1C2-ja21C1-ja23C3,    (20) 
∂C 3/∂x= -j Δk13C3-ja32C2,     (21) 
∂C 4/∂x= -j Δk2C4-ja45C5-ja41C1,    (22) 
∂C 5/∂x=-j Δk24C5-ja54C4,     (23) 

there Δk13= Δk1–Δk3, Δk24= Δk2–Δk4. The boundary condition (17) will be written as 
x=0:   C1=E0, C2=C3=C4=C5=0.    (24) 

Expressions (12)-(17) transform to (18)-(23) with use next conditions: 
Δk2-λ4+λ1=0,      (25) 
Δk4-λ4+λ5=0,      (26) 
Δk3-λ2+λ3=0,      (27) 
Δk1+λ1-λ2=0,      (28) 
λ1=0.       (29) 

The task solution by Euler method is impossible because using this one it is necessary to solve 
the algebraic equation the five-degree order. It is the motive to solve the task approximately, for 
example using method of successive approximations. According at [5] the task solution is repre-
sented how the column matrix 

C(x)=exp(Ax)C0,     (30) 
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Fig.3. Magnitude of electrical fields how functions depending on x with use Δk1=0 and φ=π. 
            
E1                       , E2                         , E3                    , E4                         , E5 

x, m 

there C(x)=||Ci(x)||, C0=||Ci(x=0)||, i=1,2..5; 
exp(Ax)=1+Ax+A2x2/2!+…+Anxn/n!+…   (31) 

1 – is the 5-dimensional identity, A – is the squarte n-matrix with rows consists of coefficients 
before Ci(x), i=1,2..5 in the right parts of (19)-(23). An – is the matrix multiplication A by oneself 
n time. It is necessary to note that except x the solution (30) also depends on all values Δki and on 
the phase shift φ between two contradirectional acoustic waves. We set it with next expression 

χ2= χ1exp(jφ).      (32) 
 

3.Simulation results 
 
In Figs.3,4 five fields of coupled optic waves are represented. It is calculated applying the method 
of successive approximations taking to account one hundred first aims of series (31). Illustrated 
fields are the functions depending on acousto-optic interaction length x and ultrasonic wave fre-
quency Ω driving Δk1. In Fig. 3 it is notably that the magnitude of incident wave field decreases 
as increasing the interaction length x. The curves illustrated in the Fig. 4 represent the character 
of the diffraction efficiency decreasing as phase mismatch enhance by turns for each of four dif-
fractions.  Selecting the appropriate crystal length and varying the ultrasonic wave frequency, it is 
 

 
possible to form the symmetrical spectrum of single-turn amplitude-modulated oscillation of 
transmitted light. It will be obtained particularly, how we can see in Fig. 4, if Ω=548,67·107 /с-1, 
x=40mm and φ=π. In Fig. 3 the magnitude of third and fifth field amplitudes are equal to each 
other and enhance during varying x from 0 to 3,5cm. Such character of diffracted wave behavior 
allows to get the necessary value of light modulation depth choosing appropriate crystal length. 
In order to get the field strength of electric waves how the functions depending on time, it is nec-
essary to multiply the present valued of field strength amplitudes by exponential phases. They are 
exp i(ω1t-k1x), exp i(ω2t-k2x), exp i(ω3t-k3x), exp i(ω4t-k4x), exp i(ω5t-k5x) according to each elec-
tric amplitude. 

 
4. Conclusion 

 
In this work the theoretical research of collinear acousto-optic light diffraction by stand-

ing ultrasonic wave propagating  along x-axis of lithium niobate crystal on assumption of five 
waves approximation is carried out. It is sufficiently to account the acousto-optic interaction if 
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other waves (undiscussed in the approximation) are negligible components. Graphic pictures il-
lustrating the acousto-optic interaction of optic beam on standing ultrasonic wave composed of 
two contradirectional waves are represented. Using the method of successive approximations the 
field strengths of diffracted light how the functions depending of waves mismatch, coordinates, 
time and phase shift between acoustic contradirectional waves are obtained. 
 
 

 
 

The present theory of light collinear diffraction by standing acoustic wave allows to 
choose the necessary acousto-optic interaction length and ultrasonic frequency to create experi-
mental models of the acousto-optic modulator with required performances. 
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   Abstract – The integrodifferential equations which describe the pseudo-periodic (quasi-periodic) struc-
tures in quantum mechanics and electromagnetics have been proposed and the algorithms of its solutions 
have been suggested 
 

1. Introduction 
 

Periodic structures (PSs) are interesting for many categories and fields of physics and 
chemistry, so correspondingly there is tremendous number of works devoted to their analysis. 
PSs describe different physical phenomena [1]. Especially it is concerning towards following ar-
eas: crystalline semi-conductors and metals in solid-state and semiconductor physics [2], slow-
wave structures (SWS) and periodic waveguides in electromagnetics and electronics [3], crystals 
in crystal optics [4], photonic crystals (PC) [5,6], periodic metamaterials (artificial media) in elec-
trodynamics, optics, and acoustoelectronics, X-ray and particle diffraction by crystals. So, re-
cently the considerable interest to PPS arose in different branch of knowledge (electronics, slow-
wave, PC and metamaterials structures electrodynamics, photonics, optics, nanostructure phys-
ics). It is caused by the development of nanotechnology and also by such circumstance, that PS is 
the mathematical abstraction, and all real structures are the PPSs. The violation of periodicity 
arises owing to number of circumstance. The main of them is the finiteness of all real structures. 
This principal factor is essential when the number of periods is not large. Its influence is sharply 
decreasing when the number of periods increases over a certain value, and the PPS is inherently 
similar (in the internal regions) to PS one. Such number of periods for PCs and SWSs (along of 
each propagation direction) has the order of several tens. The macroscopic solid-state crystal in 
this respect is the practical PS. The periodicity-breaking factors also are the nonstationarity (ape-
riodicity) in time, the loss and amplification (generation). Let notice that in finite passive (lossy) 
or active PC and SWS structures the eigenfrequencies are complex. It means the time aperiodicity 
i.e. the nonstationarity. 

The PC and SWS loss leads to the wave damping along the propagation direction, i.e. to 
space aperiodicity. At the same time the eigenmode dispersion curves are distorted and the band 
gaps disappear, i.e. there is the wave propagation possibility with high attenuation [6]. This 
propagation exist when the finite SWS joins with the semi-infinite waveguides or for two-
dimensional PC plate excitation. Such structure conducts oneself as a multiband filter. The im-
portant example of active PPS is the PC lasers. Note that the breaking of periodicity takes place 
also under the excitation of the structures if they are lossless and passive. There is the exclusion 
which is the PS stationary excitation by infinite number of periodical and phasing with factor 

( )ϕ
GGnj±exp  harmonic sources (here ϕ

G
  is vector of phase shifts per cell, nG  is the vector of cell 

numbers). The cell non-identity is one more factor which causes the aperiodicity (it is usually 
weak in PPS). It may be random (the crystal dislocations, technological dispersion in SWSs and 
PCs), and also premeditated and governing the PPS properties (dispersion, energy-band structure 
etc.).  

The present paper is devoted to the problem of taking into account this last factor in the 
infinite PPS. Our main goal is to introduce the integrodifferential equation (IDE) base on Green’s 
function method for PPS with perturbed lattice and with defects located in the finite region of PS. 
Also we consider the defects which are distributed in infinite region. In the last case the distur-
bances are assumed weak. The effect of PPS finiteness is also analyzed. At first, the scalar prob-
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lem of single-particle Schrödinger equation (SE) for pseudo-periodic potential (PPP), i.e. for pe-
riodic potential disturbed by some low, is analyzed. Further, the vector electromagnetic problem 
is solved for periodic dielectric structure which also is disturbed according to some law. 

 
2. IDE for quantum particle in PPP 

 
 Let consider the quantum particle with mass m  in the field of periodic potential 

( ) ( )prVrV GGG
+= 00 , where nAanananp GGGGG

=++= 332211  is the vector of composite period, iaG  are 
the primitive transmission vectors (periods of cell), A  is the translation matrix (composed from 
vectors iaG ), nG  is the vector of shifts (numeration) of cells with integer coordinates in . The wave 
function satisfies the stationary SE: 

( ) ( ) ( )rvre GG
0000

2 Ψ=Ψ+∇  .                                                 (1) 
Here the normalized energy 2

0 /2 =mEe =  and potential 2
00 /2 =mVv = are introduced. We will 

assume for convenience that the wave function ( )rG0Ψ  is normalized to the cell volume 
[ ] 3213210 aaaaaa GGGGGG

×⋅==Ω : 

( ) ( ) 11 3
0

*
0

0

=ΨΨ
Ω ∫

Ω N

rdrr GGG  ,  ( )321 ,, nnnN = ,                                       (2) 

and its evident presentation and the energy spectrum 0e  are known from the solution of problem 
(1). Here NΩ  denotes the lattice island with the multiindex N. The volumes of all cells are the 
same and equal to zero cell. There are many methods to solve this problem [2]. In our case it is 
convenient to consider the Green’s function approach [2,3]. According to this   the energy spec-
trum and wave function are determined from the minimum (extremum) condition of functional 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫
Ω ΩΩ

′′Ψ′′−Ψ−ΨΨ=ΨΛ
0 00

33
0000

*
0

3
00

*
00 ,,~,, rdrdrrvrrkeGrvrrdrrvrke GGGGGGGGGGGGGG

 ,    (3) 

which is equivalent to corresponding integral equation (IE) [2]. Here ( )rrkeG ′−
GGG,,~

0  is the scalar 

GF of operator 0
2ˆ eL +∇=  for periodically located sources, i.e. the GF of equation (1). It has 

several representations, particularly 

 ( ) ( )( )( )
( )∑

+−

′−+±
Ω

=′−
n ngke

rrngkjrrkeG
G GG

GGGG
GGG

2

00
0

exp1,,~  .                             (4) 

The three-dimensional summation is carrying out over the vector nG  (multiindex ( )321 ,, nnnN = ) 

in the infinite limits ∞<<∞− in , 12 −= Ag π  is the tensor of inverse lattice, k
G

 is the reduce 

wave vector, which is connected with the quasi-momentum =
GG /kq =  and with the vector of 

phase shifts kA
GG

=ϕ . As the forward waves and backward waves are indistinguishable, any sign 
may be taken in (4). Correspondingly, ϕ

GG
1−= Ak . Notice that one also may use the functional  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫
Ω ΩΩ

′′Ψ′′−Ψ−Ψ=ΨΛ
0 00

33
000

*
0

32
00 ,,~, rdrdrrvrrkeGrrdre GGGGGGGGGG  . 

We consider the normalization (2) as additional minimization condition, or will impose it after 
the solution. The wave function which is satisfying the equation (1), therefore is carrying the ex-
tremum of functional (3), has the property ( ) ( ) ( )ϕ

GGGGG njprr −+Ψ=Ψ exp00 . It depends on the en-

ergy 0e  and wavevector k
G

 as parameters. Furthermore, the particle in periodic potential is belong 
to all cells, and probability density to detect it in any point of any cell is not zero if the potential is 
not singular there. The solid-state theory usually considers in the adiabatic approximation the 
model of dotty atoms, which are motionlessly located in the nodes of crystalline. Actually, the 
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charge is always «smeared» over the nucleus (and the nuclear particles must be movable), and the 
nuclei are vibrating near the crystalline nodes. The motionless hypothetical charged particle has 
the infinite electrostatic energy, so the particle and its charge must be «smeared» according to 
uncertainty principle. Moreover, the potential has the term corresponding with the averaged in-
fluence of all crystalline electrons. Further therefore we will assume that ( ) ∞<Ψ −2

0 rG  in any 
point. If the model function does not satisfy this, let perform suitable circumcision.  
 Let consider another stationary problem with nonperiodic potential ( ) ( ) ( )rvrurv 0= . If this 
potential differs from 0v  only in the region, which is consisting of one or several cell, that the 
real function ( )ru  nearly everywhere is equal to unity except the mentioned region. In general 
case the aperiodicity leads to decrease of ( ) 1−ru  at infinity according to some law. The change 
of potential will leads to the wave function and energy spectrum changes: ( ) ( ) ( )rrUr GGG

00 Ψ=Ψ , 
eee Δ+= 0 . The SE now must be written as 

( ) ( ) ( )rvre GG
Ψ=Ψ+∇2  .                                                   (5) 

Substituting the introduced functions into (5) one gets the equation for function ( )rU G
0 : 

( ) ( ) ( )( ) ( ) ( )
( ) ( )rU
r

rrvrurUe G
G
GGGG

0
0

0
00

2 21 ⎥
⎦

⎤
⎢
⎣

⎡
∇⋅

Ψ
Ψ∇

−−=Δ+∇  .                         (6) 

The gradient directional derivative of wave function ( )rG0Ψ  comes into the right part of (6). By 
virtue of multiplier ( )( )1−ru G  the nonperiodic and, in general, complex operator-function appears 
in the square bracket in the right part of (6). It is corresponding to the potential in customary SE. 
The wave function in (6) for arbitrary finite volume Ω must be normalized as: 

( ) ( ) ( ) ( ) 111 32
0

2
0

3* =Ψ
Ω

=ΨΨ
Ω ∫∫

ΩΩ

rdrUrrdrr GGGGGG  ,                                 (7) 

inasmuch as under ( ) 10 →rU G  we have ( ) ( )rr GG
0Ψ→Ψ . The solution of the inhomogeneous equa-

tion (6) allows one to define the spectrum eΔ , therefore, the energy e . To reformulate it as IE it 
is formally necessary to build up the GF ( )rrkeG ′Δ′ GGG |;,  for the operator 

( )( ) ( ) ∇⋅Ψ∇Ψ+Δ+∇=′ rreL GG
00

2 /2ˆ . Then one will have: 

( ) ( ) ( )( ) ( ) ( ) rdrUrvrurrkeGrU ′′′−′′Δ′= ∫
GGGGGGGG 3

000 1|;,  .                           (8) 
The integration here must be performed all over the infinite space (in this case we do not identify 
the limits). However, there is a problem to get the explicit view of such GF. If the vector 

( ) ( ) ( )rrrb GGGG
00 /2 ΨΨ∇=  with the spatial spectrum ( )qb G

G
 is decreasing at infinity, then the spectral 

component ( )qkeG GG,,Δ′  of such GF satisfies IE 

( )
( )

( ) ( ) qdqeGqqbkjqkeGke ′′Δ′−⋅′−Δ−Δ= ∫
∞

∞−

GGGGGGGGG
3

3
2 ,

2
,,1

π
. 

This IE must be solved numerically in the infinite region. If vector b
G

 is replaced by its averaged 
over the sell one (i.e. the constant value 0b

G
), then we have ( ) ( ) ( ) 0

32 bqqb
GGGG δπ= , and IE has the evi-

dent solution ( ) [ ] 1

0
2,,

−
⋅−−Δ=Δ′ bqjqeqkeG
GGGGG  (remind that the vector 0b

G
 depends on 0e  and k

G
). 

But such approach is approximate. Therefore let use the GF of operator in left side of equation 
(6): 

( )
( ) r

rej
kd

ke
rkjreG G

GG
G
GGG

ππ 4
)exp()exp(

2
1, 3

23

Δ−
−=

−Δ
−

=Δ ∫
∞

∞−

 .                              (9) 

Then to obtain the function ( )rU G
0  one gets the IDE: 
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( ) ( ) ( )( ) ( ) ( )[ ] ( ) rdrUrbrvrurreGrU ′′∇′⋅′−′−′′−Δ= ∫
GGGGGGGGG 3

000 1,  .                  (10) 

It is not difficult to see that the vector ( )rb G
G

 is periodic with the periods pG  and is depended on 
reduced wave vector k

G
 and energy 0e , and so the IDE (10) allows getting the dispersion equation. 

Let ( ) 1=ru G  outside the finite region Ω . Then it is follows from (10) that ( )rU G
0  can not tend to 

finite constant value (say to unity) at the infinity, otherwise the left part of (10) will be tend to 
zero. Hence, in the far cells the function ( )rU G

0  must oscillate relatively some complex (in gen-

eral) value. In this case we assume that ( ) ( ) ( )rUrrU GGG
00

~+Φ= , where ( )rU G
0

~  is periodic potential, 
and the function ( )rGΦ  is the decreasing at infinity and satisfying the IE 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫∫

∫

ΩΩ

Ω

′′′−′′−Δ+′′Φ′−′′−Δ=

=′′−′′−Δ=Φ

rdrUrvrurreGrdrrvrurreG

rdUrvrurreGr

GGGGGGGGGGGG

GGGGGG

3
00

3
0

3
00

~1,1,

1,
.     (11) 

Here the function 0
~U  satisfies the differential equation  

( ) ( ) ( )( ) ( )rUrbrUe GGGG
00

2 ~~ ∇⋅−=Δ+∇  .                                          (12) 
It also satisfies IE 

( ) ( ) ( )( ) ( )∫ ′′∇′⋅′′−Δ−= rdrUrbrreGrU GGGGGGG 3
00

~,~ ,                                      (13) 

which has the solution 
( ) ( ) ( )( ) ( )∫

Ω

′′∇′⋅′′−Δ−=
0

3
00

~,0,~~ rdrUrbrreGrU GGGGGGG  .                              (14) 

The simultaneous solution of IDE (11) and (13) or (11) and (14) gives the full solution of the 
problem. Obviously, the perturbation of periodicity leads to the local levels appearance in the en-
ergy band, at that the function (11) is decreasing at infinity as point charge potential, i.e. propor-
tional to r/1 , and the wave function perturbation is finite. All is the same if ( )ru G  tends at infinity 
to unity according to some law. 

Let now consider the effect of structure finiteness. In this case the SE (5) has the general 
solution 

( ) ( ) ( ) ( ) ( )∫
Ω

′′Ψ′′−+Φ=Ψ rdrrvrreGrr GGGGGGG 3
0 ,  .                                 (15) 

Here ( )rG0Φ  is the flat wave corresponded to the particle with positive energy 0>e . In this case 
the problem conforms to particle scattering by finite potential. In 1D case the reflection and 
transmission coefficients may be introduces, and at that we have the GF as 

( ) ( ) ( )exejjxeG 2/exp, −= . If 0<e  then ( ) 00 ≡Φ rG  since it is impossible to have at infinity a 

free particle with negative energy. So, ( ) 02 →Ψ rG  under .∞→r  Let introduce the func-
tion ( ) ( ) ( )rrr GGG

0Φ−Ψ=Ψ′ . It always is decreasing at infinity and satisfying the IE 

( ) ( ) ( ) ( ) ( )∫
Ω

′′Ψ′′′−+Φ′=Ψ′ rdrrvrreGrr GGGGGGG 3
0 , ,                                 (16) 

( ) ( ) ( ) ( )∫
Ω

′′Φ′′−=Φ′ rdrrvrreGr GGGGGG 3
00 , . 

For the bound states we have 00 =Φ , and the equation (16) coincides with the IE (11). The func-
tions ( )rGΨ′  in the centre of PPS is closed to the function ( )rG0Ψ  of PS, and the distinction shows 
near the boundaries and outside the structure (at infinity). Therefore let produce it in such a 
way: ( ) ( ) ( )rrUr GGG

0Ψ=Ψ′ . The function ( )rU G  is modulo closed to unity everywhere in PPS with 
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the exception of boundary regions and tends to zero at infinity. It also satisfies the differential 
equation 

( )
( ) ( ) ( ) ( ) ( ) ( )

( )r
rrvrUrvrv

r
re G

GGGGG
G
G

0

0
0

0

02 2
Ψ
Φ

=⎥
⎦

⎤
⎢
⎣

⎡
−+

Ψ
∇⋅Ψ∇

+Δ+∇ ,                  (17) 

or the  IDE 
( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) rdrUrbrvrvrreGrUrU ′′∇′⋅′−′−′′−Δ+′= ∫

GGGGGGGGGG 3
0,  .                  (18) 

Here the free term is 

( ) ( ) ( ) ( )
( )∫

Ω

′
′Ψ
′Φ′′−Δ=′ rd

r
rrvrreGrU G
G
GGGGG 3

0

0,  .                                        (19) 

 
3. IDE for dielectric PPS 

 
 Let now there is the isotropic dielectric medium ( ( ) 1≡rGμ ), which has not the sources in 
finite region. Let consider the stationary processes with flowing time dependence: ( )tjωexp , 

ck0=ω . Then the electric field satisfies the wave equation ( ) ( ) ( )rErkrE GGGGG ε2
0=×∇×∇ , or, intro-

ducing the dielectric  susceptibility ( ) ( ) 1−= rr GG εκ , we have 
( ) ( )[ ] ( )rErkrEk GGGGG

⋅∇∇−−=+∇ κ2
0

2
0

2  .                                (20) 
It is follows that the wavenumber square corresponds to the value 2/2 =mE , and the operator in 
the right part of (20) – to normalized potential. Naturally, the electrodynamic equations are vector 
that demands, generally speaking, to use the tensor (dyadic) GFs. The right part of (20) may be 
transformed using the following relationship: ( ) ( ) ( )[ ]=⋅−∇=⋅∇ rErrE GGGGG κ  

( ) ( ) ( ) ( )rrErEr GGGGGG εκ ∇⋅−⋅∇− . The equation (20) right away allows one to write the IDE: 
( ) ( )[ ] ( ) ( ) rdrErkrrkGrE ′′⋅∇′∇′+′−−= ∫

Ω

GGGGGGGG 32
0

2
0 , κ ,                          (21) 

where ( ) ( ) ( )rrjkrrrrkG ′−−′−−=′− − GGGGGG
0

12
0 exp4, π  is the free space scalar GF (let note that in 

electromagnetics it traditionally is used with opposite sign). It must be noted that the IDE (21) 
demands the smoothness of function ( )rGε , i.e. the dielectric without sharp boundary (absence of 
jumps). More convenient volume IE constructed based on polarization current conception has the 
form 

( ) [ ] ( ) ( ) ( ) rdrErrrkGkrE ′′′′−⋅∇∇+−= ∫
Ω

GGGGGGGG 32
0

2
0 , κ .                          (22) 

By several equivalent methods it may be reformed to several types of surface-volume IDEs. One 
way is the transfer of the differential operators to the source coordinates. Such double transfer 
gives the IDE (21), which is loaded by surface integrals. These integrals may be formally ex-
tracted from (21) if the permittivity has the jumps on the closed boundary surface S . For this let 
introduce on S the local right coordinate system with unite tangent 1τG , 2τG  and outward normal νG  
vectors. The permittivity jump at the boundary from ( ) ( )rr GGG −=− ενε 0  to ( ) 10 =+ νε

GGr  leads to 
normal electric filed component jump: −−+ = ενν EE / . At that if the source point in the (21) tends to 
the surface then the 1D delta-function of normal coordinate ν  and its gradient are extracted. 
Namely, ( )( ) ( ){ } ( ) ( ){ } ( ) ( )rErErrEr GGGGGGG

ντ νκε ∂∂−⋅∇=−⋅∇ /1 , where the normal derivative is 

( ) ( ) ( ) ( ) ( ) −−− ∂∂+−=∂∂ ννν ννδεν EErE /1/ G . Accordingly the expression ( ) ( ){ }rEr GGGκ⋅∇∇  under the 
integral (21) is transforming as 

( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )[ ]rErEE GGGG −−−−−− −∇−∇−−−⋅∇− νν ενδνδεενδν 111 . 
Then one can to mark out the surface integral in the right part of (21): 
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( ) ( )( ) ( )[ ] ( ) ( ) ( ) ( )( ) ( )[ ]∫∫ ′′−′⋅∇′′−′−′′−∇′′−′= −−−−

SS

rdrErrrkGrrdrrkGrErrI GGGGGGGGGGGGGG 22
0

22
0 1,,1 ενε ν . 

Remark that we use the uninterrupted values right up to the inner points of boundary, and under 
the crossing we extract the jumps. 
 Thus, let accent the similarity and distinction of PS and PPS description in quantum and 
electromagnetic cases. The energy is corresponds with wave number square, and the GFs (4) and 
(9) are identical if e  is replaced by 2

0k . The particle energy is always real but may be negative. 
The value 2

0k  for finite structures may be complex that means the time aperiodicity. The station-
ary SE wave function is always harmonic in time and has the term ( )=/exp jEt . The electromag-
netic equations have the operator ( )⋅∇∇+2

0k  which acts on singular GR. This is the reason of 
possible discontinuities in the fields and its derivatives, whereas the wave function is continu-
ously differentiable. The permittivity and permeability in a certain sense are equal to potential. 
The magnetodielectric structures must be described by coupled IEs for electric and magnetic 
fields. They may be transformed to single IEs for each vector using the Maxwell equations. The 
metallic structures are described by surface IEs, and the а metallic-dielectric ones – by surface-
volume IEs. The corresponding equations for the PSs are presented in [6]. Often it is necessary to 
consider the structures with some objects embedded into the dielectric background ε~ . Then the 
free-space GF must be replaced by media GF with usage of permittivity εε ~− . Particularly, the 
case 1=ε  corresponds to the cavities in the background. The equations are expressed by kernels 
as tensor GFs which are presented in [6].  

 
4. The examples 

 
 Let consider 1D PS with period a  and periodic potential ( ) 00 vxv =  for dx ≤≤0  and 

( ) 00 =xv  for axd << . We have the SE  
( ) ( ) ( ) ( )xxvxedxd 0000

22 / Ψ=Ψ+  .                                            (23) 

In electromagnetic there is the flat wave correspondence to such motion for which 0=⋅∇ E
G

. This 
filed has one transverse component respective to the function 0Ψ , i.e. the problem is scalar. We 
have following correspondence: ( ) ( )xkxve ε2

000 ~− , ( ) ( )[ ]xkxv ε−1~ 2
00 , ( ) ( ) 00 /1~ exvx −ε . The 

permittivity 1=ε  corresponds to free particle. Let consider 1D periodic GF ( kkx = ): 

( ) [ ]( )
[ ]

( )
∑∑

∞

−∞=

∞

−∞=

−−−
=

+−
+−

=
nn e

naxejjnka
j

anke
xankj

a
xkeG

0

0
2

0
0 2

exp
/2
/2exp1,,~

π
π         (24) 

and solve the IE for negative energy: 

( ) ( ) ( ) ( )∫ ′′Ψ′′−=Ψ
a

xdxxvxxkeGx
0

0000 ,,~ .                                         (25) 

It is easy to see that the solution ( )x0Ψ  of (25) is equivalent to flat wave and its derivative mode-
matching solution. The dispersion equation is  

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫ =′′Ψ′′−Ψ−ΨΨ=
a aa

dxxdxxvxxkeGxdxxxkeD
0 0

000
*
0

0
0

*
00 0,,~, .             (26) 

It may be rewritten as 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

0

expexpexpexp
expexpexpexp

expexpexpexp
expexpexpexp

22221111

2211

22221111

2211

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−+−−
−−−−+−

−−−−
−−−−

ajkjkajkjkakkjjkakkjjk
ajkajkakkjakkj

djkjkdjkjkdjkjkdjkjk
djkdjkdjkdjk

,   (27) 
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where 001 vek −= , 02 ek =  (for dielectric PS correspondingly ε01 kk = , 02 kk = ). It is con-
venient to use the transfer matrix method. Such second rang matrices bound the amplitudes of 
forward and backward waves in the neighbouring layers, or the functions and its derivatives 
(transverse electrical and magnetic filed components in electromagnetics). In the first case this 
matrix less convenient and more complicated. In the second case the matrix is well-known and 
usually used as transfer matrix of a later with the thickness d  [8]: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
=

dkdkkkj
dkkkjdk

dA
1101

1101
1 cossin/

sin/cos
. 

The phase shift per period here is 

( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −+±+== AAAAAjka det4/2/ln 2

22112211ϕ ,                          (28) 

in which ( ) ( )daAdAA −= 21  is the transfer matrix of all sell. For quantum particle we have 
( ) 1det =A  owing to the reversibility. In electromagnetics it takes place for isotropic layers. Let 

form the approach wave function as Fourier series: 

( ) ( )∑
−=

−=Ψ
N

Nn
n anjx

a
x /2exp1

0 πα . 

Then the functional (26) corresponds with the quadratic form 

( ) ( )( ) ( )( )
( ) ( )∑ ∑ ∑∑

∞

−∞= −= −=′ ′

′
′

−=

−−−
+=

m

N

Nn

N

Nn mnnm

mn
nn

N

Nn
n kKkK

dkjK
a

jkavkeD 1exp1exp, *02
0 ααα , 

( ) ( ) amnkkKnm /2 −+= π , 
and its extremum determines the dispersion. 

Let there is a periodicity perturbation in the cell 0. Namely, let ( ) 1vxv = , ( ) 01 / vvxu =  for 

dx <<0 .The function ( ) ( ) ( )xUxxU 00
~+Φ=  is the sum of decreasing and periodic parts. It satis-

fies the differential equation 

( ) ( ) ( )( ) ( )
( ) ( )xUdxd
x
xvxuxUedxd 0

0

0
00

22 /21/ ⎥
⎦

⎤
⎢
⎣

⎡
⋅

Ψ
Ψ′

−−=Δ+  ,                         (29) 

and its components  satisfy the system of couple IEs ИУ: 

( ) [ ] ( ) ( ) ( )[ ]∫ ′′+′Φ′−Δ−=Φ
d

xdxUxxxeGvvx
0

001
~, ,                              (30) 

( ) ( ) ( )
( ) ( ) ( )[ ] xdxUx
x
xxxeGxU ′′+Φ′
′Ψ
′Ψ′

′−Δ−= ∫ 0
0

0
0

~2,~  .                           (31) 

Also let consider the bilinear functional 

( ) ( ) [ ] ( ) ( ) ( ) ( )[ ]∫ ∫∫ ′′+′Φ′−ΔΦ−−′Φ=Φ ∗
d dd

dxxdxUxxxeGxvvxdxUC
0 0

001
0

2
01

~,~, ,             (32) 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( )[ ]∫ ∫∫

− −−

′′+′Φ
′Ψ
′Ψ′

′−Δ+=Φ
Na

Na

Na

Na

Na

Na

N dxxdxUx
x
xxxeGxUdxxUUC 0

0

0*
0

2

002
~2,~~,~ .      (33) 

The function ( )xU0
~  is definable at the segment ( )NaNa,−  as the Fourier series by the functions 

( )axn /2sin π , ( )axn /2cos π  with the coefficients lα , lβ  (or using the complex exponents). The 
number of such coefficients is 12 −L . Let the functions ( )xΦ  is expanded through the piecewise 
constant basis in the region dx <<0 . The number of expansions coefficients M  may be small 
or even 1=M . Substituting these expansions in (30), one define this function in the region 
( )NaNa,− . It is seen that it is exponentially decreasing at infinity and depends on 12 −+ ML  
parameters. The corresponding integrals are analytically integrable. Substituting the filed expan-
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sions into (32), (33) and imposing the extremum conditions one gets the uniform system of linear 
12 −+ ML  equations with the determinant which must be zero. Thus, the algorithm scheme is as 

follows. One assigns the energy 0e  and determines the k  and the wave function ( )x0Ψ  from (28). 
Further these values are used to calculate the determinant and its root eΔ . There is the parameter 
N  in the algorithm. Instead the IE (31) it is more convenient to use the equation 

( ) ( ) ( )
( ) ( ) ( )[ ]∫ ′′+Φ′

′Ψ
′Ψ′

′−Δ−=
a

xdxUx
x
xxxeGxU

0
0

0

0
0

~2,0,~~                             (34) 

and corresponding functional. Here 0=k  in the GF (24) as the function (34) must be religiously 
periodic. The IE (34) is preferable as the solution is seeking in the finite region. 
 Let else consider the PPS in the form of infinite in two dimensions x and y crystal layer 
having several cells along the dimension z. To analyze this quantum well the traditional 2D-
periodic GF approach may be used. The GF for diagonal tensors with transverse vector 

( )yx kkk ,=⊥

G
 has the form [6] 

( ) ( ) ( )( )
( ) ( )∑ ∑ ∫

∞

−∞=

∞

−∞=

∞

∞−
⊥ −+−+−

−+−+−
=

1 2

22
22

2
110

2211

21
0 /2/2

/2/2exp
2

1,,~
n n zyx

yyx
z kankanke

zjkankxankj
dk

aa
rkeG

ππ
ππ

π
GG

 .  (35) 

The dispersion in such PPS is determined as the dependence ( )yx kkfe ,0 = , and the equations are 
formulated in several cells along the coordinate z. For the quantum string in form of periodic 
atomic chain it is need to use the ID-periodic GF, which contains one infinite sum and 2D inte-
gral [6]. At last, let consider the disposition on form of discontinuity at the 0=z  plane. It may be 
the shift of crystal layers, the gap, the contact of two different semi-infinite samples. For the con-
tact of shift discontinuity it is convenient to use the matching of wave PS functions at 0=z : 

( ) ( )rkkkerkkke zyxzyx
GG ,,,,,,,, 202101 Ψ=Ψ ,   

( ) ( )
z

rkkke
z

rkkke zyxzyx

∂
Ψ∂

=
∂

Ψ∂
GG ,,,,,,,, 202101 . 

It allows one to determine the dispersion in common with two functional (3). In general case it is 
necessary to use two intermediate layers with finite numbers of transverse periods and to deter-
mine and match their wave functions using the GF (35). 
 

4. Conclusions 
 
 The integrodifferential equations, dispersion equation and the approaches for calculation 
of energy-band structures and dispersion characteristics for quantum and electromagnetic PPSs 
have been introduced. The 1D, 2D and 3D periodic GFs approach is the mane basis of the inte-
grodifferential equations method. The simple series circumcision leads to periodicity violation 
and bad accuracy, so it is necessary to use the singularity detachment and the analytical methods 
of series summation in the GFs. For such way the another form of GF is preferable [2,6].  It con-
tains the shifted on a period members with the phase terms ( ) ( )kpjnj

GGGG
−=− expexp ϕ . For finite 

sum it gives the GF of PPS [6]. The proposed equations are simply applied both for quantum and 
electromagnetic 1D, 2D and 3D periodic structure, but they are more interesting for two last cases 
as 1D problems is easily solving by other methods [8]. 
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   Abstract – Theoretical model of non-stationary nonlinear interaction of an electron beam with a coupled 
cavity circuit is presented. The model is based on the non-stationary discrete theory of excitation of a peri-
odic waveguide developed in [1]. The paper reviews the basic equations of the theory, discusses the reso-
nant properties of the finite-length slow-wave structure, and presents the derivation of the dispersion rela-
tion for the beam–wave interaction. 
 

1. Introduction 

 In this paper, we describe the non-stationary (time-dependent) model for simulation of 
electron beam interaction with electromagnetic wave in a coupled cavity traveling wave tube 
(TWT) amplifier. Development of non-stationary codes is important for many problems of mi-
crowave electronics, such as amplification and generation of short pulses and complex multi-
frequency or chaotic signals, investigation of the stability of amplifiers, etc. There exist powerful 
tools for solving such kind of problems known as “fully electromagnetic” codes, such as MAGIC, 
KARAT, MAFIA [2-4], which are based on the straightforward integration of Maxwell’s equa-
tions. Unfortunately, high requirements for processor time limit their applicability. Therefore, 
less computation-intensive non-stationary codes are still required. Such codes are based on vari-
ous forms of non-stationary theory of excitation of electromagnetic slow wave structure (SWS). 
The most popular is the non-stationary wave theory of excitation of a waveguide by a nearly sin-
gle frequency current with a slowly varying amplitude developed in [5], which has been used in 
many works (see e.g. [6,7]). However, this theory is valid only for signals with narrow-band 
spectrum in the center of the SWS pass band. The modification of the non-stationary wave theory 
allows consideration of beam-wave interaction near an edge of passband (see the recent review 
[8] and references therein). Several non-stationary codes for simulation of a coupled-cavity trav-
eling wave tube (TWT) using the equivalent circuit representation of the SWS have been devel-
oped [9-11]. This approach takes into account interaction with all spatial harmonics and allows 
consideration of the processes near cut-off/stopband, as well as in the center of the SWS pass 
band. However, the equivalent circuit model strongly depends on the design of a particular struc-
ture. Consideration of higher-order passbands, e.g. the slot mode in the coupled cavity TWT, is 
another challenging task [12]. 
 In this paper, we develop the approach based on the non-stationary discrete theory of exci-
tation of a periodic waveguide [1]. This theory is more general than the equivalent circuit models 
[9-11] since it is based on the rigorous analysis of the SWS electrodynamics. It precisely fits the 
SWS dispersion and easily takes into account as many eigenmodes as is need. This approach is 
applicable for modeling of various microwave electronic devices such as multiple cavity kly-
strons, extended interaction klystrons, coupled cavity TWT or BWO, etc. 

 

2. Non-stationary discrete theory of a periodic waveguide excitation 

 Consider a waveguide periodic in x  with period d . Electromagnetic field satisfies the 
Maxwell’s equations 
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rot , div ,

rot , div 0,

t

t

∂
= − = ρ

∂
∂

= + =
∂

BE D

DH j B
 (1) 

with appropriate boundary conditions. We use a special form of discrete Fourier transform of a 
function ( )xΨ  [1]: 

 ( ) ( ) in d

n
x x nd e

∞
β

β
=−∞

Ψ = Ψ +∑ . (2) 

It is supposed that ( ) 0xΨ →  at x → ±∞ . The transform (2) has the following properties: 

 ( ) ( ) i dx d x e− β
β βΨ + = Ψ , (3) 

 ( ) ( )2 dx xβ β+ πΨ = Ψ . (4) 
Integrating (2), one gets the formula for the inverse transform 

 ( ) ( ) ( )
2 2 2

0 0 0

d d d
in d in d

n n
x d x nd e d x nd e d

π π π∞ ∞
β β

β
=−∞ =−∞

Ψ β = Ψ + β = Ψ + β∑ ∑∫ ∫ ∫ . (5) 

All the integrals in (5) are zero, except for 0n = : 

 
2

0

0, 0
2 , 0

d
in d n

e d
d n

π
β ≠⎧

β = ⎨ π =⎩
∫  

hence, 

 ( ) ( )
2

02

ddx x d
π

βΨ = Ψ β
π ∫ . (6) 

 Applying the transform (2) to the Maxwell’s equations (1), we obtain 

 
rot , div ,

rot , div 0.

t

t

β
β β β

β
β β β

∂
= − = ρ

∂
∂

= + =
∂

B
E D

D
H j B

 (7) 

 Introduce a system of eigenfunctions ( )sβE r , ( )sβH r  which satisfy the boundary condi-
tions on the walls of the waveguide and the equations 

 
( )
( )

rot 0,

rot 0.
s s s

s s s

β β

β β

+ Ω β =

+ Ω β =

E B

H D
 (8) 

The eigenfunctions are periodic  
 ( ) ( ), , , , i d

s sx d y z x y z e− β
β β+ =E E , (9) 

purely solenoidal, i.e. div div 0s sβ β= =E B , and satisfy the normalization condition:  

 ( )
0

0,
2s p s p

sV

s p
dV

N s pβ β β β

≠⎧
+ = ⎨ =⎩

∫ D E H B  (10) 

Here 0V  denotes a volume of one period of the structure, sN  is the wave norm. According to [1], 
the eigenvalue problem has a discrete spectrum of ( )sΩ β  for real β . Expand the Fourier trans-
formants of electric and magnetic field βE , βH  over the eigenfunctions sβE , sβH : 

 ( )s s
s

C tβ β β β= − ∇Φ∑E E , ( )s s
s

i C tβ β β= − ∑H H . (11) 

Here, sC β  are complex amplitudes and Φ  is electrostatic potential of the space-charge field satis-
fying the Poisson’s equation 
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 ( )div ε∇Φ = −ρ . (12) 
 Substituting these expansions into (7), we obtain 

 rots s s s
s s

i C C
t

β
β β β β β

∂∇Φ
− = ε + − ε

∂∑ ∑H E j� , (13) 

 rots s s s
s s

C i Cβ β β β= μ∑ ∑E H� , (14) 

or, taking into account the definitions of the eigenfunctions (8), 

 ( )s s s s s
s s

i C C
t

β
β β β β β

∂∇Φ
ε Ω β = ε + − ε

∂∑ ∑E E j� , (15) 

 ( )s s s s s
s s

C i Cβ β β β−μ Ω β = μ∑ ∑H H� . (16) 

Let us multiply (15) on s
∗
′βE , (16) on si ∗

′β− H , and summate them: 

 

( )( )( )

( ) .

s s s s s s
s

s s s s s s
s

i C

C
t

∗ ∗
′ ′β β β β β

β∗ ∗ ∗
′ ′ ′β β β β β β β

− Ω β ε + μ =

∂∇Φ⎛ ⎞
= ε + μ + − ε⎜ ⎟∂⎝ ⎠

∑

∑

E E H H

E E H H j E�
 (17) 

Integrate (17) over the volume 0V . Since the eigenfunctions satisfy the normalization condition 
(10), all terms with s s′≠  vanish: 

 ( )
0

2 2s s s s s s
V

iN C iN C dV
t

β ∗
β β β β

∂∇Φ⎛ ⎞
Ω β = + − ε⎜ ⎟∂⎝ ⎠

∫ j E� . (18) 

One can show that the term containing β∇Φ  vanishes after integration (see [13]). Integral over 

0V  in (18) can be transformed into integral over the whole volume of the waveguide, V . Using 
the definition of the β -transformation (2) we get 
 ( )

0 0

i nd
s s

nV V

dV x nd e dV∗ ∗ β
β β β= +∑∫ ∫j E j E ,  

or, since s
∗
βE  satisfies condition of periodicity (3) 

 ( ) ( ) ( )
0 0

, , , , , ,i nd
s s s

n nV V V

x nd y z e dV x nd y z x nd y z dV dV∗ β ∗ ∗
β β β+ = + + =∑ ∑∫ ∫ ∫j E j E jE .  

Thus, finally, from (18) we obtain 

 ( ) 1
2s s s s

s V

C i C dV
N

∗
β β β β− Ω β = − ∫ j E� . (19) 

 Applying to (19) the inverse Fourier transform 

 ( )
2

0

1
2

in d
sn sC C e d d

π
− β

β= β
π ∫ , ( )

2

0

1
2

in d
sn se d d

π
− βΩ = Ω β

π ∫ , (20) 

 ( ) ( )
2

0
0

1 , ,
2

in d
sn s se d d x nd y z

π
∗ ∗ β

β= β = −
π ∫E E E , (21) 

one obtains the following equations for the complex amplitudes snC : 

 1
2sn sm sn m sn

m s V

C i C dV
N

∞
∗

−
=−∞

− Ω = −∑ ∫ jE� . (22) 

Electric and magnetic fields, E  and H , are given by 
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( ) ( )

( ) ( )

0

0

, , ,

, , .

sn s
s n

sn s
s n

C t x nd y z

i C t x nd y z

∞

=−∞

∞

=−∞

= − − ∇Φ

= −

∑ ∑

∑ ∑

E E

H H
 (23) 

 If the eigenfunctions 0sE  are well-localized (i.e. quickly decay in x -direction), then the 
representation of the field in the form (23) is equivalent to describing the periodic waveguide as a 
sequence of coupled cells. Therefore, snC  can be treated as a complex amplitude of oscillations of 
the s -th eigenmode in the n -th cell. The coefficients snΩ  can be interpreted as coupling of the 
n -th cell with the n m± -th cells (see Fig. 1).  
 

 
Fig. 1. On the definition of the complex amplitudes snC  and coupling coefficients snΩ  

 

3. Dispersion of the “cold” structure 

 In the absence of the beam current ( 0=j ), the following “cold” dispersion relation can be 
obtained from (22): 

 ( )im d
sm s

m
e

∞
− β

=−∞

ω = Ω = Ω β∑ , 1, 2,...s = . (24) 

Evidently, (24) takes into account all the spatial harmonics, as well as all the passbands of the 
periodic waveguide. 
 The coefficients smΩ  can be directly calculated from Fourier expansion of the dispersion 
curve of corresponding eigenmode. In the case, when each oscillator is coupled with its nearest 
neighbors only, the coefficients smΩ  are given by 

 0 0 1
2s s

s

i
Q

⎛ ⎞
Ω = ω +  ⎜ ⎟

⎝ ⎠
, 

, 1
2

0, 1

s

sm

m

m

Δω⎧− = ±⎪Ω = ⎨
⎪ ≠ ±⎩

. (25) 

Here, sQ  is quality factor of the corresponding eigenmode; 0sω  is the center frequency of the s-th 
passband. Denoting phase shift per structure period as dϕ = β , the dispersion relation can be re-
written as 

 0
0 cos

2
s

s s
s

i
Q

ω
ω = ω + − Δω ϕ . (26) 

Thus, coupling strength sΔω  determines the bandwidth of the s -th mode. 
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4. Power conservation law 

 Let us derive the power conservation law for the equation of excitation (22). For simplic-
ity, we consider only a single mode and omit the subscript s . Multiplying (22) on nC∗  and adding 
to complex conjugate equation, we get after some manipulations 

( ) ( )
2

2
0

12 Im 2 Im Ren
n m n m m n sn

m n s V

d C
C C C C dV

dt N
∗ ∗ ∗

−
≠

+ Ω + Ω = −∑ ∫ j E . 

Multiplying this equation on 2sN , we obtain 

 ( ) ( ) ( )
0

0
2 Im Im nn

n s m n m m e
m

dW W N C C P
dt

∗
−

≠

+ Ω + Ω = −∑ , (27) 

where 

 
2

2
s n

n

N C
W =  (28) 

is energy in the n-th cell, 

 ( ) ( )0
1 Re
2

n
e n s

V

P C x nd dV∗ ∗= −∫ j E  (29) 

is power of electron beam interaction with the field of the n-th cell, 
 ( )02 Im nWΩ  (30) 

is ohmic power losses in the n-th cell. Now (27) becomes 

 ( )0 nn n
n n e

dW W P P P
dt Q

+ −ω
= − + − − , (31) 

where 

 
( )

( )
1

1

Im ,

Im ,

n s m n n m
m

n s m n m n
m

P N C C

P N C C

∞
+ ∗

−
=

∞
− ∗

+
=

= Ω

= Ω

∑

∑
 (32) 

are power fluxes incoming in the n-th cell from the left and outgoing to the right, respectively. In 
a zero coupling limit ( 0nP± = ),(31) coincides with the power conservation law for a single cavity 
excitation [13]. 

 

5. Resonant properties of the finite-length periodic structure 

 Consider the finite-length periodic structure comprised of N  cavities (Fig. 2). Suppose 
that the periodic structure is connected at both ends with dispersionless sections of a uniform 
waveguide, which are terminated with a driving signal source at left and output load at right. The 
driving source and the load are perfectly matched with the uniform sections. Here, inP  denotes 
input power coming from the driving source into the input waveguide, refP  is the power reflected 
from the periodic structure into the input waveguide. Power propagated through the output 
waveguide and transmitted to the load is denoted by outP . Power fluxes of the forward and back-
ward waves propagating inside the periodic structure are marked by P+  and P−  respectively.  
 The wave propagation inside the structure shown in Fig. 1 depends on reflection and 
transmission factors, which can be can be easily obtained analytically. 
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Fig.  2. Schematics of the SWS connected to input and output waveguides 
 
 For simplicity, henceforth we assume that each oscillator is coupled with its nearest 
neighbors only, and the excitation equation for the “cold” structure (22) has the following form: 

 ( ) ( )0 1 1 0
2n n n n

iC i C C C+ −

Δω
+ ω + γ + + =� , 1, 2,...n N= , (33) 

where 0 2Qγ = ω . Renormalizing the amplitudes as ( ) ( ) 0i t
n nC t C t e− ω→ , (33) becomes: 

 ( )1 1 0
2n n n n

iC C C C+ −

Δω
+ γ + + =� , 1, 2,...n N= . (34) 

Now 0ω =  corresponds to the center of the periodic waveguide passband, and the dispersion re-
lation (26) becomes 

 cosiω = γ − Δω ϕ . (35) 
 In the numerical simulation the uniform input/output waveguides are represented as sec-
tions of periodic structure with much wider passband ΔΩ Δω� : 

 ( )1 1 0
2n n n

iC C C+ −
ΔΩ

+ + =� , 1n < , n N > . (36) 

Equations (34) and (36) describe the whole electrodynamic system comprised of periodic 
structure of finite length coupled with two uniform waveguides terminated with perfectly 
matched signal source and load. It is supposed that SWS is matched with the input/output 
waveguides exactly in the center of the passband. However, (36) can be easily modified to 
consider matching at any point within the passband. 
 We seek for the solution in the following form: 

 ( )in in i t
n in refC C e C e e− ψ ψ ω= + , 1n < , (37) 

 ( )in in i t
nC C e C e e− ϕ ϕ ω

+ −= + , 1, 2,...n N= , (38) 

 ( )i t n
n outC C e ω − ψ= , n N > , (39) 

where ψ  is phase shift per cell in the input/output waveguide. Dispersion in the input/output sec-
tions is  

 cosω = −ΔΩ ψ , (40) 
hence, within the SWS passband, −Δω < ω < Δω , dispersion in waveguides is negligible. 
 The boundary conditions at the ends of the central section of the structure are 

 
1 1 2 0

0 1 1

,
2 2

,
2 2

i iC C C C

i iC C C−

Δω Δω
+ γ + = −

ΔΩ ΔΩ
+ = −

�

�
 (41) 

 
1 1

1 2

,
2 2

.
2 2

N N N N

N N N

i iC C C C

i iC C C

− +

+ +

Δω Δω
+ γ + = −

ΔΩ ΔΩ
+ = −

�

�
 (42) 
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Substituting (37)-(39) into (41) and (42), after some manipulations we obtain the formulas 
connecting the amplitudes 

   
,

.
in ref

i i i i
in ref

C C C C

C e C e C e C e
+ −

− ψ ψ − ϕ ϕ
+ −

+ = +

+ = +
      (43) 

  
( ) ( ) ( )1 1 1 ,

.

i N i N i N
out

iN iN iN
out

C e C e C e

C e C e C e

− + ϕ + ϕ − + ψ
+ −

− ϕ ϕ − ψ
+ −

+ =

+ =
    (44) 

From (44) we find reflection from the transi-
tion from the semi-infinite periodic 
waveguide to the output dispersionless 
waveguide  

 
( )

( )
21

1

i
iN

i

C e e
C e

ψ−ϕ
− ϕ−

ψ+ϕ
+

−
Γ = = −

−
.   (45) 

Note that if dispersion in the output 
waveguide is negligible, one can assume 

2ψ ≈ π  and simplify (45): 

 21
1

i
iN

i

ie e
ie

− ϕ
− ϕ

ϕ

−
Γ = −

−
. (46) 

The plot of Γ  vs. ω  is presented in Fig. 3. Note that ( ) 1Γ ω =  outside the passband and has 

singularities in the cutoff/stopband points, i.e. d dΓ ω → ±∞  (for details see [8]). 
 Using (46), one can find the following expressions for the reflection and transmission fac-
tors of the finite-length periodic structure  

 
( )
( )

2

2

1 1

1 1

i i i

i i i

ie ie e
R

ie ie e

ϕ − ϕ ϕ

ϕ − ϕ ϕ

+ + Γ +
= −

− + Γ −
, (47) 

 2 sin 1
1 1

N
iN

i

i RT e
ie

− ϕ
ϕ

ϕ +
= ⋅

− + Γ
. (48) 

Here, R  determines the power flux reflected into the input waveguide, while T  determines the 
power flux transmitted into the output waveguide: 

2ref

in

P
R

P
= , 2out

in

P T
P

= . 

The plots of ( )R ω  and ( )T ω  for a periodic structure consisting of ten cavities are presented in 
Fig. 4, where theoretical curves (47), (48) are shown with solid lines and numerical results are 
shown with circles. One can see excellent agreement between the simulations and theory. The 
transmission factor is plotted for three different values of losses γ . One can check that in the case 

of zero losses 2 2 1T R+ = . 
 

6. Dispersion relation for beam interaction with the coupled cavity structure 

 In this section we derive a dispersion relation for electron beam interaction with a wave in 
a periodic waveguide. We restrict ourselves with 1D problem and consider interaction with a sin-
gle mode of the waveguide omitting the subscript s. Thus we rewrite (22) as follows 

 
Fig. 3. Reflection from the transition between the 
semi-infinite periodic waveguide and the disper-
sionless output section 
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Fig. 4. Plots of reflection and transmission factors vs. frequency (solid lines) compared with numerical 
simulation (circles) 
 

 ( ) ( ) ( ) ( )0
1 1, ,

2 2n m n m n
m s s

C i C I x t E x dx I x t E x nd dx
N N

∞ ∞∞
∗ ∗

−
=−∞ −∞ −∞

− Ω = − = − −∑ ∫ ∫� . (49) 

For convenience, we separate in (23) the solenoidal field of the periodic structure from the space-
charge field: 

 
( ) ( )

( ) ( ) ( ) ( ) ( )0

, , ,

, .n n n
n n

E x t E x t

E x t C t E x C t E x nd

= − ∇Φ

= = −∑ ∑
�

�  (50) 

Applying Fourier transformation to ( ),E x t� , we obtain 

 
( ) ( ) ( ) ( )

( ) ( )

0

0 0

,

,

ikx ikx
k n

n

iknd iknd
n k k n

n n

E t E x t e dx C t E x nd e dx

C t E e E C t e

∞ ∞

−∞ −∞

≡ = − =

= =

∑∫ ∫

∑ ∑

�
 (51) 

where ( )0 0
ikx

kE E x e dx
∞

−∞

= ∫  is Fourier transform of ( )0E x . 

 Applying the Fourier transformation to the right-hand side of (49) after some manipula-
tions we obtain: 

 0
1 .

4
iknd

n m n m k k
m s

C i C I E e dk
N

∞∞
∗ −

−
=−∞ −∞

− Ω = −
π∑ ∫�  (52) 

Multiply (52) on 0
iknd

kE e  and summate over all n : 

 
( )

( )

0
0

0 0

1
2 2

1 .
2 2

iknd
ik ndk

k k k k
ns

i k k ndk k k

ns

E eE i k E I E e dk
N

I E E e dk
N

∞
′∗ −

′ ′
−∞

∞ ∗
′−′ ′

−∞

′− Ω = − =
π

′=
π

∑ ∫

∑∫

�

 (53) 

Using the well-known formula 
 ( )2 2in

n m
e mϕ = π δ ϕ + π∑ ∑ , (54) 

where δ  is the Dirac’s delta function, one can simplify (53): 
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( ) 0 0

0 0
0 2 0 2

1 2
2

2 .
2 2

k k k
k k

ms

k k
k k k m d k m d

m ms s

I E E mE i k E k k dk
N d d

E EmI E k k dk I E
N d d N d

∞ ∗
′ ′

−∞

∞
∗ ∗

′ ′ + π + π
−∞

π⎛ ⎞′ ′− Ω = − δ − + =⎜ ⎟
⎝ ⎠

π⎛ ⎞′ ′= − δ − + = −⎜ ⎟
⎝ ⎠

∑∫

∑ ∑∫

�

 (55) 

 For a single-frequency harmonic wave, ( )expE i tω∼ , (55) reads 

 ( )( ) 0
2 0 22

k
k k m d k m d

ms

Ei k E I E
N d

∗
+ π + πω − Ω = − ∑ . (56) 

Assume that k-spectrum of the wave is narrow enough to retain only the term with 0m =  in (56), 
i.e., 

 ( )( )
2

0

2
k

k k
s

E
i k E I

N d
ω − Ω = − . (57) 

This means that we neglect interaction with non-resonant space harmonics. 
Dynamics of the electron beam is described by the well-known system of 1D equation of 

electronic motion, continuity equation and Poisson’s equation [14,15] 

 
( )

( ) 0

0

,

0, .

sc

sc

v vv E E
t x

v E
t x x

∂ ∂
+ = η +

∂ ∂
∂ ρ ∂ ρ − ρ∂ρ

+ = =
∂ ∂ ∂ ε

�

 (58) 

Неrе v  is electron velocity, e mη =  is electron charge to mass ratio, scE  is the space charge 
field, ρ  is space charge density. Linearazing the equations (58) one can obtain the following 
equation for high-frequency electron current  

 
2

2 0

02
e

e p
Ii I I i E

x V
β∂⎛ ⎞+ β + β =⎜ ⎟∂⎝ ⎠

� , (59) 

where 0e vβ = ω , 0p p vβ = ω , 0 02v V= η  is dc beam velocity, 0I  and 0V  are dc beam current 
and voltage, respectively. 
 In Fourier domain, after some trivial manipulations (59) reads  

 ( )2 2 0 0
0

02p k k
v Ikv I i E
V

ω⎡ ⎤ω − + ω = −⎣ ⎦ . (60) 

Combining (57) and (60), we obtain the following dispersion relation: 
 ( )( ) ( )2 2 2

0 0pk kv⎡ ⎤ω − Ω ω− + ω = ωω ε⎣ ⎦ , (61) 

where 

 
2 2

0 0 00 0 0 0
2

0 0 0 0 0 04 4
k k

s

I E Ev v I Z
d V N d V V

ε = ⋅ = ⋅
ω ω ω

 (62) 

is dimensionless interaction parameter and 

 
2

0
0

0 s

VZ
N

=
ω

 (63) 

is the cavity shunt impedance. Here it is supposed that ( )0E x  is normalized as 

 ( )0 0E x dx V
∞

−∞

=∫ . (64) 

 It is useful to compare the dispersion relation (61) with that of the Pierce theory of a TWT 
[14,15] 
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( ) ( )2 2 2 3
0 0e p ek k C⎡ ⎤− β − β + β = −β β⎣ ⎦ , (65) 

where 3
0 04C I K V=  is the Pierce gain pa-

rameter, K  is coupling impedance, ( )0 0β = β ω  
is the propagation constant in the “cold” struc-
ture.  
 Let ∗ω , ∗β  be the point of synchronism, 
where the cold phase velocity 0v∗ ∗ω β = . Near 
this point, the cold SWS dispersion can be ap-
proximated as 
 ( ) ( )gv∗ ∗Ω β ≈ ω + β − β , (66) 

where gv  is the group velocity. Since ( )0β ω  

satisfies the equation ( )0ω = Ω β , one can re-
write (61) as 

 ( ) ( )( ) ( )2 2 2
0 0 0pk kv⎡ ⎤Ω β − Ω ω − + ω = ωω ε⎣ ⎦ , (67) 

or taking into account the expansion (66)  
 ( ) ( )2 2 2 2

0 0 0e p gk k v v⎡ ⎤− β −β + β = −ωω ε⎣ ⎦ . (68) 

Comparing (68) and (65) we see that 3C  is 

 
2

3 0 0

0 0 g

vC
v v

⎛ ⎞ω ε
= ⎜ ⎟β⎝ ⎠

. (69) 

Thus, we find the following expression for coupling impedance K : 

 
2

0
2
0

k

g s

E
K

v d N
=

β
, (70) 

or, taking into account the definition of the cavity shunt impedance (63), 

 
2

0 00
2 2
0 0

k

g

Z E
K

v d V
ω

= ⋅
β

, (71) 

The plot of normalized coupling impedance vs. frequency is presented in Fig. 5 for ( )0E x  taken 
as Gaussian function 

( ) ( )220
0

2 x DVE x e
D

−=
π

. 

Note that K → ∞  at the edges of passband where 0gv = . However, the interaction parameter ε  
has no singularities so the developed theory is valid at all frequencies, even outside the passband. 
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Abstract – In the part one [1] of the paper, we have described the non-stationary (time-dependent) ap-

proach for simulation of electron beam interaction with electromagnetic wave in a periodic waveguide 
based on the non-stationary discrete theory of excitation of a periodic waveguide [2]. In this part we dem-
onstrate the application of the theory for numerical modeling of a coupled cavity traveling wave tube am-
plifier. 
 

1. Introduction 

 The non-stationary discrete theory of excitation of a periodic waveguide [2] represents a 
framework for modeling of non-stationary interaction of electron beam and electromagnetic 
waves propagating through a coupled cavity slow wave structure. According to the theory derived 
in [1,2], the waveguide is represented as a sequence of coupled oscillators. The basic equations of 
the theory are thoroughly reviewed in [1] along with its implementations to finite-length periodic 
structures. In this part of the paper we present the numerical results of a numerical simulation of 
coupled cavity traveling wave tube (TWT) amplifier. For simplicity, in this part we use the fol-
lowing assumptions: 
 a) the structure consists of identical cavities with weak coupling; 
 b) excitation of a single eigenmode of the structure is considered; 
 c) electron motion is one-dimensional; 
 d) the space-charge forces are negligible. 
Under the assumptions listed above, electric field of the structure can be represented in the fol-
lowing form 

 ( ) ( )0n
n

E C t E x nd
∞

=−∞

= −∑ , (1) 

where ( )0E x  is the eigenfunction describing longitudinal field distribution in cavity gaps, nC  is 
amplitude of oscillation in the n -th cavity. The amplitudes nC  satisfy the equation of excitation  

 ( ) ( ) ( )*
0 1 1 0

11 ,
2 2 2n n n n

s x

i iC i C C C I x t E x nd dx
Q N+ −

⎛ ⎞ Δω
− ω + + + = − −⎜ ⎟

⎝ ⎠
∫� . (2) 

Here ( )I x  is the beam current, Q  is cavity quality factor, 0ω  is the center frequency of the struc-
ture passband, the coupling strength Δω  determines the structure bandwidth. The non-stationary 
discrete theory allows considering arbitrary field profile ( )0E x . For example, one can obtain 

( )0E x  from numerical solution of Maxwell’s equations for the cold structure or from experimen-

tal measurement. In this paper, we approximate ( )0E x  by the Gaussian function 

 ( ) ( )220
0

2 x dVE x e
d

−=
π

, (3) 

where d  is the effective gap half-width. Such an approximation is often used for gridless gap. 
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 A self-consistent solution of the equations of wave excitation and 1D electron motion is 
realized by the computer code developed in Compaq Visual Fortran. The equations of electron 
motion  

 dx v
dt

= , 
e

dv E
dt m

=  (4) 

are modeled by the “particles in cells” (PIC) method [3,4] utilizing the “leapfrog” scheme for 
macro-particles movement 

 1 1 2m m m
i i ix x v t+ +− = Δ , 

( )1 2 1 2
m
im m

i i
e

E x t
v v

m
+ −

Δ
− = . (5) 

Here lower and upper indexes “i” and “m” denote nodes of spatial and temporal grid, respec-
tively, tΔ  is the time step. 
 The excitation equation (2) is solved by the conventional predictor-corrector scheme. The 
boundary conditions are chosen to provide perfect matching of the coupled cavity structure with 
input/output waveguides exactly at the central frequency 0ω  (see [1] for details). 
 

2. Numerical results 

 For the simulation we selected the parameters similar to those of the coupled cavity TWT 
described in [5] (see Table 1). 

Table 1. Coupled cavity TWT parameters 

Central frequency 6.49 GHz
Bandwidth 5.67–7.3 GHz
Effective gap half-width 0.295 cm
Period 0.85 cm
Number of cavities 10–40
Beam current 1≤ A

 
 The dispersion diagram of the coupled cavity structure is shown in Fig. 1. The passband is 
relatively narrow, therefore the simple model where oscillators are coupled to their nearest 
neighbors is valid [1,2]. We consider the case when the beam synchronism with the wave is ex-
actly in the center of the pass-band.  
 Fig. 2 shows small-signal gain plot vs. the normalized length of the tube CN  where C  
and N  are Piers gain parameter and phase length of the structure, respectively [6, 7]. The ad-
justment of CN  was performed by tuning the beam current, as well as by changing the number of 
cavities in the range from 10 to 40. Not surprisingly, gain value proved to be independent from 
variations of C  and N , as long as CN  is kept constant. The numerical results were found to be 
in good agreement with the linear wave theory of the TWT [6,7]. The plot of gain vs. CN  ac-
cording to the well-known approximate formula G A BCN= + , 9.54A = −  dB, 47.3B =  dB, 
which takes into account only one exponentially growing wave [6,7], is shown in Fig. 2 by 
dashed line. When all the three waves are taken into account, the theoretical data are so close to 
the numerical results, that corresponding graphs are not distinguishable in Fig. 2. 
 Fig. 3 shows the small signal gain vs. the synchronism parameter b  calculated at 

0.3CN =  for systems comprised of different number of cavities. The ( )G b  curve calculated ac-
cording to the linear wave theory is also shown by dotted line. The gain curve calculated for the 
system consisting of 40 cavities ( 30N = ) is in good agreement with theoretical predictions. 
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Fig. 1. Dispersion diagram of the coupled-cavity structure. Numerical results are shown with circles. 
Beam line for 0 15.3V =  kV is plotted 
Fig. 2. Small signal gain at the central frequency 0ω  vs. CN  in the case of exact beam synchronism at the 
center of passband ( 0 15.3V =  kV). Numerical data is marked by circles; theoretical formula G A BCN= +  
is shown by dashed line 

             
 
Fig. 3. Small signal gain vs. synchronism parameter b at 0.3CN = . Theoretical linear gain is shown with 
dot line. Gain curves calculated for systems comprised of 40, 20 and 10 cavities are plotted with solid line, 
dash-and-dot line, and dash line, respectively 

Fig. 4. Small signal gain vs. synchronism parameter b  for 0.6CN = . Theoretical linear gain is shown 
with dot line. Gain curve for the system comprised of 40 cavities is plotted with solid line 

 With the decrease of the number of cavities (at the same value of 0.3CN = ) the gain 
curve becomes less smooth (see Fig. 3). This can be explained by resonant properties of a finite 
length periodic structure discussed in [1]. Indeed, decreasing the number of cavities one should 
increase the beam current to keep CN  constant. Thus, the gain bandwidth increases, extending to 
the frequency domains where end reflections are strong (see [1]). One can clearly see that with 
the decrease of N  the gain ripples become stronger, especially with the approach to the edges of 
the passband. 
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 Fig. 3 also illustrates the well-known ef-
fect of deep attenuation of input signal 
(Kompfner dip, [6]) at 1.587b ≈ − . 
 The gain curve corresponding to 

0.6CN =  for the system comprised of 40 cavities 
( 30N = ) is plotted in Fig. 4 along with theoreti-
cal linear gain. It is clearly seen that at 0.6CN =  
the system comprised of 40 cavities already ex-
hibits gain ripples.  
 To avoid parasitic self-excitation, the ex-
perimental system [5] operates at lowered level of 
beam voltage, shifting the point of beam-wave 
synchronism to lower frequencies (see Fig. 1). 
The effects of beam voltage variation on small 
signal gain are illustrated in Fig. 5 where gain 
curves are plotted for a TWT comprised of 40 
resonators ( 30N = ) at 0.4CN =  and at different 
values of beam voltage. To clarify the relation 
between beam voltage and frequency-shift the 
graphs are plotted in units of frequency. As can 
be seen in Fig. 5, with the increase of beam volt-
age the gain curve shifts to the left with little al-
teration of its shape.  
 The nonlinear nature of beam-wave inter-
action is illustrated in Fig. 6, where gain vs. fre-
quency curves are plotted for the system com-
prised of 40 cavities at 0.4CN =  operating in the 
regime of beam-wave synchronism in the center 
of pass-band ( 15.32V = kV) and at different lev-
els of input power. With the increase of the input 
power the gain decreases and the maximum of 
the gain curves shifts to higher frequencies. Such 
a behavior is typical for TWT operating in 
nonlinear regimes. 
 Since the developed code is non-
stationary, it can be used for simulation of time-
dependent processes, including ones taking place 
due to various instabilities in a TWT amplifier. 
Particularly, in the case of beam synchronism 
near stopband, the parasitic self-excitation can be 
observed. This effect is characterized by occur-

rence of output power in the absence of input signal. For simulated system self-excitation can be 
easily provoked if beam voltage is lowered from the value corresponding to exact beam-wave 
synchronism in the center of pass-band. 
 The phenomenon of nonlinear drive-induced self-excitation of a TWT-amplifier operating 
near stopband, predicted earlier in [8,9], is also observed in our simulations. Output signal wave-
forms shown in Fig. 7 illustrate the phenomena taking place when TWT is driven with the single-
frequency signal with sufficiently high level of power. It is clearly seen that at low level of input 
power (curve 1) the regime with constant amplitude of output power settles after a short transient 
process. With moderate increase of the input power, the transient becomes longer, oscillations of 
output power decaying in time are evident during transient (curves 2, 3). At sufficiently high in-

 
Fig. 5. Small signal gain curves for the system 
comprised of 40 cavities at 0.4CN =  and at 
different values of beam voltage: 15.32V = kV 
(solid line), 15.5V =  kV (dash line), 16.0V =  
kV (dot line) 

 

Fig.  6. Large signal gain vs. input signal fre-
quency for the system comprised of 40 cavities 
at 0.4CN =  ( 15.32V = kV) and different lev-
els of input power 
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put power level oscillations of output power start 
growing in time (curve 4). This phenomenon 
arises due to nonlinear electron beam decelera-
tion [8]. As electrons convey their kinetic energy 
to the amplified electromagnetic wave, the beam 
velocity decreases. This shifts beam-wave syn-
chronism point to the backward-wave branch of 
the dispersion curve, leading to the TWT excita-
tion at a frequency close to that of input signal. 
The presence of two waves with close frequen-
cies manifests itself as slow oscillations of output 
power. 
 

3. Summary 

 The 1D PIC code for simulation of 
nonlinear non-stationary processes in a coupled 
cavity traveling wave tube have been developed. 
The results of numerical simulation of gain in 

linear and nonlinear regimes are presented. For sufficiently long structures, good agreement of 
the numerical results with small-signal TWT theory is observed. The developed code is applica-
ble for solution of various practical problems, including simulation of amplification of multi-
frequency signals, self-modulation and chaos generation, parasitic self-excitation of amplifiers, 
and short pulses amplification or generation. 
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Abstract – The results of numerical simulation of both leaky and guided modes propagating in planar 
dielectric periodic structure (Bragg gratings) using the 2-D finite-difference time domain code are pre-
sented. 

 

1. Introduction 

 Numerical simulation of electromagnetic fields in wave guiding systems using a direct 
solution of Maxwell’s equations is nowadays an important and promising task of the computa-
tional electrodynamics. Computer codes directly solving Maxwell’s equations are called fully-
electromagnetic. One of the areas where this approach is of much perspective is the study of 
leaky modes which are used in various devices, such as dielectric antennae and tubes, microstruc-
ture fibers, and sensors [1-4]. In this paper, we focus our research on the study of leaky modes 
propagation in Bragg gratings (one-dimensional photonic crystals) that have prospects of applica-
tion in communications and information processing, all-optical limiting, vacuum micro- and 
nano-technologies, etc. [2,5,6]. 
 One of the main approaches used for fully-electromagnetic simulations is the finite-
difference time domain method (FDTD) [7]. The advantages of the FDTD method are its com-
parative simplicity and ability to calculate electromagnetic wave propagation in media with rather 
complex properties. When the FDTD method is applied, the investigated domain is covered with 
the discrete grid, which form is defined by the geometry of the studied system. Both time and 
space components for electric and magnetic fields are moved from each other for the half step of 
discretization that provides the second order accuracy of the numerical algorithm. 
 It is well-known that in dielectric waveguides there exist two types of modes named 
guided and leaky waves. The first one can propagate without changing its form and amplitude, 
and its field is concentrated mostly within the dielectric layer. The second one is a wave with fre-
quency below the cutoff and cannot propagate within the structure. Thus, its field radiates out of 
the waveguide, endlessly increasing in transversal direction. In our previous works [8,9] we stud-
ied the electromagnetic guided wave propagation in a nonlinear Bragg grating structure when the 
input frequency was near the Bragg resonance. In this paper, we present the results of numerical 
simulation of leaky waves propagation in dielectric Bragg gratings using the FDTD code devel-
oped in [8,9]. 
 

2. Studied system and FDTD method 

Consider the Bragg gratings constructed of alternating dielectric layers of equal width Λ  with 
different values of dielectric permittivity, 1ε  and 2ε , respectively. The schematic drawing of the 
studied system is given in Fig. 1. We restrict ourselves to 2-D case supposing the system to be 
infinite in y-direction. The size of the dielectric structure was chosen to be 18 1.5×  μm 
( 720 60× space cells), permittivity of the layers 1,2 2.25 0.09ε = ± , the thickness of each layer was 
0.25 μm, number of the layers was 72. Those parameters are typical for real structures [6]. The 
dielectric structure is surrounded by vacuum ( 1ε = ). 
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Fig. 1. Schematic of the periodic Bragg grating structure 

 To simulate the open system, we use boundary conditions in a form of perfectly matched 
layers (PML, see [10] for details). This approach provides all descending waves to penetrate 
through the boundary without reflection and dissipate further within the PML. The thickness of 
PML was chosen to be 40 steps of space discretization. 
 For the numerical simulation we use 2-D code, developed previously in [8,9] and adopted 
for the studied problem. All further consideration will relate to TE-mode only. Maxwell’s equa-
tions in this case have the form: 
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accompanied with the material equation 
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ε
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Expressions for TM-mode can be easily obtained by changing components of D  and E  to H  
and B , and vice versa. The equations (1) are solved by the well-known numerical leapfrog algo-
rithm on the rectangular mesh which is second-order accuracy both in space and time [7].  
 In (1) all the variables are dimensionless and normalized as follows: 
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where 0E  is an arbitrary constant, space step 0.025xΔ =  μm, i.e. 10 steps per layer. We also as-
sume x zΔ = Δ , and 2c t xΔ = Δ , so as 178.1333 10t −Δ = ⋅  s. Such a choice of the time and space 
steps satisfies the Courante’s condition of stability of the numerical method [7]. Magnetic perme-
ability is assumed to be equal to 1, in that case B H= . 
 At the left boundary, at 0z = , the structure is excited by the harmonic signal of the fol-
lowing form 

 ( ) ( ), ; 0 cosyE x t z E x t= = ω . (2) 
Two other components of the input signal, ,x zB , can be found from the first two equations of (1). 
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Fig 2. Spatial distribution of electric field amplitude for the guided mode (left, 1412.38 10ω = ⋅  s-1, 
0.71644q =  m−1, 0.62386p =  m−1) and for the leaky mode (right, 141.699 10ω = ⋅  s-1, 6.12077q =  m−1, 

1.00295p = −  m−1). Half-width of the waveguide in x-direction 0.75 d =  μm 

 Transversal structure of the field, ( )E x  is chosen from the well-known analytic solution 

of dispersion relation for the uniform dielectric layer with permittivity ( )1 2 2 2.25ε = ε + ε = . In 
that case, for symmetric TE-modes the dispersion relation can be written in the following form 
(see [1,2] for details): 

 
2 2 2 ,

tan .
Q P V
P Q Q

⎧ + =
⎨

=⎩
 (3) 

Here ( ) ( )2 2 2 2 2 21V d p q k d= + = ε −  is the dimensionless frequency, d  is the half-width of di-

electric in x-direction, β  is the longitudinal wavenumber, 2 2 2q k= ε −β  is the inner transversal 
wavenumber, 2 2 2p k= β −  is the external transversal wavenumber, k c= ω , Q qd= , P pd= . 
After solving the dispersion relation (3), one can obtain transversal structure of the field using the 
following formulas: 

( )
cos , ,

, ,
, .
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px

A qx x d

E x B e x d
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−

+
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⎪

= > +⎨
⎪ < −⎩

 

In Fig. 2 typical transversal distributions for guided and leaky modes are presented. 
 

3. Numerical results 

 In this section we discuss the results of numerical simulation of electromagnetic waves 
propagating in Bragg gratings with the parameters given in Sec. 2. 
 First, we verified the FDTD numerical code having it applied for simulation of leaky and 
guided modes propagating in a homogenous dielectric layer. We found a perfect coincidence be-
tween our numerical results with those obtained analytically. 
 The typical dynamics for the case of periodic structure is illustrated in Fig. 3 where we 
plot space distributions of the electric field component yE  taken in three subsequent moments of 
time for guided (left column) and leaky (right column) modes. The gradation of grey corresponds 
to the field intensity and in both cases is calibrated to its maximum. Transversal distributions of 
the input signal are the same as presented in Fig. 2. Initially, at 0t = , the structure is empty and 
all the components of the electromagnetic field are zero. 
 From Fig. 3 it is clearly seen that in the case of guided wave the field is concentrated 
within the grating structure (shown with dashed lines) and its form remains constant while propa-
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gating along the system. In the case of leaky mode the wave cannot penetrate into the grating and 
the field is leaking away from the side boundaries of the dielectric, increasing while approaching 
to the PML. The amplitude of the signal inside the waveguide decays along the system, being 
about 2-3 times less on the left edge, since the electromagnetic field radiates through the bounda-
ries of the dielectric. Because of the finite size of the calculated area, we did not obtain the infi-
nite growth of the field.  

 

 
a 
 

 
b 
 

 
c 
 

Fig. 3. Electromagnetic wave propagation in the periodic Bragg grating structure for guided mode (left, 
1412.38 10ω = ⋅  s-1) and for leaky mode (right, 141.699 10ω = ⋅  s-1). Space distributions of yE  are presented 

in different moments of time equal to 400 (a), 1000 (b) and 2500 (c) time steps, respectively. The dielec-
tric structure is marked with dashed line 

 

4. Conclusion 

 The 2-D code based on FDTD method to calculate the propagation of electromagnetic 
waves in periodic Bragg grating structure composed of alternating dielectric layers with different 
values of dielectric permittivity, 1ε  and 2ε  was developed. Results of numerical simulations of 
leaky and guided modes propagation were presented. When the guided mode was considered, we 
found that the field of electromagnetic wave was concentrated mostly within the dielectric layer. 
For the leaky mode, the electromagnetic field radiated through the boundaries of the structure. 
The results are very similar to those obtained for the uniform dielectric waveguide. 
 Obviously, the study of nonlinear effects in such systems is of great interest since nonlin-
earity would doubtlessly widen the functional properties of such devices. The purpose of future 
work will be examining the periodic nonlinear structure with the nonlinearity supposed to be of 
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Kerr-type and nonlinear term not exceeding 1% of a linear part. We expect to observe nonlinear 
transition between leaky and guided modes with the increase of the input power due to the 
nonlinear shift of the dispersion curve, similar to the effect described in [8,9]. 
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   Abstract – The methods of homogenization for periodic metamaterials or artificial media with periodic 
magnetodielectric, semiconductor, metallic, and cavity objects included in the background medium have 
been considered using the based on Green’s functions integrodifferential equation methods.  

 
1. Introduction 

 
In recent time there is the boom in the investigation and manufacturing of artificial mag-

netodielectric media named as metamaterials, artificial media (AM), complex (or heterogeneous) 
media, composites, photonic crystals (PC) [1–9]. Such media, which earlier have been named as 
artificial dielectrics, were known more then about sixty years ago, and at that time their investiga-
tion had been started [10–13]. At present time the technique needs and the nanotechnology de-
velopments give the new push for such investigations. The metamaterials are the strongly disper-
sive and usually very lossy AM, with the exception of PC with lossless dielectric or cavity inclu-
sions into lossless dielectric background. The active PC lasers also may be considered as AM 
[14]. 

Likewise the natural  substances, the dielectric and magnetic properties of which are de-
termined by the averaging of contributions to electric and magnetic polarizations from their  par-
ticles or molecules by the physical infinitesimal volume, here the effective permittivity eε̂  and 
permeability eμ̂  are introduces for AM. In that case the averaging is fulfilling by some little vol-
ume of characteristic cell 0Ω . The introduction of effective permittivities and permeabilities is 
named the homogenization (the description of heterogeneous material as corresponding homoge-
neous magnetodielectric) [5–7,15–21]. It is ambiguous and depended from the method of averag-
ing [15–18]. The homogenization allows one to describe the AM with good accuracy in the fre-
quency regions with upper boundary frequency which is determined by maximal wavelength suf-
ficiently greater than the characteristic cell 0Ω  dimension. The essential here is the presence of 
several spatial scales, and one of basic analytical methods is the small parameter expansion. This 
leads to frequency limitations. In a number of cases the boundary wavelength may be comparable 
or even smaller than the introduced characteristic dimension. The homogenization allows to solve 
the electromagnetic boundary problem with the metamaterials objects without of inner cell fields 
consideration .  

The AMs may be parted on two classes: having the periodical or random inclusions 
[15,16,22]. Their combination also is possible. The PCs correspond to the first type when the fre-
quencies belong to optical range. [1]. The effective penetrabilities  (permittivities and permeabili-
ties) in general case are the complex tensors. Moreover, the metamaterials may demonstrate the 
chiral and bianisotropic properties [8,9,22–25]. Recently, the left-handed metamaterials with si-
multaneously negative both penetrabilities  in some frequency range have been obtained [2–5,9]. 
Such AMs contain the periodical wire split-ring and rod inclusions into dielectric background. 
Often such AMs are named as wire media although the metallic strips and other objects also are 
used. 

In spite of numerous publications in this field the statement of basic approaches is absent, 
and usually only the special case results in low frequency limit are presented. The goal of this pa-
per is the consideration of general methods of periodic AM homogenization using the rigorous 
integral equation (IE) approaches based on periodic Green’s functions (GFs). 
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2. The Green’s Functions and Integral Equations 
 

 Let consider the infinite homogeneous and isotropic magnetodielectric with permittivity 
ε  and permeability μ  in which the identical metallic and/or magnetodielectric objects are peri-
odically embedded. Let the metallic objects are characterized by joint volume 00 Ω∈V  with com-
bined boundary surface 0S  in the elementary cell 0Ω . The region 0V  may be multilinked. The 
object belonging to metallic type signifies the impedance boundary condition 

( )( )HZE
GGGGG

××=× ννν  fulfillment on its surface. Here Z is the surface impedance, and νG is the 
external normal vector on the surface 0S . The object belonging to magnetodielectric material sig-
nifies that it is electrodynamically equivalent to volumetric electric and magnetic polarization 
currents with the densities ( ) ( )( ) ( )rEIrjrJ e

p
GGGGG ˆˆ0 εεωε −= , ( ) ( )( ) ( )rHIrjrJ m

p
GGGGG ˆˆ0 μμωμ −= . Here ε̂ , 

μ̂  are the tensors of macroscopic penetrabilities for inclusions, Î  is the unite tensor. Let such 
inclusions in the cell 0Ω  have the volume V   with the boundary surface S. 

The periodic implantation (embedding) means the translation symmetry, i.e. the availabil-
ity of primitive translation vectors iaG  (or grating periods) and the vectors of periods 

nAanananp GGGGG
=++= 332211 . Here nG  is the cell shift (numeration) vector with integer coordinates 

in , 3,2,1=i , and A  is the translation matrix (made up on basis of vector-columns iaG ). The AM is 
splitted or zoning by the cells NΩ , which are numbered by the vector nG  or by multiindex 

( )321 ,, nnnN = . All cells have equal volumes 03210 Ω=×⋅=Ω=Ω aaaN
GGG . We consider that the 

translation vectors form right-hand systems. 
 To formulate the considered problems the more convenient is the periodic sources 
Green’s function (GF) approach [26–32] which leads to the IE in one (usually in zero) cell 0Ω . 
Such scalar GF has the view 

( ) ( )( )( )
( ) ( ) ( )∑∑ ⋅−−′−=

−+

′−+±
Ω

=′−
nn

njprrkG
kngk

rrngkjrrkkG
GG

GGGGG
GG

GGGG
GGG ϕεμ

εμ
εμ exp,

ˆ

ˆexp1,,~
02

0

2
0

0  . (1) 

Here ( ) ( ) ( )rjkrrkG GGG
00 exp4, −= π  is the scalar GF of free space, ck /0 ω=  is the wavenumber, 

the 3D summation is performed over the vector nG  (multiindex N ) in infinite limits 
∞<<∞− in , 12ˆ −= Ag π  is the tensor of inverse reciprocal lattice, k

G
 is the reduced wavevector 

connected with phase shift vector per cell: kA
GG

=ϕ . Correspondingly ϕ
GG

1−= Ak . Further let sup-
pose that the vectors iaG  are orthogonal and directed correspondingly along axes x, y and z. Then 
the matrix A is diagonal, and the GF view (1) is simplified [31]. The IEs for different inclusions 
and GF (1) have been formulated in the paper [31]. The electromagnetic field is creating by the 
sources in the form of surface electric current density J

G
 on the 0S  and by the polarization cur-

rents in the volume V. Thus, the vector-potentials may be written in the form: 
( ) ( ) ( ) ( ) ( )[ ] ( )∫∫ ′′−′′−+′′′−=

VS

e rdrEIrrrkkGjrdrJrrkkGrA GGGGGGGGGGGGGGG
3

00
2

0
ˆˆ,,~,,~

0

εεεμωεεμ ,       (2) 

( ) ( ) ( )[ ] ( )∫ ′′−′′−=
V

m rdrHIrrrkkGjrA GGGGGGGGG
3

00
ˆˆ,,~ μμεμωμ .                                (3) 

There are the full fields in (2) and (3). Conformably the excited by sources fields are determined 
standardly: 

( ) ( ) ( ) ( ) ( )rArAkjrE me
e

GGGGGG
×∇−⋅∇∇+= − εμεωε 2

0
1

0 ,                                     (4) 

( ) ( ) ( ) ( ) ( )rArAkjrH em
e

GGGGGG
×∇+⋅∇∇+= − εμμωμ 2

0
1

0  .                                   (5) 
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They, generally speaking, may be added by the incident fields iE
G

 and iH
G

 up to full values. The 

fields iE
G

, iH
G

 are exciting by incident sources. These sources can not be located in finite region 
as it disturbs the periodicity. The sources may be located periodically with correspondingly phase 
shifts, and then we have the excitation of periodic structure by periodically located sources. Let 
consider that such sources are absent. The located at infinity sources are corresponded with flat 
waves. Unique flat wave which does not disturb the periodicity is the wave with the dependence 

( )rkj G
G

−exp . This wave already is included into the GF (as and its higher spatial harmonics). 
However it could not be the wave of background media as εμ2

0
2 kk ≠
G

. Since we consider the ei-
genwaves (free waves), the amplitude of this «additional» wave must be zero. Then the volume-
surface IEs obtain the form 

( ) ( )rErE e
GGGG

= ,      ( ) ( )rHrH e
GGGG

=  .                                                (6) 
The sense of the notation (6) is that the full field in the region 00 V−Ω  is continuous and created 
by the sources inside the volume V and at the boundary 0S . This field satisfy the introduces 
boundary conditions at the 0S . It is easy to show that the solution of IE (6) also satisfy the media 
interfacing conditions at boundary S. The radiation conditions here are the Floqet- Bloch condi-
tion, which automatically are provided by the GF. The hypersingular IE (6) may be by several 
ways transformed to integrodifferential equations or into singular IEs. They may contain the both 
the volume and surface integral terms of only the volume ones. 

 
2. Dispersion equations 

 
Further let investigate the IE only in the form (6). The dispersion equation (DE) for ei-

genwaves defines the dependence ( ) 0,0 =kkF
G

 or  ( )kk
G

Φ=0 . These functions depend also on the 
parameters, which is determining the AM configuration. To get the DE one must solve the IE (6) 
in the region 0SV + . Let introduce for the vector-functions in the V  and at the 0S  the innerpro-
ducts (scalar products): 

( ) ( )∫ ⋅=
V

V
rdrFrFFF GGGGGGG

3
2

*
121, ,   VFF ∈21,

GG
 ,                                     (7) 

( ) ( )∫ ⋅=
0

0

2
2

*
121,

S
S

rdrGrGGG GGGGGGG
,   021, SGG ∈

GG
 .                                 (8) 

The surface current is connected with magnetic field by the relation ( ) ( ) ( )rHrrJ GGGGGG
×=ν , 0Sr ∈

G . 
If there are the thin metallic inclusions with the thicknesses compared with skin-layer, then the 
bilateral boundary conditions must be used. For PC in the infra-red and optical ranges it must go 
from surface to volume currents in the metallic inclusions using its properties in this range [33]. 
Thus, the problem solution must has the form of vector-function ( )JHEu

GGG
,,= , which is deter-

mined in the 9D functional spaces and adjusted in the volume V and at the surface 0S . Let this 
surface belongs to the Lyapunov class. Note that if  00 =V , then it is not closed. In this case it is 
necessary to introduce the concept of bilateral (double-sided) surface current density, as there are 
two normal vectors in each point. The scalar product 21,uu  in this functional space is deter-
mined by combination (7) and (8) as  

0
21212121 ,,,,

SVV
JJHHEEuu
GGGGGG

++= .                             (9) 

The IE relatively the surface current may be written in the form 
( ) ( ) ( ) ( ) ( ) ( )rJrZrErrEr e

GGGGGGGGGGGG
×=×=× ννν ,   0Sr ∈

G .                          (10) 
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For closed surface the ( ) ( )rJrJ GGGG +=  is the current density on the its outer side (so ( ) 0=− rJ GG
). For 

open surface it must be taken in form ( ) ( ) ( ) ( )rJrJrJrJ GGGGGGGG +−+ =+= 2 . The open surface may be 
considered as the limit case of closed one which is biplicated along some contour. Instead the re-
lation (10) one can write also 

     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )rrErZrHrwrHrrJ e
GGGGGGGGGGGGGGGG νννν ××=×=×= −1  ,   0Sr ∈

G .               (11) 
Here 1=w  and 2=w  correspondingly for open and closed cases. As the integral representation 
for surface current density (or tangent magnetic field) has the potential of single layer form, there 
is the jump when the observation point tends to the surface. This leads to the coefficient 2 in the 
(11). Presenting the open surface as the limit case of closed one, we get the reduction of this coef-
ficient. 

To get the DE we introduce the functional 
( ) euuukku −=Λ ,,, 0

G
,                                              (12) 

in which the index e denotes the function ( )JHE ee

GGG
,, . The stationary value of (12) is 0 and it is 

reached for the exact solution of problem (6). Substituting the exact solution into (11) one can get 
the DE in the form 

( ) 0,, 0 =Λ kku
G

.                                                      (13) 
In order to get the approximate solution the test function must be expanded into the series using 
the full system basis functions of functional space  

( ) ( )∑
=

=
M

m
mm ruru

1

GG α                                                       (14) 

with the extremum conditions application ( ) 0/ * =Λ∂∂ mα , Mm ,...,2,1=  (here Λ is the corre-
sponding to (12) quadratic form). Then the DE (13) approximately has the form of equality to 
zero of determinant. 

Let consider the matrix elements. The operator ⋅∇∇  after acting on the GF ФГ (1) is 
equivalent to tensor of dyadic operator ( ) ( )ngkngk GGGG

ˆˆ +⊗+− , and the operator ×∇  acts as 
( )×+− ngkj GG

ˆ . Let the DE has the solution 0k , k
G

. Taking the conjugated value from (13) we ex-

change the summation order, i.e. we replace nn GG
−→ . Obviously, the set 0k  , ∗− k

G
 is also the so-

lution. It corresponds to backward wave. If 0=Z  and the penetrabilities ε , μ  are real, then k
G

 is 
also real. The substitution ∗−→ kk

GG
 conserves E

G
 and changes the H

G
 sign. The DE (13) may be 

rewritten in several detailed forms. The finite surface impedance may be taken into account in the 
functional. Frequently the IEs with wire inclusions are considered. It is convenien to model these 
by the axial currents and impose the boundary conditions at the line which belongs to the side 
surface and is parallel to the axis. In this case the surface integrals are replaces by the linear ones, 
and the small parameter is the wire radius δ . The simplifications are also obtained under the ab-
sence of any kind inclusions, especially for inclusions of one type. For example, the dielectric PC 
is described only by E

G
 field. If PC presents the periodically hollow cavities of volume V  in the 

background, then PC describes by polarization current ( )EjJ e
p

GG
εωε −= 10 .  

 
3. Homogenization 

 
 The developed approach allows one to determine the functions ( )rE GG , ( )rH GG  and ( )rJ G

G
, 

which are presentable identically in all infinite region. For example, 
( ) ( ) ( )rkjrErE GGGGGG

−= exp~  ,                                              (16) 
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where ( )rE GG~  is periodic function with periods pG . The homogenization means the replacement of 
relations (16) by the relations 

( ) ( )rkjErE GGGGG
−= exp  ,                                                 (17) 

where E
G

 is a certain averaged field. By virtue of averaging ambiguity the homogenization is also 
ambiguous [16,17]. There are several approaches to the homogenization. The first is the picking 
up of effective values eε̂ , eμ̂  by such way that the scattering parameters of flat electromagnetic 
wave on the half-infinite AM coincide with the respective ones for the diffraction on the flat 
boundary vacuum-effective medium [5,10]. This approach allows one to get the frequency-
depended values ( )ωεeˆ , ( )ωμeˆ . But because of complicacy of problem it is usually solved for 
normal incident wave in approaching of effective scalar penetrabilities [10]. The method may be 
generalized for diffraction on the finite thickness plate. But such problem is very complicated. To 
solve it by IE method it is necessary to present the fields in the plate using 2D-periodic source GF 
[31] and match their with the fields of two half-spaces.  

Another way [15–18,20,21] is based on the perturbation theory and founded on field de-
composition in the Maxwell equations by small perturbation parameters and by the averaging 
over the cell with getting zero-order, first-order and higher-order approximations. Usually the 
two-parameter approach is applied with the low and fast variable coordinates. The value aG  (in 
most cases as scalar aaaa === 321 ) is usually the perturbation parameter (or its normalized 
value  λα /a= ). Here λ  is the wavelength. For the first case one can introduce the fast variable 
vector coordinates ( )321 /,/,/ azayax=α

G  which are used for averaging with zero-order and first-
order approaches with zero phase shift per cell [20]. In the second case the long wavelength as-
ymptotic form for tensors ( )ωεeˆ , ( )ωμeˆ  is seeking. It, particularly, may be based on the polariza-
tion vectors calculations. 

Let consider in detail one of more universe, convenient, and obvious example of ap-
proaches. It is based on the IE solutions and calculations with their help the tensors of electrical 
and magnetic polarizations per the cell. In this case owing to the averaging over the cell the re-
sults approximately applicable for a>λ . They are applicable with good accuracy when a>>λ . 
Thus, let ( )rE GG  and ( )rH GG  are the solutions of IE, which are obtained, perhaps, numerically at the 
frequency ω  by the vector root k

G
 determination from (9). There are infinite set of such solu-

tions. By virtue of problem uniformity they are defined accurate within arbitrary multiplier. It do 
not influence on the final results. The relations 

( ) e
e PEIED

GGGG
+== ˆˆ 00 εεωεε ,    ( ) m

e PHIHB
GGGG

+== ˆˆ 00 μωμμ                     (18) 

must be fulfilled for macroscopic AM. The upper line here denotes the averaging over the cell, Î  
is the unit tensor, and eP

G
, mP
G

 are the electrical and magnetic polarization vectors of unit volume.  
These vectors are caused by quasi-static changing dipole charges and surface or contour currents. 
The condition of quasi-static character is fulfilled on conditions that a>>λ . The inductions are 
defined by their amplitudes (18) as in the (17). Notice, that the «molecular» polarization of mag-
netodielectric background medium is taken into account yet by the parameters ε , μ . The electric 
dipole polarization of surface charge contributes to  ( )rPe GG

 and is connected with surface current 
density J

G
 as ωστ jJ −=⋅∇

G
. Here ⋅∇τ  is the surface divergence, σ  is the surface charge den-

sity. The mentioned contribution is 

( ) ( )∫∫ ⋅∇
Ω

=
Ω

=
00

2

0

2

0

1

SS

e
J rdrJrjrdrrP GGGGGGGG

τω
σ .                               (19) 

If the surface 0S  is flat with the boundary in form of contour L, then the integral (19) may be 
transformed. Placing the axes x, y on this surface, one has 0=e

JzP , 
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( ) ( ) ( )∫∫∫ Ω
−

Ω
=⋅∇

Ω
=

00

2

00

2

0 S
x

LS
xy

e
Jx rdrJjrdrxJjrdrJxjP GGGGGGG

ωωω ν . 

As the normal component νJ  in the contour is zero, the first integral vanishes. The term 0=e
JyP  

is expressed similarly. Then it is not difficult to get the components e
JP
G

 in arbitrary coordinate 
system.  

The averaged fields present in the form 

( ) rdrEE
V

GGGG
3

0 00

1
∫
−ΩΩ

= ,       ( ) rdrEH
V

GGGG
3

0 00

1
∫
−ΩΩ

= ,                               (20) 

as the fields inside of the conductors must be zero in these integrals. The contributions into  
( )rPe GG

 and ( )rPm GG
 from the polarization currents we define correspondingly by terms 

( ) ( )( ) ( )[ ]∫∫ −⋅∇
Ω

−=⋅∇
Ω

=
VV

e
p

e rdrEIrrrdrJrjP GGGGGGGGGG
3

0

03

0
ˆ

ˆˆ εεε
ωε ,                        (21) 

( ) ( )( ) ( )[ ]∫∫ −⋅∇
Ω

−=⋅∇
Ω

=
dd VV

m
p

m rdrHIrrrdrJrjP GGGGGGGGGG
3

0

03

0
ˆ

ˆˆ μμμ
ωμ .                     (22) 

The volume integrals in the (21), (22) also may be transformed. Particularly, 

( ) ( )( ) ( )[ ] ( )( ) ( )[ ]∫∫ −⋅
Ω

+−⋅
Ω

−=
VS

e
x rdrEIrxrdrEIrrxP GGGGGGGGGGG 3

0
0

03

0

0
ˆ

ˆˆˆˆ εεεεενε
ε  .        (23) 

These relations are simplified for isotropic inclusions. If the permittivity ε~  is constantan inside  
such inclusion then there is only the surface integral: 

( ) ( ) ( )( )∫ ⋅
Ω

−
=

S

e rdrrErP GGGGGGG
2

0

0~ ~
~

ν
ε

εεεε
ε .                                        (24) 

For the magnetic polarization we have  

( ) ( ) ( )( )∫∫ ×
Ω

=×
Ω

=
00

2

0

02

0

0

SS

m
J rdrJrrrdrJrP GGGGGGGGGG

ννμμ ,                                (25) 

where ( )rrr GGG νν ⋅= . At last, let consider more simple case of line current. Introducing the continu-
ity equation ( ) ( )ljdlldI ωρ−=/  with the line charge density ρ , one can write 

( ) ( ) ( ) ( ) ( ) ( )
∫∫∫ Ω

−
=

Ω
=

Ω
=

LLL

e
J dl

dl
lrdlIjdl

dl
ldIlrjdlllrP

GGGG

000

1
ωω

ρ ,                    (26) 

( ) ( )( ) ( )∫ ×
Ω

=
L

m
J dllIlrllrP GGGG

0
0

0μ .                                             (27) 

Here l  is the arc length, 0l
G

 is the unit tangent vector. 
 The homogenization means that the vectors like (17) satisfy the Maxwell equations. By 
virtue of linear relations between the polarization vectors and average fields, one can write that in 
general form [8,25] 

( )HZEHcEPe
GGGGG

ξκεξκε ˆˆˆˆ 00
1

0 +=+= − ,     ( )EZHEcHPm
GGGGG

ςχμςχμ ˆˆˆˆ 1
00

1
0

−− +=+= .     (28) 
They correspond to bianisotropic properties of equivalent homogeneous medium, as the periodic 
AMs are bianisotropic in general. The relations (28) may be presented by several forms and are 
defined the medium model. They mean the linear tensor intercouplings of each field like (17) 
with another and with its rotor. Accordingly the intercouplings for amplitudes are 

0

01
ˆ

ˆ
ωε

ξε HkHkE e

GGGG +×
−= −  ,      

0

01 ˆˆ
ωμ

ςμ EkEkH e

GGGG −×
−= −  .                          (29) 

The wave equations for amplitudes may bee written as: 
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( ) ( )EkEkkEkEkkEk eee

GGGGGGGG
ςμξςμε ˆˆˆˆˆˆ 0

1
00

12
0 −×+−××= −− ,                       (30) 

( ) ( )HkHkkHkHkkHk eee

GGGGGGGG
ξεςξεμ ˆˆˆˆˆˆ 0

1
00

12
0 +×−+××= −−  .                    (31) 

Since (30), (31) are the linear homogeneous equations, their determinants must be zero. Take an 
advantage of another form of equations, for what introduce the singular antisymmetric matrix k̂ , 
which is corresponding to the operator ×∇  [25]. Then the Maxwell equations for amplitudes may 
be written as [25]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

0
0

ˆ/ˆˆ

ˆ/ˆˆ

00

0

0 HZ
E

kk
kk

HZ
EA

e

e G
G

G
G

μς
ξε  ,                           (32) 

where 000 /εμ=Z . The equality to zero of six order matrix A determinant also gives the DE. If 

eε̂  commutes with the tensor ξ̂/ˆ
0 +kk , and eμ̂  commutes with 0/ˆˆ kk−ς , then  

( )( )( ) 0/ˆˆˆ/ˆˆˆdet)det( 00 =−+−= kkkkA ee ςξμε . In the matrix form we have  

( ) ( )[ ] 0ˆˆˆˆˆˆ 1
0

11
0 =+−+ −−− Ekkkk ee

G
εςμξ ,     ( ) ( )[ ] 0ˆˆˆˆˆˆ 1

0
11

0 =++− −−− Hkkkk ee

G
μξες ,       (33) 

and for wave equations and for DE: 
 ( ) ( )( ) 0ˆˆˆˆˆˆdet 1

0
11

0 =+−+ −−−
ee kkkk εςμξ ,   ( ) ( )( ) 0ˆˆˆˆˆˆdet 1

0
11

0 =++− −−−
ee kkkk μξες .       (34) 

If 0ˆˆ == ςξ , then we have the model of anisotropic media. In this case the susceptibility tensors 
may be defined by following way. We have the relation 

 zxzyxyxxx
e

x EEEP κκκε ˆˆˆ/ 0 ++= .                                          (35) 

Using another root k
G

 by frequency conservation, we get new values of fields and polarization 
vectors. There are infinitely many correlations like (35), but for nondissipative AM it is conven-
ient to use the following procedure. Supposing that 0== zy kk  and for given frequency we are 
seeking the xk  from (12). There is also the solution xka −1/2π  or equivalent  xk−  for lossless 
case. Then we suppose 0== xz kk  and define the yk . At last, under 0== yx kk  we find the 
value zk . Using tree relations like (35) one can get the parameters ( )ωκ xxˆ , ( )ωκ xyˆ , ( )ωκ xzˆ . The 
analogous correlations for other components allow one to determine the second and the third lines 
of matrix ( )ωκ̂ , and also the matrix ( )ωχ̂ . The overdetermined systems like (35) also may be 
solved using the Tychonoff regularization approach. The symmetry conditions must be taken into 
account. All these reduce the errors of such generalized solution. In general bianisotropic case 
(29) the additional backward wave solutions or, the two circularly or elliptic polarized waves 
must be used. It is necessary for this to solve the system of linear algebraic equations (SLAE) of 
six orders. The considered cases allow one to get at the least six such equations, and also the 
overdetermined such systems. The dissipation leads to complex values of k

G
. If such root is fine 

numerically, the root ∗− k
G

 at once may be used in the average field determination.  
One more approach may be established on minimal mean-square discrepancy between the 

AS and the effective medium dispersion lows [31,32]. Since there is here the arbitrary assigned 
vector complex parameter k

G
, the method allows to define the frequency-dependent tensors with 

taking into account the physical restriction in their elements in wide frequency range including 
the case a<λ . Finally, we give the homogenization example for dielectric AM, which is describ-
ing by scalar permittivity ( )rGε~ . Let  ε  is the averaged over the sell value. Using (16), we write 
the Maxwell equation in the form 

( ) ( ) ( )rHZjkrEkj GGGGG ~~
00−=×∇+− ,  ( ) ( ) ( ) ( ) ( )rEZrjkrErHkj GGGGGGGG ~~~~ 1

00
−=×∇+− ε , 

wherefrom we have 
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 ( ) ( )( ) ( ) ( ) ( )( )[ ] ( )rEkkIkrkrEkkrEkrkrE GGGGGGGGGGGGGGGG ~ˆ~~~~~ 22
0

22
0 ⊗+−=⎟

⎠
⎞⎜

⎝
⎛ ⋅+−=×∇×∇ εε .     (36) 

Consequently, the tensor ( ) ( )( ) 2
0

2
0

2 /ˆ/~ˆ kkkIkkrr
GGGGG

⊗+−= εε  for the field ( )rE GG~  plays the role of 
microscopic permittivity. It is impossible directly get eε̂  by averaging of  ( )rGε̂  (i.e. replace  ( )rGε~  

by ε ), inasmuch as ( )rE GG~  depends on k
G

. It must get the boundary problem (36) solution with 

periodic conditions and determine the averaged values E
G

 and D
G

 correspondingly through ( )rE GG~  

and ( ) ( )rEr GGG ~ˆ0εε , i.e. to fined the depended on  k
G

 vector-functions E
G

 and ( ) ( )rEr GGG ~~ε . Then the 

effective permittivity eε̂  is defined from the SLAE ED e

GG
εε ˆ0=  under the different k

G
. The addi-

tional condition in solving of (36) is the relation ( ) ( ) ( ) ( ) 0~~~~ =∇⋅+⋅−⋅∇ rrErEkjrE GGGGGGGG ε . 
 

4. Conclusions 
 

 The integral dispersion equations for linear artificial periodic media have been formulated 
using the Green’s functions of periodically located sources. The dielectric, magnetic and metallic 
and cavity periodic inclusions into background medium have been considered including the gen-
eral anisotropic case. The methods of homogenization based on sell polarization tensors calcula-
tion using the IE solutions are formulated. The method based on list-square discrepancy minimi-
zation between the AM and effective model medium have been proposed for the homogenization. 

The symmetry properties must be taken into account as some restrictions for effective 
values taking the physical considerations and the inclusion configurations. Especially, this is the 
Onsager-Kazemir reciprocity relations [34] for nondissipative and nonrotating media absence of 
outward magnetic field. Such media are describing by symmetric penetrability tensors and by real 
chiral tensor Tjj ςξζ ˆˆˆ −==  [9]. In general nondissipative case we have *ˆˆ iieiei ′′ = εε , *ˆˆ iieiei ′′ = μμ , 

*ˆˆ
iieiei ′′ −= ςξ .  
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   Abstract –   The calculation of eigenmodes in multilayered magnetodielectric structures with non-
uniform boundaries is of special interest. The efficient algorithm is presented for modeling the strip line, 
the slot line and the strip-slot line. 

 
1. Introduction 

 
Multilayered magnetodielectric structures with non-uniform boundaries are the basis of 

many technical devices in radiophysics and optics. The calculation of eigen modes in such struc-
tures is of special interest. In this paper we present an algorithm for rigorous solution of Max-
well's equations in multilayered magnetodielectric structures. 

 
2. Formulation of mathematical model 

 
Fig.1 shows the cross section of multilayered magnetodielectric structure, which con-

tains strip lines and slot lines at the boundaries between the layers. 
 

y 
 
                                                                                                                                     

                                                     i                       l                                              l i-1                             
                                        
              d i 
                                                                                                                                                                                                               l i                  x                                   

                                                                                                                        d i+1      l I        
                                                                                                                              l i+1 
                                                                                                                  
 

 
 

Fig.1 Multilayered magnetodielectric structure with non-uniform boundaries 
 
 
Here di is the thickness of the i-th layer,  wi is the width of the strip or slot. The metal 

surfaces  (si)  are assumed to bе negligibly thin. It is also assumed that the whole structure is loss-
less. The structure is assumed to be uniform and infinite in both x and z directions,   it is also 
symmetric with respect to the plane YOZ.  
 А hybrid-mode analysis is apparent1y necessary in such structure. Denoting the scalar po-
tentials for ТМ and ТЕ waves bу eV  and  hV , respectively, the electromagnetic (ЕМ) fields of 
hybrid modes [1] may be written as:  

                                            si-1                                              

                                            wi-1                                                                   
 ε i ,  μ i                                                                                                          s i 

                                            w i+1 

                                            w i 
 ε i+1 , μ i  +1                                           si+1
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   (1)     

where  β  is the unknown phase constant of the hybrid mode, ω is the angular frequency, 00 , με   

are  the permittivity and permeability of free space, ii με ,  are  the relative permittivity and per-

meability, respectively, in the i-th medium, iii kk με2
0

2 = , 000 μεω=k . 

The scalar potentials eV  and hV  satisfy the wave equations: 

0),(,0),( 22
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h
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e

i ββ   .       (2) 

The boundary conditions for EM fields to join these potentials are expressed as follows: 
                                                         0,0 =−=− −+−+

xxzz EEEE                                     (3) 
                                                   zxxxzz JHHJHH =−−=− −+−+ ,                                 (4) 

where the superscripts  “+” and "-" denote the fields in the  layers below and above the boundary,  
xJ , zJ   are the current components on the metal surface. As the first step, we find the Fourier 

transform [2] of equations. (1) - (4) as  

                                                      xdexFF xjα

π
α −

∞+

∞−
∫= )(

2
1)(~                                      (5) 
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where 2222

ii k−+= βαγ  . 
When this is done, the transforms of scalar potentials at i-th layer are sought as follows: 
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we arrive at the following functional equation [5, 6]  
                                             ,~~~~

1111 iiiiiiiiiii JeAeAeA =++ ++−−                                     (11) 
where jiA  are square matrixes. 

The functional equation (11) relates the field distribution with the current at the bound-
ary of the layers.  The functional equation for the boundary with a slot line is 
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Using of equations. (12) and (13) we can obtain functional equations for the multilayer 
structure. The functional equation for the slot line at  the i-th boundary is 
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The functional equation for the strip line at the  i-th boundary: 
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The operators entering the equations (14) and (15) are combinations of the elements of matrixes 
A and B. For the multilayer structure we obtain the following system of functional equations: 

                                                          ,YXM =⋅                                                         (16) 
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procedure.  
The unknown distributions of the fields Е and currents I is sought in the form [7, 8]: 
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where )(),( 21 tftf nn  are  Chebyshev polynomials of the first and second  kind.  Substituting (17) 
into (16) we obtain a set of homogeneous algebraic equations of unknown coefficients i

na1 , i
na2 : 

                                                           0=AK                                                      (18)                     
The elements of matrix K are calculated as follows:  
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where ),( βαpl
ijR -  the matrix operators on the functional equations (14), (15), 

iknmpijpl ,,2,1,;,,2,1,;2,1, …… === . 
The set (18) of homogeneous equations has the standard solution. The condition 

0Det =K  gives the dispersion equation that yields the propagation constants β of eigenmodes 
in the multilayered structure. The solution of the equation (18) allows one to find the distributions 
of the currents J and field Е in waveguide elements. 

 
3. Numerical results 

 
Basing on the above model of multilayered magnetodielectric structures with non-uniform 

boundaries we now proceed to the calculation of dispersion characteristics for the slot line, the 
strip line and the slot-strip line. Consider the structures with the following parameters: 
d1 = 1 cm,   d2 = 0.1 cm,   d3 = 1 cm; ξ1 = 1, ξ2 = 9, ξ3 =1;  μ1 = 1, μ2= 1, μ3 = 1   .  
The width of the strip and the slot lines are specified in the figures. 

 
Modeling of the strip line. From the functional equation (13) for the boundary with the 

strip line one gets 
                                                          1111

~~ eIB =                                                       (20) 
Next we approximate the current I on the strip using the system of orthogonal functions (17). Us-
ing the projective procedure, we obtain the algebraic model (18) for the strip line. Fig. 2   shows 
the results of calculation of dispersion characteristics of the modes for different widths of the 
strip line.  

 



80 

2 3 4 5 6
λ

2.6

2.7

2.8

2.9

β

 
 

_ _ w1=2.; __ __ w2=1.; __ __ w3=0.5     ___ ___ w4=0.1; _____ w5=0.01  
 

Fig.2 The λ-β characteristics of the strip line 
 
Modeling of the slot line.  From the functional equation (14) for the boundary with the 

slot line one gets 
                                                           1111

~~ JEA =                                                      (21) 
Now we approximate the field Е on a slot line using the  system of orthogonal functions (17). 
Applying the projective procedure, we obtain the algebraic model (18) for a slot line. The solu-
tion (21) gives the propagation constant β of eigen modes in the slot line.  Fig. 3 shows the results   
of calculation of dispersion characteristics of modes for different widths of the slot line.  
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Fig.3 The λ-β characteristics of the slot line 

 
Modeling of the strip-slot line. Using the functional equations (15) and (16) we obtain 

two equations: 
                                                        1212111

~~~ eEBIB =+                                                (22) 

                                           2222122111121
~~)(~ JEABAIBA =++                                   (23) 

We again approximate the current I on the strip and the  field Е on the slot using the system of 
orthogonal functions (17). Applying the projective procedure, we obtain the algebraic model for 
the strip-slot line which allows one to calculate the constant β.  Fig. 4 shows the calculated dis-
persion characteristics of modes for different widths of the strip and the slot.   
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Fig.4. The λ-β characteristics of the strip-slot line 

 
4. Conclusion 

 
The efficient algorithm is presented for modeling multilayered magnetodielectric 

waveguides with non-uniform boundaries. The implementation of the algorithm is illustrated by 
calculating the dispersion characteristics in different sample structures, namely, the strip line, the 
slot line and the strip-slot line. Our numerical results are in good agreement with those reported 
in [3,4,5,6]. 
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