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BBEJEHMUE

KOMHbIOTepﬂoe MOACJIMPOBAHNUEC CTAHOBUTCA I'NIABHBIM U MO[IJ,HeﬁIJlHM HHCTPYMEHTOM HCCIICJOBaHUA
CIIOXKHBIX CHCTEM U CTPYKTYp. MICroIp30BaHHEe CTPOrHX KOMITBEOTEPHBIX MOJEIICH MO3BOJISET aeKBATHO MIPOU3-
BOJIMTh UX aHAJIU3, CHHTE3 WM ONTUMHU3ALMUIO U 324aCTYIO BBITECHSCT HATYPHBIA dKcIiepiuMeHT. [1iist G0NbIoro
YHCIIa pACCMATPHUBAEMbIX 3a/1au MPOBEJCHHE HATYPHOTO SKCIIEPHUMEHTA YPE3BBIYANHO CIIOKHO HUIIA HEBO3MOXKHO
BOBCE, II09TOMY Pa3BUTHE METOJOB MaTEMAaTHYECKOI0 MOJCIHPOBAHUS ABISECTCS YPE3BBIYAiHO BaXKHBIM U aKTY-
AITbHBIM.

B npuknagHoii 3NEKTPOHUKE W DICKTPOJMHAMUKE, BKIIIOYAs H ONTHKY, UCIIONB30BAaHUE CTPOTHX METO-
JIOB aHaJM3a M CHHTE3a IIPU MOJEIHPOBAHWHU O3HAYaeT NPUMEHEHNE alrOPUTMOB Ha OCHOBE ypaBHeHHIT Mak-
CBeJUIa ¥ CTPOTHX PELICHHH YpaBHEHWH ABIDKCHUS. Ba)KHBIM 31€MEHTOM, BIMSIOLIMM Ha a/IeKBaTHOCTH MOJe-
JIMPOBaHUA, CIIYKUT KOPPEKTHOC BBEACHUEC MAaTCPpUATIbHBIX ypaBHeHI/Iﬂ u ypaBHeHI/lﬁ JABUXKCHUA YaCTUILL.

B nocnennee Bpems Bce Ooibliiee 3HaUeHHE MPHOOPETAIOT aBTOMATH3UPOBAHHBIE CUCTEMbI aHAIIU3a U
NPOEKTUPOBaHUs MPUOOPOB, ycrpoiicTB U cTpykTyp CBY, KBY 1 ontnueckux anamnazonos. [IpumeneHue siex-
TPOJMHAMHYECKUX METOIOB IPOUCXOINUT JUIS BCEX YaCTOT MCIOJIb3YEMBIX JIEKTPOMATHUTHBIX BOJH, BKITIOYAs U
ONTHUYECKHI JIMAMa30H, IPUYEM B ONTHKE TPAAULIMOHHBIE METO/Ibl aHAIN3a BBITECHSIOTCS CTPOTUM DJICKTPOIH-
HAMHYECKHM paccMOTpeHHeM. Hapsny ¢ TpagumuOHHBIMU YaCTOTHBIMH IOIXOJaMH K MOJCIHPOBAHHIO Pa3BH-
BAIOTCSI ¥ IPOCTPAaHCTBEHHO-BPEMEHHBIE METOIBI, YTO XapaKTepu3yeT OypHBII Iporpecc NpHKIagHON HecTa-
[IMOHAPHOM JJIEKTPOANHAMHKH. JIpyriMu akTyalbHBIMH COBPEMEHHBIMU HAIlPABJICHUSIMH, NIPEACTABICHHBIMU B
COOpHUKeE, SIBJIAIOTCS MOJCIMPOBAHHE HAHOCTPYKTYP (BKJIIOYAs KBAa3UIIEPUOAWYSCKUE CTPYKTYpHI) M NPUMEHE-
HHE IEKTPOANHAMUYECKUX METOI0B K HEJIMHEHHBIM 3a/1a4aM.

BoceMoii BhITyCK COOpPHHKA MPOJOJDKAST CEPUI0 ITyOJIMKAUi TPYZAOB HAy4YHBIX CEMUHApOB OOBEIH-
HenHo# nepBuuHoi siueiiku (IEEE MTT/ED/AP/CPMT Saratov—Penza Chapter) Bxopsiueil B MeX/yHapOAHYIO
HayuHyto opranuzanuio Institute of Electrical and Electronic Engineers. Ykazannas siueiika cozaana B 1995 r. B
Caparose u [lense. B cOopHuk BoILIH Tpy/sl, peactapicHubie B 2007 . Ha OYepPEeIHOM OJUHHAIIATOM CEMH-
Hape (Saratov—Penza Chapter Workshops) nannoii nepsuunoii siueviku. C 2003 roga 3Tu ceMHUHAPhl HMEHYIOTCS
kak «Workshop on Electromagnetics of microwaves, submillimeter and optic waves» 1 eXeroJHo B CEHTOpe
NPOBOJIATCS B paMKax MeXIyHapoJHod koHpepeHuuu «Saratov Fall Meeting» B CapaToBCKOM rocynapcTBEH-
HOM yHUBEPCHTETE.

INTRODUCTION

In recent time there was an increasing development of Computer Aid Design (CAD) methods and rigor-
ous approaches for microwave electron devices, units and elements all over the world and in Russia particularly.
These methods have been applied both for linear and nonlinear systems and structures in time and spectrum do-
mains. There is growing interest in electromagnetic and optics to nanostructures and metamaterials.

The correct introduction of material and motion equations and using of strict electrodynamic models
play important role in adequate numerical simulation of structures. Recently the nonstationary approach for elec-
tromagnetics and electronics stays more desirable and applicable. The nanostructures such as photonic crystals
and metamaterials play the important role in modern science and cause the different methods of its simulation.
These directions of modeling is also have mirrored in the present issue.

In 1995 on July 11 the IEEE Joint MTT/ED Chapter has been formed in Saratov and Penza under the
sponsorship and help of Electron Devices and Microwave Theory and Techniques Societies (ED-S and MTT-S).
Then it has been supported by Antennas and Propagation and Components, Packaging, and Manufacturing
Technology Societies (AP—S and CPMT-S), and now it is named as IEEE MTT/ED/AP/CPMT Saratov—Penza
Chapter included into the IEEE Russian Section.

This issue contains the papers presented at the 11-th IEEE MTT/ED/AP/CPMT Saratov—Penza Chapter
Workshop named as “Electromagnetics of Microwaves, Submillimeter and Optic Waves” which has been held in
conjunction with Saratov Fall Meeting at the Saratov State University in the September, 2007.



THE ACOUSTICAL DEVICES SYNTHESIS AND OPTIMIZATION USING
THE VARIATIONAL METHODS

A.A. Gybenkov, Member IEEE

Saratov State Technical University, Saratov, Russia
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Abstract — The variational method for the acoustical devices synthesis was offered. The given method
also is based on the variational method for the acoustical devices analysis using bilinear stationary func-
tionals. The generic variational approach for the analysis and synthesis was suggested. The common pro-
cedure of the functionals minimization and usages of their stationary properties makes the given approach
especially effective as the computation. The given approach can be used also for the acoustical devices
optimization.

1. Introduction

The optimal devices synthesis problem is rather actual task at present. The creation of the
device's mathematical model is the basic difficulty appearing at the solution of the devices syn-
thesis problem. All synthesis procedure depends from a select of the adequate analysis model [1].
It is desirable, that analysis and synthesis methods were structurally similar. Therefore they
should be based on the similar methods. The universal and optimal variational methods are the
most suitable for this purpose. The creation of the generic variational approach for the analysis,
synthesis and optimization problem solving in mathematical simulation is the main goal of this

paper.
2. Solution of problem

The common analysis problem definition is featured by the operator’s equations:
Lu=f W=ulr),reV), Mu=F (u=u(r),res). (1)
Here u is a variable column-vector, fand F are the given vectors.
Using the variational method the device analysis problem can be reduced to a determination
of the function u, supplying a stationary value to a bilinear functional of the following type [2]:
Haew)= (L= fow), (.2, + (M= F, Pw), (R ). @
Here the P and R are the operators determined from generalized Green's formula:
(Lu,w)V +(Mu,Pw)S = (u,Kw)V + (Ru, NW)S .

Letthe (.,. ), and ( .,. ), are the inner products.

The w is the conjugate problem's solution such that:
Kw=z (w=w(r),reV), Nw=y (w=w(r),reSs). 3)

We can define the bilinear functional (2) by choosing the conjugate problem (3) such that
the stationary value of the functional can be made equal to any characteristic parameter or any
required function of the problem.

The above-said variational approach allows to build a reasonable method of solution of the
devices synthesis problem, besides the solution of the analysis problem. Let the considered
acoustical device's construction is characterized by a finite number of the geometrical sizes
(tl, tyyeo. tm) or the geometry vector ¢. Every possible physically implemented populations of the

geometrical sizes will organize m-dimensional bounded set:
O={t=(t,t,,...1,); 0<t,<o0, i=1,2,...m }.



Hence to each set ® member there matches some device with the specified geometrical dimen-
sions. These dimensions uniquely define the characteristic device’s parameters (cl, cz,...ck)

same as eigenfrequencies, scattering matrix elements, coupling coefficients et al. Special interest
at engineering calculations represents searching such geometrical sizes of the estimated devices

for which its characteristic parameters would coincide with desired preset values (clo ,Ch,ye..Cp )
Therefore the synthesis problem is considered in the following statement. Let (clo , Ch e c,?)

are the desired values of the characteristic parameters. The synthesis problem consists in determi-

nation of the acoustical device’s geometrical sizes (tlo e t,?,) for which characteristic device’s

parameters (cl, Cypere ck) would coincide with desired values. We assume that solution of the
problem exists.
For solution of the devices synthesis problem the following functional is offered
k
Flu,t)=Y |1, =c[ +[|Lu~ f[av + [|Mu~F[ ds+
i=1 14 N

2 4
ds.

n—1

+i2j

J=lg=0 5,

0'u  0'u
on® on’
Here [; is the bilinear functionals (2) for parameters ¢; determination, V is the device’s volume, S
1s the device’s boundary, S; are the selected boundaries parting field on partial subregions. Last
three items in the functional (4) be analogous to Lagrange regularizing [3].

The functional F (u, t) reaches the exact low boundary, equal to null, when the function

u=u" is an exact solution of the boundary-value problem (1) and computed characteristic pa-
rameters for given geometrical sizes coincide with the desired values.

The unknown function u is approximately replaceable as the expansion in the complete
function system u,, :

N
u= Zanun. %)
n=1

Substituting this expansion in the functional (4), we’ll have a functional depending on the geo-
metrical sizes (£,,7,....7,) and the expansion coefficients(a,, a,,... a, ). Then solution of the

acoustical devices synthesis problem is reduced to the simultaneous determination of the vectors
a and ¢ supplying a minimum to the functional (4). The process of minimum's searching can be
fulfilled by any of known methods [4].

The exactitude of the determining unknown sizes ¢ depend on amount of the terms of series
in the expansion (5). The approximate solutions u and ¢ will be approaching to exact solutions on
the assumption N — 400 and

inf F(u,t)—>0. (6)
Generally the solution of the device’s synthesis problem is not unique. The process of the func-
tional (4) minimization will select only one of the possible solutions. If it is not enough, we can
easily select that solution from the assemblage ® which is advisable. For this purpose some of the
vector ¢t components can be fixed, proceeding from physical, constructive or technological rea-
sons.

Let the processes in the acoustic device with an enclosed volume V, limited by a surface S,
are described by the vector equations of the elasticity theory [2,5]:

Vel'=jopv-F, Viv=jos:T. (7)



Here v is the velocity field vector, T is the stress column-vector:

Ty | T, =Ty, [9/ox 0 0
| T,=Ty, 0 o/éy 0

T | T =Ty, v, 0 0 9oz —V'e
T,/ T,=T,,, 0 0/0z 0/dy ’
Ty | T5 =Ty, 0/6z 0  0/ox
Ty | Ty =Ty, | 6/oy 0/ox 0

p 1s the mass density, s is the fourth-order elastic compliance tensor, the double dot indicates
the usual double scalar product s:7 = ZSi ,T, , t indicates the transpose operation, Ve and V
are the symbolic operators [5], g, G, f are the body force distribution functions, w is the im-
pedance operator, @ is the frequency. Let the surface S present as S =S, +S,+S,. Suppose
v=g in §,, T=G in §, and v=f+w.T in S,. The tangents components of the fields should be
continuous inside of the volume V.

3. Simulation results
The interesting result for the given mathematical exposition of the acoustical problems is
obtained, when the synthesis problem has the unique solution obviously. The synthesis example
of the three-dimensional acoustical solid-state resonator from the isotropic materials is presented
by figure 1. The resonator’s materials are a chalcogenide glass in an aluminium environment. All
material constants was taken from [6].

The one-parametrical synthesis is carried out at the set wavenumber k, and the predeter-

mined typical configuration (fig. 1) of the acoustic resonator. It is required to determine the un-
known parameter P, setting a structure for predetermined type of the resonator.
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Fig. 1. The acoustical resonator's synthesis outcomes on the given eigenfrequency

The wavenumber’s value was determined through the modified bilinear functional (2) for
determination of the acoustical device’s eigenfrequencies on a method explained in [2]:

I(VoTB* +vSuT*)dV—juT*nds
CC):jV S

I(B*pu+f*s:T)dV ®



Here n is the normal to surface S, the sign () above the functions denotes the complex conju-

gation, the sign (") above the functions is the sign of membership to the Lagrange conjugate
problem [4]. All sizes of the three-dimensional resonator are measured in the units [/]. The wave

numbers are measured in the conventional units of the reciprocal wave length [/7'].

The multiparameter synthesis is considered on an instance of the acoustical waveguide
transformer's synthesis problem. Let's note, that the synthesis and optimization problems can be
combined at the successful statement of the problem when the initial parameters are obviously
chosen as optimum (ideal).

The results of the homogeneous three-sectional quarter-wave acoustical transformer's syn-
thesis on a standing wave ratio (SWR) parameter are presented by figure 2. The ideal SWR value
is equal 1. The waveguide’s material is a copper.

SWR | | [
L
L —F
L )
3 ' t
t 4
t 3
t, L ’
2

60 62 64 66 68 70 72 74 76 78 80 1/4

Fig. 2. The acoustical benched quarter-wave waveguide transformer's synthesis outcomes

The real SWR was computed by the formula:
1+|R|
1=[R]
Here for simplicity we suppose R = R ;. The value of R, was determined through the bilinear
functional (9) for determination of the scattering matrix elements explained in [2]:
Ry =84,8, = [[(VoT = jopv)o™ +(V o - josT)T |av -
Vv

~ [T Jads - [(o7)nds -

Sy S,

- j[(u—C—w:T)F]ndS—z [ (07 nds

SWR =

)

S,

So
Here 3,,3,, are the Kronecker deltas, C = v -w:T’, S, = ZSZ. .

All sizes of the waveguide’s longitudinal section at the figure 2 are measured in the mi-
crometers (¢, =33,020 , ¢, =37,567 , t, =52,248 , t,=72,568 , t, =82,550 , L=1,/4=70 , the
waveguide’s width = 165). Here A, is the medial wave length. The maximum flat characteristic

curve of the acoustical quarter-wave transformer was obtained.
The offered variational approach using the functionals (4), (8) and (9) allows to obtain the
synthesized acoustical devices with an inaccuracy of the characteristic parameters no more than 3



% at the small amount (about 50-100) of the coordinate functions. Thus the theoretical estimation
of the inaccuracy can be rather simply obtained [7, §].

4. Conclusion

In summary, the above-said variational method for the acoustical devices synthesis and op-

timization prove to be ideally compatible with the variational analysis method. The common
variation approach enable designing the universal and effective algorithms [9] for computation of
the typical variable dimensions of the construction offered by a researcher. However the success
of the device's optimal construction's searching depends on the practical experience, erudition,
scientific intuition, ingenuity of the researcher. The unsuccessful device's configuring cannot be
cancelled by perfection of its parametric optimization.

NN D b

9.
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NEW APPROACH FOR PULSES IN STRUCTURES WITH DISPERSIVE NONLINEAR
INHOMOGENEOUS MEDIA
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ISaratov State University, Saratov, Russia
’Saratov Region Government, Russia
E-mail: DavidovichMV@jinfo.sgu.ru

Abstract — In this paper the method of spatio-temporal series for integration of Maxwell equations or
wave equation has been developed using the finite element approach.

1. Introduction

As a result of development of nonstationary electromagnetics the necessity of effective
numerical methods for nonstationary waves (pulses) propagation and diffraction is arising. The
problems of pulse excitations and propagations are interesting both for linear and nonlinear dis-
persive media. Usually the only set pulse propagation is considering using the method of propa-
gator Green’s function (GF) and rare — by the spectral integral calculation. These methods are not
suitable for the diffraction on structures and for nonlinear media. Furthermore, the GFs are ex-
plicitly known only for several (three) ideal (lossless) dispersion lows [1], whereas in the real
dispersive media always there are losses, and the variety of the dispersion lows is sufficiently
large. There are some difficulties to realize the mod-matching method for piecewise nonuniform
media (or structures) and for nonhomogeneous ones in nonstationary case. At the same time the
media must be nondispersive. The usage of inverse Fourier transform to inverse the spectral solu-
tion is practically unreal even in the case when there is the simple analytical solution, not to men-
tion even about numerical spectral algorithms. The most universal approach here is the special-
time integral equation (IE) or integrodifferential equation (IDE) method based on special-time GF
of free space or structures. It, particularly, eliminates paradoxes of “super-light velocity” in pulse
propagation and tunneling [2-5]. In this paper the method of spatio-temporal series for integration
of Maxwell equations or wave equation has been developed using the finite element approach.

2. The flat pulses - 1D problem

So, let the electromagnetic pulse is the flat, i.e. has only two mutually transverse filed
components: E(t,z)=X,E(t,z), H(t,z)=y,H(t,z) and is exciting by electric current with the
density J (t,z): X,J (t,z). It needs to note that propagation problem always must be connected
with the excitation problem. But, in principle, one may set the fields at the time #, and build them
for the time moments ¢ > ¢, using the homogeneous equation. But, one must not set such fields

arbitrary. As a rule, one sets the pulse form by some time-depended function at the point z=0,
indirectly proposing that there is a certain source. Further its change is considering at z > 0. The
introduced functions satisfy the Maxwell equations:

~0.H(t,z)=0,D(t,z)+J(t,z),  0.E(t,z)=-0,B(t,z2) , (1)
where 8, =(8/8z), 6,=(8/6t), and D and B denote the inductions of field. Let consider the
nonmagnetic media: B = y,H . The frequency (time) dispersion assumes the integral relation the
inductions and field:

Dlt,2)= 8, E1,2) 5 [ 0,12, EYE(E, =)' )

ty



Here K(t,t', z,E ) is the relative dielectric susceptibility operator kernel, which is the function of
two times and may depend on z (inhomogeneous medium) and field (nonlinear problem). The
time #, corresponds to the beginning of filed creation, therefore on always may set ¢, =0 (the

problem with the entry conditions), or ¢, = —oo (the problem without the entry conditions), i.e. the

long time-scale process. Naturally, the second case contains the first if one regards that under
t <0 all quantities are zero. If x(z,7', z, E) = (z, E)5(t — ') then we have the no dispersive prob-

lem: D(t,z) = &,&(z, E)E(t, z) . Then the equations (1) may be reformulated as one wave equation:
E
agg(z,z)_@agg(t,z): 0.J(2) . )
This is also the equation for inhomogeneous nonlinear string and for the linear case it has the

D’ Alambert solution [6]. In the dispersive case both the first kind equation system and the second
kind wave equation are the IDEs as

0,D(t,2) = £,0,E(t,2)+ eyc(t,1, 2, ENt, 2)dt + &, [ 0,x(t,¢', 2, E)E(t', 2 )dt" (4)
)
Thus as usually (by virtue of homogeneity in time) the kernel is the function of times difference

t —t', and the expression (4) may be transform as:
t

o (12, EVE(, 2 = —,(0,2, EVE(,2) 2, [ le— 1,2, ENO, B, 2 )
Let t;eek the solutions of all equations in the form of spZtio-temporal series:
Blt.2)= Ya ik, (2). Hlez)= Yb 00 (). 0
where u,(z), v,(z) are the full basisn:f_ljnction systems meetingnz‘;l?e boundary conditions (if there

are). For example, if one consider the plane-parallel Fabri-Perot interference spectroscope (reso-
nator) with reference planes at z=0 and z =1/, then it mat be taken u, (z): sin(nzzz/ [ ),

v, (z) = cos(n7zz/ / ) In this case the summation in the first sum may be performed from 1, and in

the second one — from 0. The disadvantage of such submission is that the relations (5) must be
zero before the pulse front that is not implemented for finite numbers of terms in the series.
Therefore in real numerical simulation there is the nonphysical forerunner with super light veloc-
ity. For infinite region the presentations (5) may be written by Fourier transforms, that essentially
takes place under the pulse propagation analysis by spectral approach. We will use as such func-
tions the 1D finite elements (FE)

u,(z)=v,(z)=uy(z—nAz), n=0x1,%2,...,

1-(z/Az), |4 < Az,
R P

These continuous FEs are defined on three nodes of 1D uniform grid with the step Az. They are
differentiable inside the region: w, =u'(z)=—-2Az(z —nAz). In the boundary nodes its deriva-

- 6)

Z

tive suffers the jumps from zero to 2/Az at the left and from —2/Az to zero at the right. The

second derivative in the region is constant and equal to —2/Az”, and outside it is equal to zero,
i.e. is the piecewise constant. However, this derivative is not determined in the center. Therefore
the convergence of derivative decompositions is root-mean-square, and for the mentioned basis
the completeness is understood in terms of L, spaces. The introduced FEs are biorthogonal:
A4, :<un,um>:O, |m—n| >1,
16

A,m:<un,un>:Iun(z)dz=2£u0(z)dz:EAz=a, (7

10



1

Az
1
An,nil = Anil,n = <un’uni1> = .([uo(z)ul (Z)dZ = %AZ = IB .

Substituting the expansions (5) into (1) and using the equations (2) and (7) one gets the coupled
system of ordinary first-kind differential equations for coefficients:

a,(t)=0,a,(t)= f,(t.a.b)=

B A;;{ $ {cmkakonBmkbk<t>+jz<mk<r—f>ak<f>dt}+dm<t>}, ®
b,(t)=0b,()=g, (@)=~ 2 4, 3 B,ua,(0) . 9)

Here the basis functions u, have been used, the start time is 7, =0, and the matrix elements in
(8), (9) have the forms:

a,n=m, O,nzm,
A, =1B.n=m=tl, B, =1F1/2,n=m=],
0,n—m|>1, O,n—m|>1,
ka :(C“OJ.K(O’Z’E)Mm(Z)uk(Z)dZ’ dm(t):IJ(t’Z)Mm(Z)dZi‘ (10)

K, (t-t)= 80." Kt =12, Eu, (2, (2)dz.

For the linear homogeneous media and structures C,, = £,4,, , and the equation (8) is simpler. It

is simplest for the dispersion off media, and without the excitation current it takes the form (9)
with the substitution electrical and magnetic magnitudes. It is convenient to write down the rela-
tions (8), (9) in matrix form by introducing the matrixes 4, B, C , K and the vectors
a=(a,,a.,ay,a.a,), b=(b_.b,.b,.b.b,), d=(d_,.d.d,d.,d,). The numeration is
such that zero point corresponds to zero index. Namely, let propose that the source is located at
z=0,ie J(t,z)=1(0)5(z), d,(¢)=1(¢)5,,. Here I(¢) is the desired function which is equal to
zero at negative times. Then the two pulses propagate to the left right from the source with the
maximal velocity ¢. This implies that the excitation is placed only in the region |z| <ct, ie. it

may take into account in (8), (9) only 2M (t)+1 points. For finite region the maximal number of

FEs is finite. It is equal its value for the time when the pulses reach the boundary. In nonlinear
case the matrixes C and K depend on vector a.

The Euler, Runge-Kutt and Stermer methods are applicable to solve the system (8), (9)
introducing the discrete time ¢, = mAt, m =0,1,2,... which is adjusted with discrete coordinate:

Az = cAt . Tt is necessary for this to determine the inverse matrix 4~ of three-diagonal matrix A4
with numbers « on the main diagonal and £ upper and lower. To solve this system on can use
the screw die method. Let get the analytical solution for this for the matrix A4 with the dimension
n=2M +1. For it’s let consider the determinant A for »=-1,0,1,2,3. we have: A =0,
Ay=1, A\=a, A,=a’- >, A, =a’ —2af’. Decomposing the determinant A by the first
line (or column) elements one get the recurring relation

A,=ah,  ~FA,,. (11)
It shows that the determinant has the structure

ci’})zﬂ”, n iseven,

c((:le)/z,[)’(""l)/z ,n isodd.
The recurring relations may be written also for the introduced coefficients:

cl(”) = cl("_l) -1, cgn) = cg”_l) — cl("_z) , c§") = cgn_l) - cg”_z) . (12)

A =a" +ca" B+ o B+ M g +{

11



wherefrom it follows cl(”) = —(n—1). The inverse matrix elements are the form

4, = (_ 1)k+lﬂk1 /A, . (13)
The determinant is elementary computing by (11) or (12), and the main problem is to calculate
the minors m,,. As will readily be observed for this, the minor matrix in generally is four-

diagonal and has the quasi-block structure in the form three blocks on the main diagonal. The two
elements £ which are located near the main diagonal in the contact spots of central block and

outermost blocks disturb such three-block structure. But they don’t influence on the determinant
value. And so, the minor is equal to the product of block determinants, i.e.

CJALBTA, k=,
VA, A k<l

n—12

(14)

In particular, g, =, = f''A, ,. If [ =n then the minor matrixes become upper and lower tri-
angular matrix correspondingly with the elements £ on the main diagonal.

There are the modifications of matrix structure for the presence of boundary. Let one seek
the solution for Fabri-Perrot resonator with the size 2/ . To impose the zero boundary value at the
ideal electric screens at z ==/ it is necessary to leave out two nodes in the indicated points of
electric filed expansion, but keeping theirs for magnetic field. In this case the summation in (8)
from the moment of touch the boundary are realizing from —(M —1) to (M —1) (here

M =m_, =1/Az). If the boundary condition is impedance, that it is necessary to add the corre-
sponding bond of amplitudes a,,,,, by, and a ., b ., for the outermost points, at that it

must be taken 4, =@ /2. These relations allow getting the inverse matrix here. Just,

denoting its determinant as A , one gets Zz =a’/4- > and the recurrence relation

A=A _a*l4-A af*+A, ,B*, n>3,and also the expression for minors
1, = (A,_za/2 _Al—aﬂz )ﬂk_l(An—k—la/z _An—k—2ﬂ2)7k 21,
! (Ak—za /12— Ak—sﬂz )ﬂl_k (An—l—la /12— An—l—Zﬂz )> k<l

The problem of integration of equations (8)—(9) now is formulated in the following way.
At the start time 7, = 0 the filed is absent, i.e. a,(0)=5,(0)=0 for all n. We interest in values of

these coefficients in time moments ¢, = mAt, m =1,2,.... The problem dimension N or the num-

(15)

ber of special points is increased on 2 in each moment. Thus, N =2m+1, and the all matrix or-
ders are odd. The fourth order Runge-Kutt method is more appropriate to provide the good accu-
racy and simplicity. The simplest case is when the step of integration is equal to Az. So, the vec-
tors a(m), b(m) at the step m must be used to calculate the matrix elements at the step m +1. As
the function in the right part of (8) contains the integral with variable upper bound, let consider
the calculation of Runge-Kutt coefficients. The calculation in the regions (mAt,(m +1/2)At) and

(mAt, (m + l)At) which is carried out using two-point trapezium formula for fist point mA¢ gives
(m+1/2)At
ijk (m+1/2)At = )a, (') + q,, At/ 2)dt" ~a, (mAe)+ p,,ae /2] K, (0)/2+ K, (Ar/2)/2].
mAt

Here p, is the first Runge-Kutt coefficients for a,((m+1)Ar). If the functions
K,,((m+1/2)At —¢') are analytically integrable then the second multiplier in this formula is ex-
actly determined.
3. Volume pulses - 3D problems
Here we will consider the closed bounded 3D regions V) (the shielded resonators with sur-

face Sy ) and the corresponding solutions for confined structures in free space (the open dielectric

12



resonators of volume V), with surface Sy). In the fist case the Pointing vector on Sy is zero as the
surface consists from ideal electrical and/or magnetic walls, and in the second case it is the
boundary of dielectric body and may be shielded only partially. We consider that the structures

are exciting by incident electrical current with the density J. (77 , t), which is spreading in the cer-

mc

tain volume V. Correspondingly there is the incident charge density

pinc (F’ t) == _[v ) Jinc (l_;’ t,)dt’ *

For shielded hollow resonator in free space the solution is defined by tensor GF [7]:

EF,0)= [ [Tt 17,00, (7. )drde' . (16)
—oo)/

Here the sign in (16) and for GF is opposite as compared with [7]. The dielectric inclusions are

taking into account by introducing of volume polarization currents and the metallic ones - by sur-

face electric current density. Neglecting the spatial dispersion one can write the material equation

[8] with help of susceptibility as

B(F.r)= go{é(;,m [#G.1- t')E(F,t')dt'} —e [ -0EG O a7

—00 —00

Then for the polarization current we have

j;(?,t):g[ﬁ(F,t)—SOE(?,t)]:go{z%(?,JrO)E(F,t)Jr Jz%,’(?,t—t')E(F,t’)dt’} . (18)
The expression (18) corresponds to taking of limit under the tendency ¢’ to ¢ from the left, and
SO 1%(;7 ,+O) determines the momentary contribution to polarization current. The electric suscepti-

bility has the jump at zero as 1%(;7 ,0)= 0. The integral determines the contribution to polarization
current from the delayed field. If the process is slow so one may neglects of polarization delay,
that no dispersion &(7,#)=&(F)5(t) and J&(7,t)=s,(e(F)-1)E(F,t)/ & . The metallic bodies
bring the surface current density J ¢ on its boundaries S, which may consist from closed and open

surfaces inside the V) and from open parts of Sy . Therefore in general case instead of (16) the
problem is described by IE in 4D spatio-temporal region:

t
EGFt)= [ [Tt 70\ ¢ )drdr' (19)
—ooVy+V
where J(7,t)=J, (F,t)+J,(F,t)+ J4(F,)5(x,) is the full current density, and the integration is
taken over all volume occupied by the structure and the current. Here 7 = (7 )x7, V(F) is the

normal vector to S, x , is the normal coordinate from the surface. The delta-function picks out the

surface integral in (19). The field (19) must satisfy all boundary conditions that leads to the sur-
face-volume special-time IDEs. For structures in the free space it is need to use the free-space GF
[7] which owing to space and time homogeneity depends only from differences of arguments
and has the form

t - = '
Fee(F—F',t—t’):(V@)vjG(F—F’,t'—t")dz"—inéG(r_0;’t_t)] . (20
80 —0

Here / is the unit tensor and the scalar GF has the presentation [7]
G(F,1)= (x| st ||/ )= g(F)s(e |7/ ¢) - 1)
This GF may also be presented as

13



FQQ(F’t)zf_;r{(j_?o®?0)5'(t—r/c)_(j_3?0®%{5(t—rr/c)+c;((tr—2r/c)}} (22

c

Here Z, =\y,/&,, r= |r rn=rlr, ;(( ) is the step Heaviside function. Here the sign of first

term in (22) is opposite as compared with the expression (34a) in [7]. It is caused by the fact that
the operators of differentiation and integration with delta- function are anticommutative:

orafs(t—t)f(e')dt' = f'(e)==[ & (e —2')f(¢")de" .
The GF (22) satisfies the radiation and causality condltlons.
For shielded resonator the expressions are similar but in (22) instead IG itis necessary to

consider the diagonal tensor GF G(F,t | F',t'). Its diagonal elements are the solutions of wave

equation under the three different dipole orientations [9]. Let consider at first only the volume IE.
Then the (19) may be written as

E(F.t)=E, (F.t +80_”Fee Fot| P )R(F A+0)E(F ¢ )dr'de +
o

. (23)
+50”F” Fot| 7t Izc Pt —t")E(F',t")dr'd'de"

—ool

E, (7 t)= ”F Ao FL ) (7 dFdr!

—ool/

This equation has the operator form LE=E,

in?

L=1-L,=1-¢ ”{F” 7ot 7R (F,+0) + jree(r (7 OR(F t—t”)dt”}( )dr'de' . (24)

-0l

where the integral operator is introduced as

—00

Here 1 is the unit operator and the bracket indicates that the depended on source coordinates
function substitution is necessary. The derivative of delta-functions transforms (23) and (24) into
IDE and integrodifferential operator (IDO) correspondingly.

The GF (22) has strong singularity ~ 7. To overcome this let transform the equation
(23) as
E(7,t)=E, (F.t)+ F(F,t)+ K(F,t) , (25)

F(F,t)=VV. j j G (7t |F',t' W (7' +0)E j G t”)dt”}df'dt', (26)

ol
j j G'(F,t| 7, z){ (7' +0)E j &7 - ”)dt”}d?’dt (27)
L

Here VV - is operator grad-div, G'(F,¢|7',t') is the derivative, and G, (7,¢|7',t') is the antideri-

vative of diagonal GF G(F,t | F',t’). In (27) the sign “minus” from (20) is changed by “plus” ac-
cording to similar considerations, since the GF for shielded resonator may be presented as the
sum of singular part such (22) and regular part, at that

G, (7,0 |7 t")= g(F 7 )y le — 0 —[F =/ c) (28)
Gt |7 t)= g(7. 7)o" e — ' =|F =7/ ) . (29)

Therefore let such transforms are made for free-space GF (20). Then all GFs depend on coordi-
nate differences. Calculation the time integral in (27) we get
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)+ &7 AO)E(F e [ =7/ )+
(30)

K(F.1)= —szg(F —F’){ (7 +O)E! (7't [ — 7'
c

Vo

‘r 7 ‘/c
v [&F = =7 et )EF, t’)dt’}d?’
The kernel in (30) has the weak singularity like the single layer potential determined by the func-
tion g(z7 ) = (4727’)_1 , and the sign in (30) corresponds to the sign in (30).

The integration in (26) with GF ®I" (28) by the time ¢’ selects the semi-infinite region
(— oo,t—|z7 -7 '|/ c) as all fields are equal to zero in the ancient history. Therefore the Heaviside

function in (26) may be omitted otherwise the infinite upper bound co must bee taken. We trans-
fer the differentiations in (26) on the integrand, i.e. on the source point coordinates using the
identity

V' -(f(F=7,0)d(7", 1) = f(F=F eV -al7,t) -V - (f(F =7, 0)al(7,)) 31)
(here f(7,z) u a(7,t) are the arbitrary functions) and transform the divergence according the
Gauss (divergence) theorem:

F(7,t)=VV- j [1G -7 0-0)aF o )drar =

—ool,

v j § fF=7 =t )a(7, ¢ W(r')ds' +Vv j j f(F=7e=t W' -a(F,0)dr'dt = (32)

—o0S, —ooby

=j§v’f(?—?’,t—t')( (7", ¢ W (F"))ds’ - ”V a(F O (F =7 =t )dri'dt’

-8, —ol

Here V' =X,0/&"+y,0/3'+2,0/ ' is the gradient operator in stroked (source) coordinates,

a(F,t)=R(F,+0)E(¥,1)+ jfe,'(?,t—f)E(f,t')dﬂ : (33)

SF )= xle=ric)g(r) . (34)
And so,

V(7 -70)= 6t —[F - 7|/ c)g(F - 7) ror # + (e —|F -7/ e)e(F - 7')i (35)

_ = 2’
Cc\r —r r—r

V-i(F,t)=R(FAOWV - E(F,t)+ E(F,t V&(F,+0)- +

- 36
+j{ (Fot—tW-EG.0)+ EGOWRF. 1 )t ©0)

The time integration in (32) Wlth delta-function in (35) is elementary fulfilled and the fist term in
(35) gives the coordinate surface and volume integrals. The relations (34)-(35) impose the causal-
ity condition on the terms in (32) as the retarded functions. In particular, the upper bound is

t— |l7 -7 '| /c.
The equation (25) is IDE for the electric filed. The divergence may be eliminated from
(35). For this take the divergence from (17). According to Maxwell equations we have

V-D(F,t)/ &=V -D(7,t)/ =0, wherefrom V-D(F,¢)=—(F). As in distant past (¢ =—o) the
field was absent, we have the condition ¢(#)= 0. Therefore for the divergence we get
V-DCA) _y (e i) [{EGOWRG )+ G- B ar =200 37
2 o )
From this IE it is defined by Fourier method as
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(F,o,t) &, — E(F,0,tVR(F,®)
1+ &(F, )

V-E(f,t)zzi j Pine exp(jot o . (38)
T

Here we introduce the momentum spectra which are defined over the region (—oo, t) , and
Vi(F,0), #(F,o) are the kernel V&(7,7) and &(7,t) spectra correspondingly. Owing to the fact
that both kernels are zero for ¢ < 0, these spectra are defined using the positive times as

o

&(F, )= '[1%(17, t)exp(— jo)dt .
0
Let get the IDE for the dispersion off case for which

g, Je(F. )= (e(F)-1)E(F,1) &, (39)
therefore in the figure brackets in (26)-(27) according to (18) it is need to replace by (39). So,

F(0)=vv - [ [ 7o)~ VB s =

=VV. jg r—r)(g (r t— |r—r|/c)d”'—
(40)
= [Vg(F -7V [(g(f')—1)E(?',t—|?—?'|/c)]d*'—
—§Vgr—r)( (r t— |r r|/c)\/ ')ds’ ,
K(7,1)= —izj g(F =Y ) -V E(F e =|F =7/ ) @*dr. (41)
cy

The singularity of IDE (40) is reduced as compared with the initial IE. It is integrable,
therefore the piecewise constant FEs are applicable to this IDE. Also the IDO may be constructed
for the IDE (40). Let L is the such IDO. According to FEM it is necessary to determine the sta-
tionary values of functional [10]

o(t)=(E,LE)-(E,E,, )-(E,..E)=(E,LE)-2(E,E,. ), 42)
where the parenthesis denote the scalar product as volume integral from the multiplication of
functions (for real ones). Let use the volume decomposition on the FEs:

£, =3 a1V, () 3)

n=1 i=l
The indexes i=1, 2, 3 correspond to Cartesian coordinates x, y, z. Let consider the vector rectan-

inc?

gular volume FEs V, ()= XV,(7), where V,(F) are the scalar ones. As the result we have the
system of ordinary integrodifferential equations

a,(1)= 80ﬁ:i{jgﬁ{m(t,t’)amj(t’)dt’+ jdt’]f,,i(t,t’,t”)amj(t”)dt”}+cni(t) , (44)

m=1 j=1

—00

gl (t,t') '[ J. {Fee (7.t |7 0 )R (F" +0)}ij( Ndridr'

AV, AV,

folet )= [ [V B N GRITA < Ay | 7 ¥ 7 (45)

AV, AV,

f I f (e Foe | 700, (7L drdrdt

—ooly V

The functions (45) satisty the conditions gnm( ) 0 fort'<t, f*

nm

(t,¢',4")=0 for t" <t', and

fx (t t' t”) 0 for ¢' <t . The delta-function derivative presence leads to the appearance deriva-

16



tives cu,; /A in (45) and (44), and the reduction of singularity leads to functions V - 17,” (77 ) in the

decomposition. But they may be eliminated using (38). For homogeneous dielectric V-E =0,
and this case don’t exist. When the dispersion is absent then (38) becomes

V- E(F,f)= p;cqu;) E(r ’;()Z)g(F ) (46)

Thus, the nonstationary problem is reduced to the system of ordinary differential equations for
the time-depended coefficients which easy solved numerically

4. The expressions for matrix elements

The piecewise constant FEs are preferable for homogeneous dielectrics because the opera-
tor (24) transfers such FEs from the discontinuous function space L, into the same space (the test
and weight functions belong to unified gilbert space). The more smooth (high order) FEs are ad-
visable for inhomogeneous dielectric but lead to complicated expressions. Thus,

17 4 {x/\/_reW @7

i’ll ’ ]/ g 5V
Here x, =X,, X, =,, X, = Z, ate the unite ort-vectors, 6V, is the volume element. If the dielec-
tric is homogeneous we have

£(F,0)= [ (. t)exp(= jer)dt =1+ #(F,0) , (48)
0

where &(7,¢)=5(t)+ z(¢)x(F,£)=0 for ¢ < 0. The dispersion law usually is expressed by extinc-
tion in time functions, such as set of exponents. The simplest law has the form
/G(t) =K, ;((t)exp(— at). The corresponding spectral permittivity is
a—jo
o +a’
The complex permittivities expressed by (48) satisfy the Kramers-Kronig correlation [8].

For free space with homogeneous dielectric one has £(+0)=x,, & =—ax,y(t)exp(- at)

g(a)) =1+x, (49)

and

e s af= ez = . B
E(;,t) — _4’(_7(; Idf;l{c J' 1 3(70 I’o)®3(7"0 r0)|:E(;’tl)_aJ.eXd_ a(t! _t"))E(;;’t”)dtﬂ}t! +
123 —0

-7

—0

~ . . =7/
n 1—3(’”0 _I’O)®(Vo _ro)[E(’—,”t_|f_F'|/c)—a J.eXp(—Ol(l‘—|}7—7’|/C—l"))E(?,l")dl"]+

~ 2
7 =71

LA _@l)@f,@o %) E/F o —[F =7/ c) - aE(F o~ [F = 7'
C|I"—7’|

)+

7—"/6

Iexp t—t —|r r|/c)) (rt |r r|/c)dt}} E, (F.1)

—00

Using the relation Vg(7)=—g(¥)7, /r one can reduce the singularity in the first term by adding of

surface integral and transferring the differentiation to square brackets.
The GF 7™ for the case of closed shielded hollow resonator may be obtained by the full
orthogonal solenoidal and potential vector-functions expansion En( ) Vgon( ) [11,12]:
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(7t | 7 Z{ (q)[g;(t—t')Jré‘(t—t) (e—=t)]+ At - t)v(”"( r)®Ve,F )}

&ALV,

n=1

Here N¢,A,,v,, L2, are the given coefficients (e.g., N are the norms of functions E,, €2, are
proportional to resonant frequencies), and time GFs have the form
sin(_Qnt)
t)=xylt)—/——— .
g.(1)= 20—

n

As g, (0) = (), the term with delta-functions may be omitted. The knowledge of functions En,(pn

is necessary to determine the matrix elements.
5. The difference scheme and numerical results

To solve the equations we will apply the finite-difference scheme method of fourth order
of step value Ar. For this we decompose the time interval (to,t) on elementary intervals with

step At =t¢, —t,_,,k=1,2,3,.... Let take the approximation
a,(t)=a,(t,)+ay(t )t —1,)+as(e e—2.) 1 2+a(e, e —1,) /6 (50)
in the neighborhood of point #. The entry conditions are the forms

a, (to) = a’.(to) =a (to) = a”.’(to) =0. The derivatives are expressed through the left finite-

ni ni

difference, for instance,

a,(t,)=A,a,(t,) =[a,(t)-a, k,]/At_[ ~a,, ]/At :
ar(t,)=Ma,(6,)=AAa,()=[Aa,()-Agq, ( /At =
[ m( )_2ani(tk—l)+ani(tk—Z)]/At .

These relations lead to finite-difference scheme

e = Ay +ZZZG3,” - . (52)

m=1j=11=1

1

The matrix elements in (52) may be obviously write out. The number of points ¢, = kAt in B (52)

is increasing owing to the dispersion. If the response time is finite, then the memory 7 = KAt is
finite and [13]

D(F,t):go{E(F,z)+ jz%(?,t—t’)E(F,t’)dt} :
t=T
The space points in (52) also influence on the scheme order. The coefficients outside the wave

front are zero and not used. If the memory 7 is finite then the coefficients for which the excitation
went away also are unusable. We will use the cube region which is enveloping the expanding

with light velocity. For the sell » one must use the retarded on *m|/ ¢ time. The calcula-

nm — |'n

tion of matrix elements in (52) is correlated with time integrals such as
[’I

[exp(-alt, —t))rdt . a=0,020, p=123,
and with special integrals which are the same as for volume IE method 1Y [14].
As the illustration let consider the radiation of point dipole with the current

T )= 30l - W)= 0t most e

53
0, t<0,t>r. (53)
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If the field is slow changed during the time 7, it may be carried out the integral, and then we get
D(F,t)~ ¢E(F 1), &= 5(0) =l+x,/a.

WY
Q\\?
Y
\&&&«

W v' W
S
\\3‘ i W \\ ',/’7’
/l;;l/ i 'w \\\\ kA

Fig. 1. Component £z in the plane z = 0 for the di-

pole in the cavity of dimension aay/c = 10 at time
instants 12 (a) and 14 (b)

Fig. 2. Component Ez in the plane z = 0 for the
dipole in the cavity of dimension awy/c = 10 at
time instants ayt = 12 (a) and 14 (b)

Let 2a is the characteristic problem dimension. Then the following characteristic time parameters
may be introduces: 4A¢t, T, =2r/w,, v, al/c, 2alc, 1/a, 1/k,. Versus the B correlations
between them the solution will be has the different character. The characteristic times 7, and 7
define the quickness of process. It is clear that the step must satisfy Af <<7,,7 to provide the
good accuracy. The case 7>>7, with ¢~ ¢ corresponds to quasi-monochromatic (quasi-
stationary in time) processes. Under the condition a/ (Atc) << I the spatial tardiness may be ne-
glected that gives quasi-stationary in space processes. The two last parameters characterize the
time dispersion (polarization delay) and the typical averaging time 7, =1//x,. Indeed,
5(0) =1+« , /o and has usually the order of unity, so

t

~ = 1 =
D(F,t)~ E(F,t)+— [exp(-alt—t)EF,¢)dr'.
T -z,
Let consider two cases: 1 — the dipole is located at the center of hollow cube with the edge di-
mension 2a which is surrounded by homogeneous dielectric without dispersion; 2 — the dipole is
located in the center of analogous dielectric cube with free space outside. The solution region was

the cube with the dimension 4a. Each edge had been splitted on 2Ny+1 intervals, and the number
of problem dimension is 3 (ZN 0t 1)3 . The incident field is
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E (7.0)= _Zoz(t—r/c))((r—t){(# ~\ D, cos(a,(t—7/c)) +(3,-37).

Zy—F
0 0/
A7 c

‘ sin(a, (£ —r/c¢)) N e[l —cos(a, (t—r/ c))]}} . (54)

2
r ayr

To eliminate the singularities we made the substitution » — +/r° + 8° , where Jis the special cell
dimension.

Fig. 3. Component £ in the plane z = 0 for the Fig. 4. Component E, in the plane z = 0 for the
dipole in the insulating cube of edge aey/c =10 at | | dipole in the insulating cube of edge aay/c = 10 at
time instants ¢ =8 (a) and 20 (b) time instants @yt =24 (a) and 28 (b)

The test calculations are present in the Fig. 1, 2 and 3, 4. The simulation is performed for
the plane z=0, e =4, N, = 50 and for different times before and in the moment when the pulse
touch the boundary (Fig. 1, 3), but also after this (Fig. 2, 4). The coordinates are dimensionless
and defined by the condition aw, / ¢ = 10 for which the boundary is located at |x| = | y| = |z| =10.

It is seen that the reflection from the boundary distorts the spherical pulse front. The dispersion
for the problem 1 will produce the pulse forerunner and the tail after the passing of boundary.
They will be move with different velocities. For the problem 2 the forerunner will appear at once,
but after the passing of boundary only the infinitely long damping tail will be changed. The result
for 1D pulse in dispersive plasma is presenter in the Fig. 5.
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Fig. 5. The distortion of rectangular radio pulse amplitude in plasma under the parameters
w, =0, =6.28-10°, w, =3.14-10
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6. Conclusions

The numerical method based on integrodifferential equations and finite element approach
is proposed to solve the pulse exaltation and propagation problems in dispersive media and struc-
tures. The efficiency of this method has been demonstrated for several structures.
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INVESTIGATION OF LOCATED OPTICAL ILLUMINATION
INFLUENCE ON CURRENT SPECTRUM OF LONG
HIGH-RESISTIVITY GALLIUM ARSENIDE STRUCTURES

A.l. Mikhailov, A.V. Mitin

Saratov State University, Saratov, Russia
E-mail: MikhailovAl@info.sgu.ru

Abstract — Some results of mathematical modelling and experimental investigation of a current
dynamics in a long high-resistivity GaAs structures under influence of a located optical illumina-
tion are given.

1. Introduction

Devices based on the Gunn effect, also called Gunn devices, are basically used as an os-
cillators and amplifiers at superhigh frequencies (SHF) and extremely high frequencies (EHF).
At the present time the Gunn oscillators on a set of parameters are the best of all existing solid-
state sources of coherent oscillations up to submillimeter-wave frequencies [1-8]. However, a re-
lentless concern to the Gunn effect investigation is connected not only with incessant researches
directed to the Gunn oscillators improving, but also it is connected with an interesting and prom-
1sing perspectives opening a features of this effect in a n-GaAs or n-InP samples under different
external influences. First of all, there are perspectives of creation of functional electronics de-
vices. In particular, the intensive development of an optical communication channels and neces-
sity of a processing of optical signals stipulate a major concern to researches of the Gunn effect in
a semiconductor samples and structures under influence of the electromagnetic radiation of opti-
cal band [9-22]. Optical influence in this case can be considered both as a factor of control and an
object of control. Such researches were begun practically from the moment of the Gunn effect
discovering, that is from a middle of 60-th years of the past century, and were concentrated on a
clearing up of the influence of illumination upon the Gunn effect and the functioning of Gunn
diodes and oscillators. The detailed and classified analysis of a results of the first researches [9-
15] was conducted in [16,23,24], which apart from other conclusions noted that illumination in-
fluence upon the Gunn effect essentially depends on that, whether the whole sample or only its
separate parts are illuminated. The improvement of coherency and increasing of the Gunn oscilla-
tions amplitude were observed under illumination of a whole sample at the wavelength corre-
sponding to the fundamental absorbtion [9]. Simultaneous cooling and illumination of samples at
the wavelength corresponding to the energy interval between deep donor level and bottom of a
conductivity band led to increasing of the Gunn oscillations frequency [10]. The illumination of a
part of sample by a laser beam allowed an effective length of a sample to decrease practically
upon the order of magnitude [11]. Authors of the researches [12, 13] have found a capability of
the Gunn oscillations exiting and suppressing per increasing of a conductivity near an anode or a
cathode by light. In [15] it was established that the influence of illumination on a parameters of
generation is largely determined also by a kind of contacts.

However, the most of scientific ideas offered and formulated in the researches of that time
were not realized, in particular, and because of insufficiently developed technology.

The researches [17-22] concentrated on photoelectric phenomenons in a high-resistivity
GaAs at high electric fields are of the greatest concern among results of researches of the last
decade. A new optically nonlinear effect in such semiconductors was predicted in [17]. The es-
sence of this effect is that a travelling interference pattern created on a surface of a semiconductor
sample by two optical waves with close frequencies excites multiple high-field Gunn domains
which move phase locked with the interference fringes. This effect was named the photorefrac-
tive Gunn effect.
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The attempt of the theoretical substantiation of the given effect in a linear approaching
was made by authors of [17] (a simplified version of Kroemer’s criterion was used), potential ap-
plications of this effect was indicated: optical switching, high efficiency wave mixing, fast and
sensitive detection of temporal optical signals embedded in noise, and the ability to convert this
optical information to electric signals directly.

A different way of creating a sequence of quasilocalized Gunn domains in biased GaAs
and InP crystals due to illumination by a short pulse of light interference field was offered in [18].
Authors of [18] had conducted investigations of the dynamics of spatially modulated nonequilib-
rium electron-hole plasma generated by two interfering short laser pulses and simultaneously
heated by external dc or microwave -field by means of the Monte-Carlo and extended drift-
diffusion techniques, the numerical data was in good agreement with the experimental results.

Authors of [19] had also offered a model of the photorefractive Gunn effect. Their model
took into consideration the nonlinearity of a charge carriers transport in two-valley semiconduc-
tors. The results of numerical simulation had confirmed conjectures made in [17] that moving
high-field domains in a sample can be excited by a travelling interference fringes on its surface.
Those results also had demonstrated a possibility to observe a number of interesting features else.
It was shown in [20] that the formation of the photorefractive domains grating in dc-biased GaAs
sample by means of time and space modulated optical illumination leads to arising of a fast opti-
cal nonlinearity. It allows to conduct a modulation of optical information signal at GHz frequen-
cies if only applied constant electric field and nonequilibrium density of charge carriers are large
enough for such domains arising. The experimental data of [20] were found to be in good agree-
ment with numerical calculations based on the hot electron hydrodynamic model.

In [21, 22] experimental and theoretical investigations of current spectrum of a long (from
100 mkm to 10 mm) high-resistivity GaAs and CdTe samples under the influence of uniform and
localized illumination were conducted. Results of these researches had shown that creation of the
coherent Gunn current oscillations under influence of illumination is possible in such structures.
The characteristics of these oscillations greatly depended on the intensity of illumination, the lo-
calization of illuminated region, the value of applied constant voltage and also the degree of ac-
tive area doping.

In this paper the results of a series of numerical experiments which were conducted on the
basis of developed local-field mathematical model are given. This model had allowed us to inves-
tigate a features of nonlinear current dynamics in a long high-resistivity n-GaAs samples under
influence of the uniform and localized optical illumination with a wavelength corresponding to a
fundamental absorbtion. Also the results of experimental investigation of features of the current
instabilities in a long epiplanar structures on the basis of high-resistivity gallium arsenide under
influence of localized illumination are given.

2. Solution of problem

The investigated structure is a long low-doped n-GaAs monocrystal sample which has a
shape of rectangular parallelepiped with two ohmic contacts at the face plates and high-ohmic
region near the cathode («notch») — the Gunn diode.

The consideration is conducted in one-dimensional approaching. The doping profile is set
by a piecewise-smooth line representing a combination of «stitched» on the first derivative
smooth lines defined by algebraic equations of the first and the second order. That allows a con-
vergence of numerical solution to be improved.

High-doped n'-regions simulate an ohmic contacts and n -region near the cathode simu-
lates the high-resistivity «notchy.

In this paper structures with a big length of active area L, (hundreds of micrometers in di-
rection of a current), relatively small concentration gradients of donors and charge carriers, small
gradients of electric field strength are investigated. These features are not typical for the commer-
cial Gunn diodes. The frequencies of current oscillations in the considered structures reach a
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hundreds of MHz. All of these facts allow a relatively simple (in a mathematical sense) local-
field mathematical model for the analysis of such structures to be used validly. This model does
not demand powerful computers and has a small time of calculation in contrast with temperature
models and Monte-Carlo technique.

The drift velocity of electrons v, is considered as a local and instantaneous function of
electric field strength E. It is given by known analytical expression

) W E+v, (E/Eap)“
Vn = 4
1+(E/E,,)

where 2, = 8000 cm*/(V's), vs = 0,8-10" cm/s, E, = 3,8 kV/cm — approximation parameters of
vn(E) dependence for GaAs at 300 K. Diffusion coefficient of electrons D, is considered as a con-
stant, its value is 300 cm?/s.

The one-dimensional coordinate system is chosen for considered structure. The point of
origin (x = 0) is situated on the cathode contact, x axis is directed to anode.

The continuity equation, Poisson equation and expression of a total current density are the
initial in the problem. The introducing of generation and recombination parts in continuity equa-
tion allows us to take into account an illumination of the structure. The additional continuity
equation is recorded for a nonequilibrium holes generated by light, and also the corresponding
summands are added in expression of a total current density and Poisson equation to take into ac-
count the influence of these holes.

Besides, the drift velocity of holes as well as for electrons, is considered as a local and in-

stantaneous function of an electric field strength E and is set by analytical expression
u,E

as )_1+,upE/v ’ )

; (1)

where 1, =400 cm */(V-s), v =0,8-10" cm/s — approximation parameters of vp(E) dependence.
Diffusion coefficient of holes D, is considered as a constant, its value is 10 cm ’/s.

In the given model it is cons1dered that the recombination of electrons and holes occurs
according to the linear law, and lifetimes of electrons and holes are equal 7, = 7.

By recording of the initial equations in selected coordinate system we can receive the fol-
lowing set of equations:

on(x,t) - v (E(x,0)- on(x,t) —n(er)- ov,(E(x,1)) D, .82n()2c,t) +Gx)— An(x,1) L3
ot Ox ox ox n

POD _y (mx,) PED  pey D TP G BP0
ot Ox P T

P

=g j {n(x,0)-v, (E(x,0) + p(x,0)-v, (E(x,0)) dx +

N I{ 8p(x t) D . 811(x,t)}dx_l_€g0 ou(t) ’ 5)
X
e =i(n(x,t>—ND ™) - p@.0) ©)
x g€,
U(t) = j E(x,t)dx | (7)

where E(x,f) — electric field strength; v,(E(x,?)) and v,(E(x,f)) — drift velocities of electrons and
holes, correspondingly; ¢ — absolute value of electron charge; & — relative dielectric constant of
semiconductor (for GaAs ¢ = 12,9); & — electric constant; Np(x) — dependence of donor concen-
tration on coordinate x; j(¢) — density of total current through a sample; n(x,f) and p(x,t) — elec-
trons and holes concentrations, correspondingly; U(#) — voltage applied to a sample; L — length of
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a sample; x — coordinate; ¢ — time; G(x) — a spatial function defining a rate of generation of an
electrons and a holes by light. An(x,f) u Ap(x,f) — concentrations of nonequilibrium electrons and
holes:

An(x,t) = n(x,t) —-n, (X,t) > Ap(x:t) = p(xat) —Po (X,f) D
where no(x,f) and po(x,f) — equilibrium («dark») concentrations of electrons and holes, corre-
spondingly.

The equilibrium («dark») concentration of electrons ny in arbitrary point of time ¢ in any
point of structure x can be determined via solving of a separate continuity equation for equilib-
rium electrons. At initial point of time (z = 0) ny is equal to concentration of donors, that is 7¢(x,0)
= Np(x). An equilibrium («dark») concentration of holes po(x,t) = 0.

For the solving of obtained set of equations the initial and boundary conditions are formu-
lated:

Initial conditions:

E(x,0)0=U,/L , n(x0)=N,(x), j0)=0, px0)=0.
where U, — value of a constant voltage applied to a sample. The first condition is set the electric
field strength in a sample at the initial point of time. The second condition indicates that initial
distribution of electrons in a structure corresponds to a doping profile of a sample. According to
third condition current through a sample at initial point of time is set equal of null. The latter
from initial conditions means absence of holes in a structure at an initial point of time.
Boundary conditions:

n(0,t)=N,(0) , n(L,t)=N,(L) , EQO)=EL,t)=E, ,

(0,6)= p(L,H)=0 , jE(x, Hdx=U, .

where E. — electric field strength on the contacts. Its value is determined during the conducting of
numerical experiments at voltage U for each of the samples of finite length and doping degree.
In concrete cases this value is set equal of from 100 to 500 V/em. First, second and third bound-
ary conditions model a contacts of high-doped n"-regions with metal electrodes of a structure and
actually mean that layers of n'-regions directly adjoining to metals are neutral and have not a
space charges. Fourth boundary condition means an absence of holes on the contacts. According
to latter boundary condition voltage at the diode is set a constant and equal to Uj (mode of a short
circuit on a variable signal) that essentially simplifies numerical calculations. Moreover, it allows
us to investigate an influence of charges nonlinear dynamics in the structure on the current spec-
trum without taking into consideration an external circuit influence on it.

The equations (3) - (6) of the model are approximated with the help of the finite-
difference schemes and are solved numerically on a computer at the indicated initial and bound-
ary conditions. Time and coordinate steps are chosen to maintain a mathematical stability of solu-
tion. These values are much smaller than corresponding characteristic values: the Maxwell re-
laxation time and the Debye length of screening.

Current spectrum analysis are based on the expansion of j(¢) on Fourier series

Jj@)=j, + Z Jre cos(zk—” tj + Ji sin(zk—7Z t]
= T T
with computation of the steady component j, and the amplitudes of first four harmonics jx (k= 1,

2, 3, 4) of a current by formulas:
to+T

Jo=7 i,

1}

2 otl 2k
= — i(t)-cos| ——t |dt
Jke T;[J() (T j
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ty+T
‘ . 2kx
o= i(¢)-sin| —¢ |dt
Js =7 I J@) ( T )
Jk:\/jlfc+jlfs >
where T — the period of current changing; ¢, — the initial moment of an integrations correspond-

ing to stabilization of solution. The define integrals in these formulas are calculated numerically
during solution of the set of equations.

3. Simulation results and experimental data

In this section of paper the main outcomes of numerical modeling of space-charge and
current nonlinear dynamics in considered structure in conditions of local illumination are re-
sulted. By setting of a spatial distribution of light excitation intensity along illuminated region
with a finite breadth d the locality of illumination was realized. For this purpose spatial function
G(x) defining the generation rate of electrons and holes by light was introduced and was set iden-
tical for electrons and holes:

0, if x<x0—§,

1 X—Xx , d d
G(x): Gmax'5|:1+COS(27Z"(d—O)j:|: l_f xo_zgxsxo"'aa

0,if x>x0—%,

where xo — the coordinate of the middle of illuminated region, G, — maximum value of the
function G(x) corresponding to the middle of illuminated region.

Conducted experiments had shown that current spectrum of a long n'—n —n —n' — GaAs
structures with a high-resistivity n-region essentially depended on the localization and intensivity
of illumination and the lifetimes of nonequilibrium charge carriers. The influence of recombina-
tion processes on charge and current dynamics in the structure in conditions of illumination was
appeared significant in the case of comparability of travelling time of the developed high-field
region through an active area of the structure and the lifetimes of nonequilibrium electrons and
holes generated by light.

Particularly, on the Fig. 1 dependences of the steady component j, and the amplitudes of
first four harmonics j, /2, /3, j4 of a current on the value of constant applied voltage U, are given.
These dependences were calculated for the cases of the absence of light illumination of a sample
and its local illumination (near the cathode and in the middle of active area). The length of active
area Lo = 500 mkm, the concentration of donors in its major part Np = 4-10"* cm?, the breadth of
illumination region d = 98 mkm, the maximum value of function G(x) corresponding to the mid-
dle of illumination region G, = 7-10%% ¢cm>-s”!. The lifetimes of electrons and holes was set
equal 7, = 7, = 107 s.

In a course of numerical experiments there was established that the local illumination of a
sample near the cathode resulted to 20 — 30 % increasing and in a middle of an active area — ap-
proximately to twofold increasing of the frequency f of generated current oscillations in whole
interval of voltages Uj.
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Fig. 1. Dependences of steady component j, and amplitudes of first four harmonics ji, j», /3, j4 of a current

on the value of constant applied voltage Uy

The investigations of charge and current dynamics had shown that local illumination near
the cathode stipulated an appearing of charged layers on the border of illuminated and non-
illuminated parts of active area. It can be explained by that: a gradient of electric field strength
was appeared significant on this border and big enough for an arising and rapid transformation of
a space-charge fluctuation into accumulation layer. For all that, effective length of active area de-
creased, that provided a small growth of oscillations frequency. Besides, the illumination led to
increasing of electric field strength outside the illumination region because of essential enhance-
ment of conductivity of a structure part adjacent to the cathode. It reduced a threshold voltage of
generation appearing that is in good correspondence with the known data [23]. Also it influenced
noticeably on a spectrum of full current moving a maximums on the dependences of harmonic
components amplitudes of current on the constant applied voltage U, to the region of smaller
voltages (Fig. 1). The amplitudes of third and fourth harmonics were the most sensitive to the in-
fluence of illumination.

The full current spectrum calculated for the case of local illumination of a sample in the
middle of active area also is given on the Fig. 1. It’s easy to see that in this case the illumination
more appreciably transformed a current spectrum. The most possible cause of it is significant in-
creasing of conductivity in illuminated region as well as in case of illumination near the cathode.
At illumination of a structure in a middle of an active area it resulted that the active area was di-
vided by region of influence of light on two parts in each of that a process of formation of
charged layers took place practically in phase. During the moving the charged layer formed near
the cathode transformed to dipole high-field domain which then relaxed in the illuminated region
at any voltages Uj. The charged layer formed on the border of illuminated and non-illuminated
parts of a structure reached an anode. Points of time corresponding to disappearance of the indi-
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cated high-field regions in each of parts of the structure were not concured. Exactly the competi-
tion of these processes determined so composite character of relations in a spectrum of a full cur-
rent (Fig. 1). At high voltages Uy in each of two parts of the active area, so called, multidomain
mode was observed. This mode is characterized by simultaneous existence of several high-field
regions. As result of arising of multidomain mode the enhancement of the steady component of
full current density jo(Up) at high voltages took place (Fig. 1).

Also experimental investigation of the features of current instabilities exhibition in a long
high-resistivity epiplanar gallium arsenide structures under localized influence of the optical ra-
diation with a wavelength 650 nm on active area of the structure was conducted. The experi-
ments had shown that in these structures the arising of current oscillations was possible. The
form, amplitude and frequency of such oscillations strongly depended on the intensity of optical
radiation and the localization of illuminated region.

Fig. 2. The oscillograms of a current of epiplanar structure with
Lo =300 mkm at constant voltage Uy = 96,1 V
(load resistance is 240 ohms)

For example, on the Fig. 2 the oscillograms of a current of a structure with the length of
active area Ly = 300 mkm at constant voltage Uy = 96,1 V are shown for four cases: the absence
of illumination of structure (a), local illumination of the structure near the cathode (b), local illu-
mination of the structure in the middle of active area (c), local illumination of the structure near
the anode (b). The power of illumination was equal of 3 mW, the breadth of illuminated region
was equal of 100 mkm.

But frequency of the observed oscillations of current was appeared approximately up to
100 times smaller than theoretically predicted frequency of the Gunn oscillations. Theoretical
analysis had shown that observed oscillations of current in such structures could be stipulated by
not only intervalley transitions of electrons but also and a number of other physical processes. A
field-enhanced capture of conduction electrons by deep impurity levels is the most possible of
these processes, could lead to arising slow recombination instabilities.
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4. Conclusions

The numerical simulations which were conducted on the basis of developed local-field
mathematical model of space-charge and current dynamics in the long high-resistivity n°—n — n —
n" — Gads structures with high-resistivity n-region (the length of active n-area Lo: 500 — 800
mkm, donor concentration Np: 102 — 10" cm'3) had shown that spectrum of a current of such
structures was determined not only by the length of active n-area, the degree of its doping and the
value of constant applied voltage Uy but also depended on the localization of illuminated region,
the intensity of illumination and the lifetime of nonequilibrium charge carriers. The part of ob-
tained data is in good agreement with results of experiments described in papers [21, 22].

The local illumination of investigated structure in the middle of active area influenced es-
sentially on the spectrum of full current. The analysis of nonlinear dynamics of space charge had
shown that in this case simultaneous existence of several high-field regions of different kinds (di-
pole domains and accumulation layers) in different parts of structure was possible. The shape,
dimensions and velocity of these regions significantly depended on the value of applied constant
voltage Uj. On the basis of obtained data it is possible to conclude that recombination processes
play a noticeable role in dynamics of formation, motion and disappearing of high-field regions in
the structure in conditions of illumination. The influence of these processes was appeared essen-
tial in case of comparability of travelling time of developed high-field region through an active
area of the structure and lifetimes of nonequilibrium electrons and holes generated by light. This
fact showed brightly in behavior of the upper harmonic components of a current.

The conducted experimental investigation of current instabilities in long high-resistivity
epiplanar gallium arsenide structures in conditions of localized optical influence on the active
area of the structure had shown that appearance of current instabilities was possible in such struc-
tures. The shape, amplitude and frequency of these oscillations strongly depended on intensity of
optical radiation and localization of illuminated region. The arising of current instabilities in the
investigated structures could be stipulated not only by intervalley transitions of electrons but also
and a number of other mechanisms. The most probable of these mechanisms is a field-enhanced
capture of conduction electrons on deep impurity levels.

Thus, results obtained in this paper open new perspectives of using of Gunn current insta-
bility in long high-resistivity structures based on the multivalley semiconductors such as GaAs,
InP, CdTe, GaN and others, for creation a different electronic, optoelectronic, and electrooptic
devices with a wide functional possibilities which can realize a processing and managing of com-
plicate informational signals as at SHF and EHF as at IR and optical band wavelengths.
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THE LIGHT MODULATION IN CONDITIONS OF COLLINEAR ANISOTROPIC
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Abstract — The collinear acousto-optic light diffraction by standing ultrasonic wave along x-axis of lith-
ium niobate crystal in assumption of five-waves approximation is discussed. Graphic pictures of wave
vector structure illustrating the acousto-optic interaction of optic beams on standing ultrasonic wave com-
posed of two contradirectional waves are represented. In spite of non-reciprocity effects of collinear ani-
sotropic diffraction it is described a modulated light oscillation. On base of numerical computing the dis-
tributions of field strengths of diffracted and passed light are obtained.

1.Introduction

There are many numbers of works devoted acousto-optic devices on the collinear light
diffraction by acoustic waves. In particular it is presented the filter on collinear acousto-optic in-
teraction [1] where two contradirectional optic beams diffract by two contradirectional acoustic
waves in an anisotropic medium. The authors of mentioned work are guided by theory for two
wave interaction of optic beams on moving ultrasonic wave. However diffracted effects taking
place in present case are not restricted by single diffraction and consist of series of ones witch are
connected with several interactive waves with different frequencies. With qualitative methods it
is clear that effect of light diffraction by standing acoustic wave has to be a cause to the ampli-
tude modulation of light. The attempt to describe the noncollinear quasi-isotropic Bragg diffrac-
tion was presented in the paper [2]. The goal of present paper consist in describing of collinear
anisotropic light diffraction by standing ultrasonic wave using the non-reciprocity effects of col-
linear acousto-optic interaction [3]. The problem is led to system of five differential equations
followed from Maxwell's equations and connected with existence of four vector diagrams. This
system is solved by using the method of successive approximation that allows to determine the
structures of fields on output.

2.The graph method for describing of acousto-optic interaction.

As is well known, electromagnetic fields of incident and diffracted light beams at acousto-
optic interaction are represented how coupled waves which propagate in disturbed by ultrasonic
elastic medium with exchanging energy between them periodically. There are the synchronism
conditions for this interaction and they express the relation between values of frequencies and
phase vectors for the interacting components in view:

W= WQ, (1)
k2: kliK. (2)

Here values with subscript 1 define the incident light and ones with subscript 2 — dif-
fracted light. Values Q and K are the frequency and wave vector of ultrasonic. As varying the
synchronism condition, the expression (1) holds the strict form, but the expression (2) allows the
presence of a mismatch value (AKk). The intensity of diffracted light falls down as Ak has in-
creased. The relation (2) is illustrated by vector diagrams (Fig. 1).
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Fig.1. Vector diagram of diffraction and

wave surfaces of light propagation in lithium
‘b niobate crystal.

k. — wave vector of extraordinary light;

ko - wave vector of ordinary light;

K — wave vector of ultrasonic;
(the optic z-axis is directed upward)

Let’s consider the acousto-optic interaction light on standing acoustic wave along x-axis lithium
niobate crystal with the assumption that the standing wave is the sum of two contradirectional
waves with equal amplitudes. The diffraction in view transferring from the extraordinary optic
beam (w;, k1) to the ordinary wave (w,, k) is illustrated in Fig. 2. It is important to note that
elastic wave vector K had to be built from the end of vector k; corresponding to the frequency w
to the origin of wave vector k, corresponding the frequency w,=w;+£2. As the optic frequency
increases on frequency elastic wave, the wave surfaces for w, must change (in particularly for
without dispersion medium it has to extend). In Fig. 2 (a) the fragments of wave surfaces corre-
sponding to the frequency w; are illustrated with the firm line, for wave with the w, — with the
dotted line. After the first acousto-optic interaction the wave with (w,, k;) diffracts by counter-
acoustic wave to extraordinary beam is presented by a characteristic (w3, k3) (Fig. 2 (b)). The last
diffraction takes place by the participation of the vector k3, corresponding to the frequency
®3=w,+Q (or w3;=w;+2Q). The fragment of wave surface, corresponding to the light frequency
w3, 1s illustrated with the chain line on the Fig. 2 (b). As evident from the Figs.2 (a) and (b), the
magnitude of the vector Kk is not equal to the magnitude of the vector k3, because the values of
frequencies w;, w3 are unequal each other. This inequality represents the non-reciprocity of col-
linear acousto-optic diffraction. Diffractions have been illustrated in Figs.2 (a) and (b) are dis-
cussed using the (+) significant in the expression (1), (2), but the acousto-optic interaction takes
place with selection (-) significant between k; and K too. Using the described graph method, the
wave diagrams for diffractions deal with optic waves (w4, k4) and (ws, ks) are built in Figs.2 (c),
(d). The expressions for frequencies are given by ws=w;-£2, ws=w;-2L2. Fragments of wave sur-
faces for beams with subscripts 4 and 5 are illustrated by the bold dotted and chain lines corre-
spondingly. Describing the diffraction of light by the standing acoustic wave in lithium niobate
crystal we use nothing more than the five waves approximation. Wave ultrasonic vectors of the
optimal diffraction for the cases (a)-(d) differ between each other. Setting a magnitude of acoustic
vector K the expression (2) is approximately true for each of the four diffractions. If to provide
the condition of the exact synchronism for the diffraction on the (a) diagram than mismatch value
for the diffraction (b) will be the difference between available vector K and optimal vector K il-
lustrating on the Fig. 2(b). This difference consists the value of twofold shift of wave surface al-
lowing for the change of the optic frequency on value Q. It’s possible to denote this mismatch by
2Ak. Applying the graph method for the diffraction (b) and (c) we can estimate the values of
their mismatch. They are 2Ak and 0 correspondingly. As the diffraction efficiency decreases with
increasing of the phase mismatch and if the mismatch value for the first diffraction is O the effi-
cient of acousto-optic interactions between 1-2 and 4-5 waves greater than between 2-3 and 1-4
ones because the mismatch between 2-3 and 1-4 waves are nonzero values. If the mismatch value
for the first diffraction is unequal 0 then another mismatch values are functions of the first one.
Varying the magnitude of ultrasonic wave vector, we can provide the exact synchronism for
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Fig.2. Vector diagrams of extraordinary optic beam diffractions by the standing acoustic wave.

a — diffraction on the codirectional acoustic wave corresponding to the (+) significant in the ex-
pression (1) and (2);

b - diffraction on contradirectional acoustic wave corresponding to the (+) significant in the ex-
pression (1)and (2);

¢ - diffraction on contradirectional acoustic wave corresponding to the (-) significant in the ex-
pression (1)and(2);

d - diffraction on the codirectional acoustic wave corresponding to the (-) significant in the ex-
pression (1)and (2).

either of the four diffractions, but not for all at once. The diffraction products consist of the three
extraordinary waves (with the frequencies ®;, ®;+2Q, ®;-2Q) and two ordinary beams (with the
frequencies ®;+Q, ®;-Q). In sum these waves represent a single-tone amplitude-modulated oscil-
lation and a beating. Below the qualitative analysis of acousto-optic interaction of light on stand-
ing ultrasonic wave is confirmed by math treatment.

3. The strict expression of waves mismatch and approximate solving of the wave equation
corresponding to disturbed medium

It’s possible to denote that wave mismatchs of the four diffractions written how

Aklz kz-kl-K, (3)
Ako=ks-ki-K, “)
Ak3: kz—k3—K, (5)
Aks=ka-ks-K. (6)

Replacing by values of the wave velocities and frequencies the right part of the expression (3),
taking to consideration (1) we will have result

Aki= ((001H2)/co)- (wi/ce)-CUv. 3"
Here c,, c. are the light velocities in a crystal of ordinal and extraordinal beams correspondingly, v
— is the value of the velocity of ultrasonic propagation along x-axis of lithium niobate. Executing
the same computations for the (4)-(6) and expressing Ak, in the right parts of the ones the result
will be written in the following way

Aky= Ak;-(2n, Q)/c, )
Aks= Akl-(2ne Q) / C, (5')
Aks= Aki-(2An Q)/c, (6)

n,, n. —are indexes of refraction for the ordinal and extraordinal beams correspondingly, ¢ — is the
value of the light velocity in the free space, An= n, - n.. Expressions (3')-(6") confirm the qualita-
tive analysis of mismatch effects. The mismatch Aky is the exception from the rule, but the multi-
plier consisting An which less than n, and n. in the expression (6') inserts amendments the second
infinitesimal order in result of the graph method. The existing inequality may be explained by the
neglect of the difference between extraordinary and ordinary wave surface shifts.

It is interesting to calculate the values of electromagnetic interaction fields how the func-
tion of wave mismatch, coordinates, time and phase shift between acoustic contradirectional
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waves forming the standing wave. To calculating the fields it is necessary to solve the wave equa-
tion for the medium disturbed by ultrasonic [4]:

AE-(1/c?) 8°[eo*E)/ot*=(1/c?) &*[e,*E]/ot, (7)
E — is the electric vector, €, €,- undisturbed and disturbed parts of permittivity tensor correspond-
ingly. The solution of (7) will be present by the five-waves form

E=E;+ E)t+ Es+ E4+ Es= e,E;te;ExteEs+esEqsteEs. (8)
Every item of (8) represents the expression
Ei(x,t)= 0,5(Eiexp(j(wit- kix))+ c.c.), i=1,2..5. 9)

E; — are unknown slow variable functions of coordinate x, c.c. — is a complex-conjugate function,
as well (*), e; and e, are the unit polarization vectors of light. It’s possible to denote the fields
with odd subscripts how extraordinary light and with even subscripts — how ordinary light. Let’s
multiply the equation (7) once time by e; and the second time by e, and before to write the result
of calculation it is significant that
61[81*62]: 82[81*81]:X(X,t), (10)

where y(x,t) is the function, describing the influence of standing ultrasonic wave on light. In ap-
proaching of the small elastic deformation it may be written how

x(X,£)=0,5(x1exp(j(Q-Kx))+ y2exp(j(Qt+KX))+c.c.). (11)
Taking to account (8) and (9), neglecting the members of the second infinitesimal order and
choosing synchronous items with use (3)-(6) we obtain the combined equation

8E1/8X: -j alzexp(-jAklx)Ez-j 2114€Xp(-jAk2X)E4, ( 1 2)
OE»/0x= -jas1exp(JAkx)E-jazsexp(jAksx)Es, (13)
OEs/0x= -j 3326Xp(-jAl(3X)E2, (14)
6E4/6X: -j a45exp(jAk4x) E5-j a4lexp(jAk2x)E1 , (1 5)
OEs/0x= -jassexp(-jAksx)E4, (16)

where a12=k1x1*/4nez, a14=k1x2/4nez, a21=k2x1/4n02, a23=k2x2*/4n02, a32=k3x2/4nez, a41=k4x2*/4n02,
a=ka/4ny, ass=ksy */4nc.

System (12)-(16) consists of the linear differential equations with variable exponential co-
efficients. For concreteness of solution of the equations, it is necessary to set the boundary condi-
tion. So be it: if x=0 that only E; is not equal zero, i.e.

E1:E0, E2:E3:E4ZE5:O. (17)
The task (12)-(17) have not analytical procedure of solving. Let’s transform it using following
replacement

Ei=Ciexp(jAx), i=1,2..5 (18)
to the system of differential equation with standing coefficients:
8C1/8x= -ja12C2-jal4C4, (1 9)
oC 2/6x= -j Alez-ja21C1-ja23C3, (20)
oC 3/6X: —j Ak13C3—ja32C2, (2 1)
oC 4/8X: -j Ak2C4-ja45C5-ja41C1, (22)
oC 5/6X:-j Ak24C5-ja54C4, (23)
there Akj3= Ak;—Aks, Akos= Ak,—Aky. The boundary condition (17) will be written as
x=0: C]ZE(), C2:C3:C4:C5:0. (24)
Expressions (12)-(17) transform to (18)-(23) with use next conditions:
Ak NF+A=0, (25)
Ak4_}\44_}\5:05 (26)
Ak3-}\2+}\3:0, (27)
Aky+A-A=0, (28)
A=0. (29)

The task solution by Euler method is impossible because using this one it is necessary to solve
the algebraic equation the five-degree order. It is the motive to solve the task approximately, for
example using method of successive approximations. According at [5] the task solution is repre-
sented how the column matrix

C(x)=exp(Ax)Cy, (30)
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there C(x)=||Ci(x)||, Co=||Ci(x=0)||, i=1,2..5;

exp(AX)=1+Ax+A’X*/21+.. +A"X"/nl+... (31)
1 — is the 5-dimensional identity, A — is the squarte n-matrix with rows consists of coefficients
before Ci(x), i=1,2..5 in the right parts of (19)-(23). A" — is the matrix multiplication A by oneself
n time. It is necessary to note that except x the solution (30) also depends on all values Ak; and on
the phase shift ¢ between two contradirectional acoustic waves. We set it with next expression

x2= %1€xXp(jP). (32)
3.Simulation results

In Figs.3,4 five fields of coupled optic waves are represented. It is calculated applying the method
of successive approximations taking to account one hundred first aims of series (31). Illustrated
fields are the functions depending on acousto-optic interaction length x and ultrasonic wave fre-
quency Q driving Ak;. In Fig. 3 it is notably that the magnitude of incident wave field decreases
as increasing the interaction length x. The curves illustrated in the Fig. 4 represent the character
of the diffraction efficiency decreasing as phase mismatch enhance by turns for each of four dif-
fractions. Selecting the appropriate crystal length and varying the ultrasonic wave frequencys, it is

T T T T T T T T T T T T T T T
0.8r
0.6
045
4
02
f
0 : | | | | | | | | | | | | 5 fl | | |
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

X, m
Fig.3. Magnitude of electrical fields how functions depending on x with use Ak;=0 and ¢=n1.

Bt Ep Es B4 . . _. _Es

possible to form the symmetrical spectrum of single-turn amplitude-modulated oscillation of
transmitted light. It will be obtained particularly, how we can see in Fig. 4, if Q=548,67-10" /c”,
x=40mm and ¢=7t. In Fig. 3 the magnitude of third and fifth field amplitudes are equal to each
other and enhance during varying x from 0 to 3,5cm. Such character of diffracted wave behavior
allows to get the necessary value of light modulation depth choosing appropriate crystal length.
In order to get the field strength of electric waves how the functions depending on time, it is nec-
essary to multiply the present valued of field strength amplitudes by exponential phases. They are
exp 1(mt-kix), exp i(mt-kox), exp 1(wst-ksx), exp i(m4t-kax), exp 1(wst-ksx) according to each elec-
tric amplitude.

4. Conclusion
In this work the theoretical research of collinear acousto-optic light diffraction by stand-

ing ultrasonic wave propagating along x-axis of lithium niobate crystal on assumption of five
waves approximation is carried out. It is sufficiently to account the acousto-optic interaction if
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other waves (undiscussed in the approximation) are negligible components. Graphic pictures il-
lustrating the acousto-optic interaction of optic beam on standing ultrasonic wave composed of
two contradirectional waves are represented. Using the method of successive approximations the
field strengths of diffracted light how the functions depending of waves mismatch, coordinates,
time and phase shift between acoustic contradirectional waves are obtained.

0.4r

E

548210° 5.48310° 5.48410° 5.48510° 5.486-10° 5.487-10° 5.488-10° 5.480-10° 549-10° 5.491-10° 5.492-10°

Fig.4. Magnitude of electrical fields how functions depending on {2 with use x=40mm and @=71.

Q,c1

. E2 ....................... ,E3 . E4 _——— . . E5 E6

The present theory of light collinear diffraction by standing acoustic wave allows to

choose the necessary acousto-optic interaction length and ultrasonic frequency to create experi-
mental models of the acousto-optic modulator with required performances.
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Abstract — The integrodifferential equations which describe the pseudo-periodic (quasi-periodic) struc-
tures in quantum mechanics and electromagnetics have been proposed and the algorithms of its solutions
have been suggested

1. Introduction

Periodic structures (PSs) are interesting for many categories and fields of physics and
chemistry, so correspondingly there is tremendous number of works devoted to their analysis.
PSs describe different physical phenomena [1]. Especially it is concerning towards following ar-
eas: crystalline semi-conductors and metals in solid-state and semiconductor physics [2], slow-
wave structures (SWS) and periodic waveguides in electromagnetics and electronics [3], crystals
in crystal optics [4], photonic crystals (PC) [5,6], periodic metamaterials (artificial media) in elec-
trodynamics, optics, and acoustoelectronics, X-ray and particle diffraction by crystals. So, re-
cently the considerable interest to PPS arose in different branch of knowledge (electronics, slow-
wave, PC and metamaterials structures electrodynamics, photonics, optics, nanostructure phys-
ics). It is caused by the development of nanotechnology and also by such circumstance, that PS is
the mathematical abstraction, and all real structures are the PPSs. The violation of periodicity
arises owing to number of circumstance. The main of them is the finiteness of all real structures.
This principal factor is essential when the number of periods is not large. Its influence is sharply
decreasing when the number of periods increases over a certain value, and the PPS is inherently
similar (in the internal regions) to PS one. Such number of periods for PCs and SWSs (along of
each propagation direction) has the order of several tens. The macroscopic solid-state crystal in
this respect is the practical PS. The periodicity-breaking factors also are the nonstationarity (ape-
riodicity) in time, the loss and amplification (generation). Let notice that in finite passive (lossy)
or active PC and SWS structures the eigenfrequencies are complex. It means the time aperiodicity
i.e. the nonstationarity.

The PC and SWS loss leads to the wave damping along the propagation direction, i.e. to
space aperiodicity. At the same time the eigenmode dispersion curves are distorted and the band
gaps disappear, i.e. there is the wave propagation possibility with high attenuation [6]. This
propagation exist when the finite SWS joins with the semi-infinite waveguides or for two-
dimensional PC plate excitation. Such structure conducts oneself as a multiband filter. The im-
portant example of active PPS is the PC lasers. Note that the breaking of periodicity takes place
also under the excitation of the structures if they are lossless and passive. There is the exclusion
which is the PS stationary excitation by infinite number of periodical and phasing with factor
exp(w_L jn (ﬁ) harmonic sources (here ¢ is vector of phase shifts per cell, 7 is the vector of cell

numbers). The cell non-identity is one more factor which causes the aperiodicity (it is usually
weak in PPS). It may be random (the crystal dislocations, technological dispersion in SWSs and
PCs), and also premeditated and governing the PPS properties (dispersion, energy-band structure
etc.).

The present paper is devoted to the problem of taking into account this last factor in the
infinite PPS. Our main goal is to introduce the integrodifferential equation (IDE) base on Green’s
function method for PPS with perturbed lattice and with defects located in the finite region of PS.
Also we consider the defects which are distributed in infinite region. In the last case the distur-
bances are assumed weak. The effect of PPS finiteness is also analyzed. At first, the scalar prob-
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lem of single-particle Schrodinger equation (SE) for pseudo-periodic potential (PPP), i.e. for pe-
riodic potential disturbed by some low, is analyzed. Further, the vector electromagnetic problem
is solved for periodic dielectric structure which also is disturbed according to some law.

2. IDE for quantum particle in PPP

Let consider the quantum particle with mass m in the field of periodic potential
V,(7)=V,(F+ p), where p =na, +n,d, +n,d, = Aii is the vector of composite period, @, are
the primitive transmission vectors (periods of cell), 4 is the translation matrix (composed from
vectors a,), n is the vector of shifts (numeration) of cells with integer coordinates n,. The wave

(Vz +€0)\i}0(’7)="0\1}0(’7) . ()

Here the normalized energy e, = 2mE/h’ and potential v, = 2mV, / h* are introduced. We will

function satisfies the stationary SE:

assume for convenience that the wave function W,(7) is normalized to the cell volume
Q, =d,a,a,]=|a, - a, x d,|:

QLOQ'["‘I’;(?)“IIO(?)d3? =1, N=(n,n,,n), )
and its evident presentation and ‘:he energy spectrum e, are known from the solution of problem
(1). Here Q,, denotes the lattice island with the multiindex N. The volumes of all cells are the

same and equal to zero cell. There are many methods to solve this problem [2]. In our case it is
convenient to consider the Green’s function approach [2,3]. According to this the energy spec-
trum and wave function are determined from the minimum (extremum) condition of functional

Aley F¥)= [ Pl I, F)7 = [ [ o (F)Gleoo k7 =7 (7, (PN aF L (3)
Q, Q, Q
which is equivalent to corresponding integral equation (IE) [2]. Here (N?(eo,lg 7= 77') is the scalar
GF of operator L =V? + e, for periodically located sources, i.e. the GF of equation (1). It has
several representations, particularly
Glenir )= 5 exple j{k + g7 7)) W
Q

0 i e, —\k +gn

The three-dimensional summation is carrying out over the vector # (multiindex N = (nl,nz,n3))
in the infinite limits —oo<n, <o, g= 2747" is the tensor of inverse lattice, k is the reduce
wave vector, which is connected with the quasi-momentum ¢ = k/h and with the vector of
phase shifts ¢ = Ak . As the forward waves and backward waves are indistinguishable, any sign
may be taken in (4). Correspondingly, k = A”'g . Notice that one also may use the functional
ey ¥)= [[,FFdF = [ [¥sF)Gleos k.~ oy (78, (7 )7 F
Q, Q, Q,

We consider the normalization (2) as additional minimization condition, or will impose it after
the solution. The wave function which is satisfying the equation (1), therefore is carrying the ex-
tremum of functional (3), has the property ‘PO(F ): Y, (17 + ﬁ)exp(— jn gB). It depends on the en-
ergy e, and wavevector k as parameters. Furthermore, the particle in periodic potential is belong

to all cells, and probability density to detect it in any point of any cell is not zero if the potential is
not singular there. The solid-state theory usually considers in the adiabatic approximation the
model of dotty atoms, which are motionlessly located in the nodes of crystalline. Actually, the
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charge is always «smeared» over the nucleus (and the nuclear particles must be movable), and the
nuclei are vibrating near the crystalline nodes. The motionless hypothetical charged particle has
the infinite electrostatic energy, so the particle and its charge must be «smeared» according to
uncertainty principle. Moreover, the potential has the term corresponding with the averaged in-

fluence of all crystalline electrons. Further therefore we will assume that |‘P0 (7 ]_2 <00 In any

point. If the model function does not satisfy this, let perform suitable circumcision.
Let consider another stationary problem with nonperiodic potential v(r)=u(r v, (r). If this

potential differs from v, only in the region, which is consisting of one or several cell, that the
real function u(r) nearly everywhere is equal to unity except the mentioned region. In general
case the aperiodicity leads to decrease of u(r)—l at infinity according to some law. The change
of potential will leads to the wave function and energy spectrum changes: ‘P(F)= UO(F )‘I’O (17),
e = ¢, + Ae. The SE now must be written as

(V2 +e)w(7) = v(F) . (5)

Substituting the introduced functions into (5) one gets the equation for function U, (17 ):

2 . . .\ 2V, (F) .
(72 + 8l F)=| ()= - =550V U 7). ©

The gradient directional derivative of wave function ‘P, (77 ) comes into the right part of (6). By

virtue of multiplier (u(F )—1) the nonperiodic and, in general, complex operator-function appears

in the square bracket in the right part of (6). It is corresponding to the potential in customary SE.
The wave function in (6) for arbitrary finite volume () must be normalized as:

1 N | _\2 V2 3o
5!{'(’”)‘{' (F)d’7 :Ey\yo(’”)' U, FY d’F =1, )

inasmuch as under U, (¥) — 1 we have ¥(¥) — ¥, (7). The solution of the inhomogeneous equa-
tion (6) allows one to define the spectrum Ae, therefore, the energy e. To reformulate it as IE it
is formally necessary to build up the GF G’(Ae,l;;? |7 ') for the operator

L'=V?+Ae+(2/¥,(7))V¥,(F)- V. Then one will have:

U,(7)= [ G'lAae. k37 | 7 Yul)~ Dy (70, (F 7 8)
The integration here must be performed all over the infinite space (in this case we do not identify

the limits). However, there is a problem to get the explicit view of such GF. If the vector
b(F)=2V¥,(F)/ ¥,(¥) with the spatial spectrum b(§) is decreasing at infinity, then the spectral
component G'(Ae,E,é) of such GF satisfies IE

1= Ae—£2G(ae.k,q)- L [K-5(G-7)6(8e.3)d" -

(27}

This IE must be solved numerically in the infinite region. If vector b is replaced by its averaged
over the sell one (i.e. the constant valueb, ), then we have b(§)=(27) 5(§)b, , and IE has the evi-

dent solution G’(Ae,lg,c?)= [Ae -G’ —jg -EOII (remind that the vector EO depends on e, and k ).
But such approach is approximate. Therefore let use the GF of operator in left side of equation

(6):

1 T exp(— jlzf) 5= exp(—j+/ Ae|77|)
- | L d% =~ —F
(2z) °. Ae—k 472'|r|

Then to obtain the function U,(7) one gets the IDE:

G(Ae,7) = 9)
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7)= [Glae,7 7))~ (7))~ B () V', 77 (10)
It is not difficult to see that the vector b (r) is periodic with the periods p and is depended on
reduced wave vector k and energy e,, and so the IDE (10) allows getting the dispersion equation.

Let u(F)=1 outside the finite regionQ. Then it is follows from (10) that U,(7) can not tend to

finite constant value (say to unity) at the infinity, otherwise the left part of (10) will be tend to
zero. Hence, in the far cells the function U, (17 ) must oscillate relatively some complex (in gen-

eral) value. In this case we assume that U, (7)= ®(7)+U,(7), where U,(¥) is periodic potential,
and the function d)(? ) is the decreasing at infinity and satisfying the IE

)= [6laer 7l )17 -
- [0 = ol )= DG W7+ G0 =7 ol ) 0T

Here the function U, satisfies the differential equation

(v + e )0, (7)=~(67)- v 7, (7) (12)

0,(7)=~[ G(ae.7 ~#No()- V'), (7 )7 (13)

(11)

It also satisfies IE

which has the solution
0,(7)=~ [Glae 0.7 ~#No()- V'), ()" . (14)
Q,

The simultaneous solution of IDE (11) and (13) or (11) and (14) gives the full solution of the
problem. Obviously, the perturbation of periodicity leads to the local levels appearance in the en-
ergy band, at that the function (11) is decreasing at infinity as point charge potential, i.e. propor-
tional to 1/, and the wave function perturbation is finite. All is the same if u(7) tends at infinity
to unity according to some law.

Let now consider the effect of structure finiteness. In this case the SE (5) has the general
solution

W(7) = @y (F)+ [ Gle.7 —F W(F )P (F )7 . (15)

Here <D0(;7 ) is the flat wave corresponded to the particle with positive energy e > 0. In this case

the problem conforms to particle scattering by finite potential. In 1D case the reflection and
transmission coefficients may be introduces, and at that we have the GF as

Gle,x)=j exp(— j\/2|x|)/ (2\/2 ) If <0 then @, (7)=0 since it is impossible to have at infinity a

free particle with negative energy. So, (77 )|2 — 0 under » »> . Let introduce the func-
tion ¥'(F) = W(7)— @, (7). It always is decreasing at infinity and satisfying the IE

V()= @4 (F)+ [ Gle,7 — 7 WF )W (7 )dF, (16)
= [Gle,7 =7 W(F ), (7 )d*F".

For the bound states we have ®, =0, and the equation (16) coincides with the IE (11). The func-
tions W'(7) in the centre of PPS is closed to the function ¥,(7) of PS, and the distinction shows

near the boundaries and outside the structure (at infinity). Therefore let produce it in such a
way: W'(F) = U(7)¥,(7). The function U(F) is modulo closed to unity everywhere in PPS with
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the exception of boundary regions and tends to zero at infinity. It also satisfies the differential
equation

{vz caes YRV oy o) <o) 2ol a”

¥4 () ()
U(F)=U'F)+ [G(de.7 ~ 7 oF") v (7) - b(F)- V7 (18)

Here the free term is

or the IDE

a’r' . (19)

3. IDE for dielectric PPS

Let now there is the isotropic dielectric medium ( ,u(F ) =1), which has not the sources in
finite region. Let consider the stationary processes with flowing time dependence:exp( ja)t),
® = kyc. Then the electric field satisfies the wave equation V xV x E(F) = k(7 )E(7), or, intro-
ducing the dielectric susceptibility x(7)=&(F)-1, we have

V2 + KE(F)=—|k2x(7)- vV - EG) . (20)
It is follows that the wavenumber square corresponds to the value 2mE/h*, and the operator in

the right part of (20) — to normalized potential. Naturally, the electrodynamic equations are vector
that demands, generally speaking, to use the tensor (dyadic) GFs. The right part of (20) may be

transformed using the following relationship: V-E(F)=-V- [K(F )E(7 )] =
~x(F\V-E(F)- E(7)-Ve(7 ) The equation (20) right away allows one to write the IDE:
jG (k2.7 =7 k2 + V'V Je(F)EG ) Q1)

where G(kg,? —77')= —(47r|r -7 |) exp(— ]k0|r -7 |) is the free space scalar GF (let note that in

electromagnetics it traditionally is used with opposite sign). It must be noted that the IDE (21)
demands the smoothness of function g(? ) , 1.e. the dielectric without sharp boundary (absence of

jumps). More convenient volume IE constructed based on polarization current conception has the
form

E(F)=—Jk +vv ]jG k2,7 —F )7 E(F )7 (22)

By several equivalent methods it may be reformed to several types of surface-volume IDEs. One
way is the transfer of the differential operators to the source coordinates. Such double transfer
gives the IDE (21), which is loaded by surface integrals. These integrals may be formally ex-
tracted from (21) if the permittivity has the jumps on the closed boundary surface S . For this let
introduce on S the local right coordinate system with unite tangent 7,, 7, and outward normal v

vectors. The permittivity jump at the boundary from 5(17 -0v )= g (77 ) to 5(77 + 017):1 leads to
normal electric filed component jump: E; / E, = &~ . At that if the source point in the (21) tends to
the surface then the 1D delta-function of normal coordinate v and its gradient are extracted.
Namely, V-{(g(?) )E(F )} { F)E(F )} (0/0v)E,(F), where the normal derivative is
(0/0V)E,(¥)= (5 —I)E S(v)+ (8/ dv)E, . Accordingly the expression VV-{K(F)E(F)} under the
integral (21) is transformm§ as

—iswV e —1)E |- (e —1)E, F V() - 50 )V[(e —1)E; (7).

Then one can to mark out the surface integral in the right part of (21):
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17)=§lle 7)1 )E @V 6l2.7 -7 o )6k 7 -7 W[ () - 1)E (7).
N S
Remark that we use the uninterrupted values right up to the inner points of boundary, and under
the crossing we extract the jumps.
Thus, let accent the similarity and distinction of PS and PPS description in quantum and
electromagnetic cases. The energy is corresponds with wave number square, and the GFs (4) and

(9) are identical if e is replaced by k; . The particle energy is always real but may be negative.
The value k, for finite structures may be complex that means the time aperiodicity. The station-
ary SE wave function is always harmonic in time and has the term exp( JEt/ h) The electromag-
netic equations have the operator (k(f +VV ) which acts on singular GR. This is the reason of

possible discontinuities in the fields and its derivatives, whereas the wave function is continu-
ously differentiable. The permittivity and permeability in a certain sense are equal to potential.
The magnetodielectric structures must be described by coupled IEs for electric and magnetic
fields. They may be transformed to single IEs for each vector using the Maxwell equations. The
metallic structures are described by surface IEs, and the a metallic-dielectric ones — by surface-
volume IEs. The corresponding equations for the PSs are presented in [6]. Often it is necessary to
consider the structures with some objects embedded into the dielectric background & . Then the
free-space GF must be replaced by media GF with usage of permittivity & — £ . Particularly, the
case ¢ =1 corresponds to the cavities in the background. The equations are expressed by kernels
as tensor GFs which are presented in [6].

4. The examples

Let consider 1D PS with period a and periodic potential v,(x)=v, for 0<x<d and
v,(x)=0 for d < x <a.We have the SE

(a’2 /dx* + e, )‘PO (x)=v,(x)¥,(x) . (23)

In electromagnetic there is the flat wave correspondence to such motion for which V - E =0. This

filed has one transverse component respective to the function ‘¥, i.e. the problem is scalar. We

have following correspondence: e, —v,(x) ~ kZe(x), vy(x)~kZ[l—e(x)], &(x)~1-v,(x)/e,. The
permittivity & =1 corresponds to free particle. Let consider 1D periodic GF (k, =k ):

Gk )= 3 o ilis2nziak) ¢ vl mha= plefr=na)

a,—. e, — [k + 2n7z/a]2 — 2\/5
and solve the IE for negative energy:
¥, (x)= J.(N?(eo,k, x—x o (X ), (x" ) . (25)
0

It is easy to see that the solution ¥, (x) of (25) is equivalent to flat wave and its derivative mode-

matching solution. The dispersion equation is

Dle,, k)= J-‘PJ (x)¥, (x)dx —J. I W (x)G ey, by x — x" Wy (), (X )dx'dx = 0. (26)
0 00
It may be rewritten as
exp(— jkld) exp(jkld) - exp(— jkzd) - exp(jkzd)
- jk, exp(— Jjkd ) Jjk, exp( Jjkd ) Jjk, exp(— Jjk,d ) — jk, exp( Jk,d ) 0. @)
exp(— j(k, +k)a) exp(ji(k, —k)a)  —exp(- jk,a) —exp(jk,a) ’

— jk exp(— j(k, + k)a) jk exp(jlk, —k)a) jk,exp(- jk,a) — jk,exp(jk,a)
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where k, =./le, -V, , k, = \/Q (for dielectric PS correspondingly &, = kox/g , ky =k,). It is con-

venient to use the transfer matrix method. Such second rang matrices bound the amplitudes of
forward and backward waves in the neighbouring layers, or the functions and its derivatives
(transverse electrical and magnetic filed components in electromagnetics). In the first case this
matrix less convenient and more complicated. In the second case the matrix is well-known and
usually used as transfer matrix of a later with the thickness d [8]:

()= cos(k,d) j(k, 1k, )sin(k,d)
S ik, kg )sin(k,d) cos(kd) |
The phase shift per period here is

0= ka= jln((A” w424 (4, + A, 14— det(A)) , 28)

in which 4= 4,(d)4,(a—d) is the transfer matrix of all sell. For quantum particle we have
det(A):l owing to the reversibility. In electromagnetics it takes place for isotropic layers. Let
form the approach wave function as Fourier series

¥, (x)= \/_ Za exp(— 2mjx)/ a .
Then the functional (26) corresponds with the quadratic form
N g [Py elexnc k) =1) S exp(K,, (K)d) -1
D(e,,k) n;N a,l + ; mzw HZN ”;N a,a, KWK (k)
K, (k)=k+2z(n—m)la,
and its extremum determines the dispersion.
Let there is a periodicity perturbation in the cell 0. Namely, let v(x)=v,, u(x)=v, /v, for

b

0 < x <d .The function U,(x)=®(x)+U,(x) is the sum of decreasing and periodic parts. It satis-
fies the differential equation

(@2 7dx® + Ae)U, (x) = (u(x)—1)v, — 250'((’“)).d/dx Uy(x) , (29)
X
and its components satisfy the system of couple IEs 1V
d(x)=[v, - v, ]J. G(Ae,x - x')[(D(x') +U, (x')]dx' , (30)
ﬁo(x)z—IG(Ae,x—x’)%((j))[@’(x)-i- Tk G31)

Also let consider the bilinear functional

d dd
G (@,ﬁo): ﬂ@(xﬂzdx’ ~[v =, ”.d) G(Ae,x —x') [d) ﬁo(x’)]dx'dx , (32)
0 00

Cz(N)(ﬁo,CD)= ]_Vfljo (x)(2 dx + 1].“ ]‘jf’ U, (x)G(Ae, x - x,)Z‘I‘f‘éix') [CD(x')+ U, (x')]dx'dx . (33)

!
—Na —Na —Na 0( )

The function U, (x) is definable at the segment (— Na, Na) as the Fourier series by the functions
sin(Znﬂx/ a), cos(2n7zx/ a) with the coefficients «,, S, (or using the complex exponents). The

number of such coefficients is 2L —1. Let the functions CD(x) is expanded through the piecewise

constant basis in the region 0 < x <d . The number of expansions coefficients M may be small
or even M =1. Substituting these expansions in (30), one define this function in the region
(— Na,Na). It is seen that it is exponentially decreasing at infinity and depends on 2L+ M —1
parameters. The corresponding integrals are analytically integrable. Substituting the filed expan-
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sions into (32), (33) and imposing the extremum conditions one gets the uniform system of linear
2L + M -1 equations with the determinant which must be zero. Thus, the algorithm scheme is as
follows. One assigns the energy e, and determines the &£ and the wave function ‘¥, (x) from (28).

Further these values are used to calculate the determinant and its root Ae. There is the parameter
N in the algorithm. Instead the IE (31) it is more convenient to use the equation

ﬁ&ﬂz—jé@a@x—x)wx h )+ 0 (x) (34)

and corresponding functional. Here k£ =0 in the GF (24) as the function (34) must be religiously
periodic. The IE (34) is preferable as the solution is seeking in the finite region.

Let else consider the PPS in the form of infinite in two dimensions x and y crystal layer
having several cells along the dimension z. To analyze this quantum well the traditional 2D-
periodic GF approach may be used. The GF for diagonal tensors with transverse vector

k = (kx,ky) has the form [6]
1 °° J-dk exp(— j(kx +2n7/a, )x - (ky +2n,7/ a, )— jk},z)
2ma,a, nl o e, —(k, +2nx/a) - (ky + 2n27r/a2)2 —k’

The dispersion in such PPS is determined as the dependence ¢, = f (kx,ky), and the equations are

Gley k.. 7)=

. (35)

formulated in several cells along the coordinate z. For the quantum string in form of periodic
atomic chain it is need to use the ID-periodic GF, which contains one infinite sum and 2D inte-
gral [6]. At last, let consider the disposition on form of discontinuity at the z =0 plane. It may be
the shift of crystal layers, the gap, the contact of two different semi-infinite samples. For the con-
tact of shift discontinuity it is convenient to use the matching of wave PS functions at z=0:

Wk b F) = Bk o). 0¥ lensky ki) _ 0¥yl kyoky ko )
0z 0z
It allows one to determine the dispersion in common with two functional (3). In general case it is
necessary to use two intermediate layers with finite numbers of transverse periods and to deter-
mine and match their wave functions using the GF (35).

4. Conclusions

The integrodifferential equations, dispersion equation and the approaches for calculation
of energy-band structures and dispersion characteristics for quantum and electromagnetic PPSs
have been introduced. The 1D, 2D and 3D periodic GFs approach is the mane basis of the inte-
grodifferential equations method. The simple series circumcision leads to periodicity violation
and bad accuracy, so it is necessary to use the singularity detachment and the analytical methods
of series summation in the GFs. For such way the another form of GF is preferable [2,6]. It con-

tains the shifted on a period members with the phase terms exp(— jn gﬁ): exp(— jﬁlg ) For finite
sum it gives the GF of PPS [6]. The proposed equations are simply applied both for quantum and

electromagnetic 1D, 2D and 3D periodic structure, but they are more interesting for two last cases
as 1D problems is easily solving by other methods [8].
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Abstract — Theoretical model of non-stationary nonlinear interaction of an electron beam with a coupled
cavity circuit is presented. The model is based on the non-stationary discrete theory of excitation of a peri-
odic waveguide developed in [1]. The paper reviews the basic equations of the theory, discusses the reso-
nant properties of the finite-length slow-wave structure, and presents the derivation of the dispersion rela-
tion for the beam—wave interaction.

1. Introduction

In this paper, we describe the non-stationary (time-dependent) model for simulation of
electron beam interaction with electromagnetic wave in a coupled cavity traveling wave tube
(TWT) amplifier. Development of non-stationary codes is important for many problems of mi-
crowave electronics, such as amplification and generation of short pulses and complex multi-
frequency or chaotic signals, investigation of the stability of amplifiers, etc. There exist powerful
tools for solving such kind of problems known as “fully electromagnetic” codes, such as MAGIC,
KARAT, MAFIA [2-4], which are based on the straightforward integration of Maxwell’s equa-
tions. Unfortunately, high requirements for processor time limit their applicability. Therefore,
less computation-intensive non-stationary codes are still required. Such codes are based on vari-
ous forms of non-stationary theory of excitation of electromagnetic slow wave structure (SWS).
The most popular is the non-stationary wave theory of excitation of a waveguide by a nearly sin-
gle frequency current with a slowly varying amplitude developed in [5], which has been used in
many works (see e.g. [6,7]). However, this theory is valid only for signals with narrow-band
spectrum in the center of the SWS pass band. The modification of the non-stationary wave theory
allows consideration of beam-wave interaction near an edge of passband (see the recent review
[8] and references therein). Several non-stationary codes for simulation of a coupled-cavity trav-
eling wave tube (TWT) using the equivalent circuit representation of the SWS have been devel-
oped [9-11]. This approach takes into account interaction with all spatial harmonics and allows
consideration of the processes near cut-off/stopband, as well as in the center of the SWS pass
band. However, the equivalent circuit model strongly depends on the design of a particular struc-
ture. Consideration of higher-order passbands, e.g. the slot mode in the coupled cavity TWT, is
another challenging task [12].

In this paper, we develop the approach based on the non-stationary discrete theory of exci-
tation of a periodic waveguide [1]. This theory is more general than the equivalent circuit models
[9-11] since it is based on the rigorous analysis of the SWS electrodynamics. It precisely fits the
SWS dispersion and easily takes into account as many eigenmodes as is need. This approach is
applicable for modeling of various microwave electronic devices such as multiple cavity kly-
strons, extended interaction klystrons, coupled cavity TWT or BWO, etc.

2. Non-stationary discrete theory of a periodic waveguide excitation

Consider a waveguide periodic in x with period d . Electromagnetic field satisfies the
Maxwell’s equations
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rotE :—a—B, divD=p,
ot
D (1)
rotH :a—+j, divB =0,
t

with appropriate boundary conditions. We use a special form of discrete Fourier transform of a
function ¥ (x) [1]:

Y, (x)= i WY (x+nd)e™. )
It is supposed that ¥ (x) — 0 at x > Foo. The transform (2) has the following properties:
Y, (x+d):‘I’B(x)e_’Bd, 3)
¥y (%) = ¥poana (%) @)
Integrating (2), one gets the formula for the inverse transform
2m/d 2n/d o o 2n/d
[ w(x)dB= [ 2 W(x+nd)e™dp="> ¥(x+nd) [ e"dp. (5)
0 0 n=—o n=-a 0
All the integrals in (5) are zero, except for n=0:
S { 0, n=#0
J- e”‘l dB —
g 2n/d, n=0
hence,
d 2n/d
¥ (x) = ! ¥, (x)dp. (6)

Applying the transform (2) to the Maxwell’s equations (1), we obtain
oB, .
rOtEB = —?, leDB = pB’
(7)
o,
rot Hy =7+JB, divB, =0.
Introduce a system of eigenfunctions E ;(r), H,(r) which satisfy the boundary condi-
tions on the walls of the waveguide and the equations
rot EsB +Q (B)BSB =0, ®)
rotH ; +Q (B)D,, =0.

The eigenfunctions are periodic
E;(x+d,y,z)=E (x,y,z)e™, 9)
purely solenoidal, i.e. divE =divB g =0, and satisfy the normalization condition:
I(DsBEpB+H.vBBpﬁ)dV:{ N (10)
A 2N, s=p
Here ¥V, denotes a volume of one period of the structure, N, is the wave norm. According to [1],
the eigenvalue problem has a discrete spectrum of Q (B) for real . Expand the Fourier trans-

formants of electric and magnetic field E;, H; over the eigenfunctions E;, H ;:
E, =Y C,(t)E,-V®,, Hy=—i)> C,(1)H, . (11)

Here, C; are complex amplitudes and @ is electrostatic potential of the space-charge field satis-
fying the Poisson’s equation
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div(eV®)=—p. (12)
Substituting these expansions into (7), we obtain

—iy CyrotH, Z 5 sﬁ+jﬁ—ga§pﬁ, (13)
> CyrotE, =ip> C H,, (14)
or, taking into account the definitions Sof the eigenfunctisons (8),
isz CyQ, (B)E,, = sz GEy i€ aV;B , (15)
—MZ H,=in) C,H,. (16)
Let us multiply (15) on E, (16) on —iH[;, and summate‘them:
_ZZ(CSBQS (B)(2E 45y +uH  H )) =
= Cy(eE El, +pH HI, )+ ( i - s%} - (17)

Integrate (17) over the volume V. Since the eigenfunctions satisfy the normalization condition
(10), all terms with s # s" vanish:

oV, |
2iN,CyQ, (B) = 2iN,Cy + | [JB—S - )EsﬁdV. (18)

One can show that the term containing V®, vanishes after integration (see [13]). Integral over
V, in (18) can be transformed into integral over the whole volume of the waveguide, V' . Using
the definition of the [ -transformation (2) we get

[EGdV = [ X i(x+nd)Ee™dv

Vo Vo 7

or, since E|; satisfies condition of periodicity (3)

.[Zj(x+nd,y,z)E:Beiﬁ”ddV = jZ:j(x+nd,y,z)E’;[3 (x+nd,y,z)dV = IjE:BdV )
L n 14

0

Thus, finally, from (18) we obtain

. . 1 . *
¢, -, (B)C, = [§Edv . (19)
sV
Applying to (19) the inverse Fourier transform
2n 2n
Co = % f Cpe™d(Bd), Q,, = i j Qe (Bd), (20)
0
E zzl ESe"d (Bd) =B, (x-nd,y,z), 1)
T
one obtains the following equations for the complex amplitudes C, :
1
i) Q =———|jJE. dV. 22
Z sm 377 m 2NS .I[J sn ( )

Electric and magnetic fields, E and H, are given by
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E=) i C, (1)E, (x—nd,y,z)-V®,

H= iz i C,, (t)H,, (x—nd,y,z).

If the eigenfunctions E , are well-localized (i.e. quickly decay in x -direction), then the

(23)

representation of the field in the form (23) is equivalent to describing the periodic waveguide as a
sequence of coupled cells. Therefore, C,, can be treated as a complex amplitude of oscillations of

the s-th eigenmode in the 7 -th cell. The coefficients Q
n -th cell with the n £ m -th cells (see Fig. 1).

can be interpreted as coupling of the

sn

Q, Q O Q O

E(x) E

x
Fig. 1. On the definition of the complex amplitudes C,, and coupling coefficients Q

3. Dispersion of the “cold” structure

In the absence of the beam current (j =0 ), the following “cold” dispersion relation can be
obtained from (22):

o= z Q e =Q (B), s=12,... (24)

Evidently, (24) takes into account all the spatial harmonics, as well as all the passbands of the
periodic waveguide.

The coefficients QQ_  can be directly calculated from Fourier expansion of the dispersion

sm

curve of corresponding eigenmode. In the case, when each oscillator is coupled with its nearest
neighbors only, the coefficients (0 are given by

sm

] _Ao, m=xtl
Q, =ms0[1+2LJ ,Q = 2 T, (25)
Q, 0, m#=xl

Here, Q. is quality factor of the corresponding eigenmode; o, is the center frequency of the s-th

passband. Denoting phase shift per structure period as ¢ =d , the dispersion relation can be re-
written as

10,

0=0,+ —A®, cOSQ. (26)

S

Thus, coupling strength Aw_ determines the bandwidth of the s -th mode.
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4. Power conservation law

Let us derive the power conservation law for the equation of excitation (22). For simplic-

ity, we consider only a single mode and omit the subscript s . Multiplying (22) on C, and adding
to complex conjugate equation, we get after some manipulations
2

—b 4 2Im(Q,)[C,[ +2Y Im(Q,C c*):-NLReij*E* dv .

m n—-m m n sn
m#n K 14

Multiplying this equation on N, /2, we obtain

d;V" +2Im(Q,)W, + N,y Im(Q,C, ,C.)=-P", (27)
t m#0
where
W = NS, 2 (28)
2
is energy in the n-th cell,
P = %Re [ICE, (x—nd)dV (29)
V
is power of electron beam interaction with the field of the n-th cell,
2 Im(Q0 ) w (30)
is ohmic power losses in the n-th cell. Now (27) becomes
deZ—wOW;'i‘P,:—R[—Pe(n)’ (31)
dt 0
where
R: = Ns Z Im(QanC:—m )’
" (32)

P :Nsilm(Q C,..C)):
m=1

m n+m n

are power fluxes incoming in the n-th cell from the left and outgoing to the right, respectively. In
a zero coupling limit ( 2* =0),(31) coincides with the power conservation law for a single cavity
excitation [13].

5. Resonant properties of the finite-length periodic structure

Consider the finite-length periodic structure comprised of N cavities (Fig. 2). Suppose
that the periodic structure is connected at both ends with dispersionless sections of a uniform
waveguide, which are terminated with a driving signal source at left and output load at right. The
driving source and the load are perfectly matched with the uniform sections. Here, P, denotes

input power coming from the driving source into the input waveguide, £, is the power reflected

from the periodic structure into the input waveguide. Power propagated through the output
waveguide and transmitted to the load is denoted by P,,. Power fluxes of the forward and back-

ward waves propagating inside the periodic structure are marked by P and P respectively.

The wave propagation inside the structure shown in Fig. 1 depends on reflection and
transmission factors, which can be can be easily obtained analytically.
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Fig. 2. Schematics of the SWS connected to input and output waveguides

For simplicity, henceforth we assume that each oscillator is coupled with its nearest
neighbors only, and the excitation equation for the “cold” structure (22) has the following form:

Cn+(im0+y)Cn+iATw(C +C,,)=0,n=12,.N, (33)

n+l

where vy = ®,/20 . Renormalizing the amplitudes as C, (1) > C, (¢)e ™", (33) becomes:

+C,,)=0,n=12,..N. (34)

n+l

C,+7C, +lATO)(C

Now =0 corresponds to the center of the periodic waveguide passband, and the dispersion re-
lation (26) becomes
=1y —A®CosQ. (35)
In the numerical simulation the uniform input/output waveguides are represented as sec-
tions of periodic structure with much wider passband AQ > Aw:

C,ﬁ%(cnﬁcn_l):o, n<l, n>N. (36)
Equations (34) and (36) describe the whole electrodynamic system comprised of periodic
structure of finite length coupled with two uniform waveguides terminated with perfectly
matched signal source and load. It is supposed that SWS is matched with the input/output
waveguides exactly in the center of the passband. However, (36) can be easily modified to
consider matching at any point within the passband.

We seek for the solution in the following form:

C, = (Cme_"’"" +C, e )e“"’ , n<l, (37)
C,=(Ce™+Ce™)e”, n=12,.N, (38)
c =C ™, n>N, (39)

where y is phase shift per cell in the input/output waveguide. Dispersion in the input/output sec-
tions is
o=-AQcosvy, (40)
hence, within the SWS passband, —A® < ® < Aw, dispersion in waveguides is negligible.
The boundary conditions at the ends of the central section of the structure are

C +yC + 1200 _ A0
- IAQ iIAQ
CO +TC71 = —TCI,
. IA® IA®
Cy +vCy +TCN—1 = _TCNH’
. iANQ iAQ (42)
Cya +TCN+2 = _TCN'
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Substituting (37)-(39) into (41) and (42), after some manipulations we obtain the formulas

|4 connecting the amplitudes
1k C.+C =C,+C,, @3)
C,e"+C, e"=Ce™+Ce".

C e—i(NH)(p +C ei(NJrl)go -C —i(N+1)y
+ ‘ - A out . 2 (44)
Ce™+Ce™=C e™.
From (44) we find reflection from the transi-
tion from the semi-infinite periodic
waveguide to the output dispersionless

—4= 5 - waveguide -
C 1—e""" ;
. : . F:—‘:—e—,e’z’N(‘). (45)
Fig. 3. Reflection from the transition between the C 1—elvro)
+

semi-infinite periodic waveguide and the disper-

sionless output section Note that if dispersion in the output

waveguide is negligible, one can assume
v ~ /2 and simplify (45):
1 - l'e—ll";ﬂ e_ZiN(P )
1—ie

The plot of |F| vs. ® is presented in Fig. 3. Note that ‘F(m)‘ =1 outside the passband and has

r=- (46)

singularities in the cutoff/stopband points, i.e. d |F| / dw — oo (for details see [8]).

Using (46), one can find the following expressions for the reflection and transmission fac-
tors of the finite-length periodic structure
1+ie” +T (l +ie ™ ) e
R=- A — (47)
1—ie" +F(1—ie”¢)e 0

2i"sing 1+R —

1-ie® 1+
Here, R determines the power flux reflected into the input waveguide, while 7" determines the
power flux transmitted into the output waveguide:

T =

(48)

Eizmz,gﬁzvﬁ
En Bﬂ

The plots of ‘R(m)‘ and ‘T (0))‘ for a periodic structure consisting of ten cavities are presented in

Fig. 4, where theoretical curves (47), (48) are shown with solid lines and numerical results are
shown with circles. One can see excellent agreement between the simulations and theory. The
transmission factor is plotted for three different values of losses y. One can check that in the case

of zero losses |T|2 + |R|2 =1.

6. Dispersion relation for beam interaction with the coupled cavity structure

In this section we derive a dispersion relation for electron beam interaction with a wave in
a periodic waveguide. We restrict ourselves with 1D problem and consider interaction with a sin-
gle mode of the waveguide omitting the subscript s. Thus we rewrite (22) as follows
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|R|

o/A® o/A®

Fig. 4. Plots of reflection and transmission factors vs. frequency (solid lines) compared with numerical
simulation (circles)

—lZanmZ——j (x,0)E dx——TI (x,0)E; (x—nd)dx.  (49)

For convenience, we separate in (23) the solenoidal field of the periodic structure from the space-
charge field:

E(x,t):E(x t)—Vd)
= ZCn (1)E, Z (x—nd). (50)

Applying Fourier transformation to £(x,), we obtain

E(t) I xt l’”‘dx—J.ZC x nd) e dx =
~0 1 (51)

= Z C, (t)EOkeik"d = EOkZ C, (t)eih’d ,

where E,, = I E,(x)e™dx is Fourier transform of E, (x).

Applying the Fourier transformation to the right-hand side of (49) after some manipula-
tions we obtain:

0

C,-iy Q.C,  =- CEr e de, (52)
Multiply (52) on E,,e"" and summate over all 7 :
E —iQ(k)E, =- : Z Eye™ T 1.Ey e dk' =
k k 2N 21_[ J k'0k
(33)
I ! EOk EOk oK nd gpr
Using the well-known formula
Ze’"‘p = 2n28((p+ 2nm), (54)

where 9§ is the Dirac’s delta function, one can simplify (53):
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E, ~iQ(k)E jl EO"EO"ZS(k’ 2’;’” k' =

S (55)
E, , 2nm , E .
== 2N, d J. I EOk S[k —k+ d Jdk 2]\;fd ;Imznm/dEomznm/d-
For a single-frequency harmonic wave, E ~ exp(iwt), (55) reads
. E :
Z(O)_Q(k))Ek :_2]\?;{ ;IkJrznm/dEomznm/d . (56)

Assume that k-spectrum of the wave is narrow enough to retain only the term with m =0 in (56),

i.e.,

_ |E0k
2N d

This means that we neglect interaction with non-resonant space harmonics.

Dynamics of the electron beam is described by the well-known system of 1D equation of
electronic motion, continuity equation and Poisson’s equation [14,15]

|2

i(0-Q(k))E, = I,. (57)

ov  0Ov ~

—+v—=n|E+E_),

oo ~EYEL) 58)
o PY) _ o OE. _P—Ps
ot ox " ox €

Here v is electron velocity, n=e/m is electron charge to mass ratio, E, is the space charge
field, p is space charge density. Linearazing the equations (58) one can obtain the following
equation for high-frequency electron current
0 ? B, =
—+i I1+B1 = LFE, 59
( . Bej B, oV (39)

0

where B, =/v,, B, =0, /v,, v, =21V, is dc beam velocity, /, and ¥, are dc beam current

and voltage, respectively.
In Fourier domain, after some trivial manipulations (59) reads

3 2 (,OVOI
[(m kv, ) + ]1 =i B (60)
Combining (57) and (60), we obtain the following dispersion relation:
(m—Q(k))[(w—kvo)z+wﬂ=wm§s, (61)
where
2 2
_ % . IO |E0k| — Yo . IOZO |E0k| (62)
o d 4o ,N,  od 4V, Vi
is dimensionless interaction parameter and
V2
Z,=—2 63
Y (63)
is the cavity shunt impedance. Here it is supposed that E (x) is normalized as
.HEO (x)‘dxz Vy. (64)

It is useful to compare the dispersion relation (61) with that of the Pierce theory of a TWT
[14,15]
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5. (k=Bo)| (k=B.) +B; |=—H:B.C°,  (69)
4l where C*=1,K/4V, is the Pierce gain pa-

rameter, K is coupling impedance, 3, =3, (03)

L5
T

is the propagation constant in the “cold” struc-
ture.

AwK/w,Z,
b2

Let o, B* be the point of synchronism,

where the cold phase velocity '/B" = v,. Near

r 05 0 05 i+ this point, the cold SWS dispersion can be ap-

o/A® proximated as
QB)~o" + —B° 66
Fig. 5. Normalized coupling impedance vs. nor- (B) © TV (B p )’ (66)
malized frequency where v, is the group velocity. Since P, ()
satisfies the equation ®=Q(pB,), one can re-

write (61) as

2
(Q(B,) (k)| (0-kv, )" + 0}, | = 0wie, (67)
or taking into account the expansion (66)
2
(k—BO)[(k—Be) +Bﬂ:—mm§8/vgv§. (68)
Comparing (68) and (65) we see that C° is
2
C? = (&j Y& (69)
BOVO vg
Thus, we find the following expression for coupling impedance K :
2
E
Ll (70)
ngBONv
or, taking into account the definition of the cavity shunt impedance (63),
Z,|E,[
K = (002' o|2ok| , (71)
ngBO V:)

The plot of normalized coupling impedance vs. frequency is presented in Fig. 5 for E, (x) taken

as Gaussian function

E, (x) _ 2N e*(Zx/D)z .

N

Note that K — oo at the edges of passband where v, =0. However, the interaction parameter &

has no singularities so the developed theory is valid at all frequencies, even outside the passband.
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NON-STATIONARY NONLINEAR MODELING OF AN ELECTRON BEAM
INTERACTION WITH A COUPLED CAVITY STRUCTURE.
II. NUMERICAL RESULTS

N.M. Ryskin, Member, IEEE, V.N. Titov, Member, IEEE, A.V. Yakovlev

Saratov State University, Saratov, Russia
E-mail: RyskinNM@info.sgu.ru

Abstract — In the part one [1] of the paper, we have described the non-stationary (time-dependent) ap-
proach for simulation of electron beam interaction with electromagnetic wave in a periodic waveguide
based on the non-stationary discrete theory of excitation of a periodic waveguide [2]. In this part we dem-
onstrate the application of the theory for numerical modeling of a coupled cavity traveling wave tube am-
plifier.

1. Introduction

The non-stationary discrete theory of excitation of a periodic waveguide [2] represents a
framework for modeling of non-stationary interaction of electron beam and electromagnetic
waves propagating through a coupled cavity slow wave structure. According to the theory derived
in [1,2], the waveguide is represented as a sequence of coupled oscillators. The basic equations of
the theory are thoroughly reviewed in [1] along with its implementations to finite-length periodic
structures. In this part of the paper we present the numerical results of a numerical simulation of
coupled cavity traveling wave tube (TWT) amplifier. For simplicity, in this part we use the fol-
lowing assumptions:

a) the structure consists of identical cavities with weak coupling;

b) excitation of a single eigenmode of the structure is considered;

¢) electron motion is one-dimensional;

d) the space-charge forces are negligible.

Under the assumptions listed above, electric field of the structure can be represented in the fol-
lowing form

E=Y C,(1)E,(x-nd). (1)

where E| (x) is the eigenfunction describing longitudinal field distribution in cavity gaps, C, is

amplitude of oscillation in the # -th cavity. The amplitudes C, satisfy the equation of excitation

n

C‘n—iwo[HéJC +"AT°°(C,,H+cn1):_;Tsiz(x,t)E;(x_nd)dx. @)

Here 7 (x) 1s the beam current, Q is cavity quality factor, w, is the center frequency of the struc-

ture passband, the coupling strength Aw determines the structure bandwidth. The non-stationary
discrete theory allows considering arbitrary field profile E|, (x) For example, one can obtain

E, (x) from numerical solution of Maxwell’s equations for the cold structure or from experimen-

tal measurement. In this paper, we approximate £, (x) by the Gaussian function
_ 2V ey

Eo(x)_m ; 3)

where d is the effective gap half-width. Such an approximation is often used for gridless gap.
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A self-consistent solution of the equations of wave excitation and 1D electron motion is
realized by the computer code developed in Compaq Visual Fortran. The equations of electron
motion

&, d_E ()
dt dt m

are modeled by the “particles in cells” (PIC) method [3,4] utilizing the “leapfrog” scheme for
macro-particles movement

e

E(x")At
xierl _x;n — vierl/ZAt , vim+l/2 _v;n—l/Z — ( i ) ‘ (5)
m

e

and “m” denote nodes of spatial and temporal grid, respec-

D
1

Here lower and upper indexes
tively, At is the time step.

The excitation equation (2) is solved by the conventional predictor-corrector scheme. The
boundary conditions are chosen to provide perfect matching of the coupled cavity structure with
input/output waveguides exactly at the central frequency o, (see [1] for details).

2. Numerical results

For the simulation we selected the parameters similar to those of the coupled cavity TWT
described in [5] (see Table 1).

Table 1. Coupled cavity TWT parameters

Central frequency 6.49 GHz
Bandwidth 5.67-7.3 GHz
Effective gap half-width 0.295 cm
Period 0.85 cm
Number of cavities 1040

Beam current <1 A

The dispersion diagram of the coupled cavity structure is shown in Fig. 1. The passband is
relatively narrow, therefore the simple model where oscillators are coupled to their nearest
neighbors is valid [1,2]. We consider the case when the beam synchronism with the wave is ex-
actly in the center of the pass-band.

Fig. 2 shows small-signal gain plot vs. the normalized length of the tube CN where C
and N are Piers gain parameter and phase length of the structure, respectively [6, 7]. The ad-
justment of CN was performed by tuning the beam current, as well as by changing the number of
cavities in the range from 10 to 40. Not surprisingly, gain value proved to be independent from
variations of C and N, as long as CN is kept constant. The numerical results were found to be
in good agreement with the linear wave theory of the TWT [6,7]. The plot of gain vs. CN ac-
cording to the well-known approximate formula G=A4+BCN, A=-9.54 dB, B=47.3 dB,
which takes into account only one exponentially growing wave [6,7], is shown in Fig. 2 by
dashed line. When all the three waves are taken into account, the theoretical data are so close to
the numerical results, that corresponding graphs are not distinguishable in Fig. 2.

Fig. 3 shows the small signal gain vs. the synchronism parameter b calculated at

CN =0.3 for systems comprised of different number of cavities. The G(b) curve calculated ac-

cording to the linear wave theory is also shown by dotted line. The gain curve calculated for the
system consisting of 40 cavities (N =30) is in good agreement with theoretical predictions.
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Fig. 1. Dispersion diagram of the coupled-cavity structure. Numerical results are shown with circles.
Beam line for ¥, =15.3 kV is plotted

Fig. 2. Small signal gain at the central frequency ®, vs. CN in the case of exact beam synchronism at the

center of passband (¥, =15.3 kV). Numerical data is marked by circles; theoretical formula G = 4+ BCN
is shown by dashed line

10 G, dB G, dB

Fig. 3. Small signal gain vs. synchronism parameter b at CN = 0.3. Theoretical linear gain is shown with
dot line. Gain curves calculated for systems comprised of 40, 20 and 10 cavities are plotted with solid line,
dash-and-dot line, and dash line, respectively

Fig. 4. Small signal gain vs. synchronism parameter b for CN =0.6. Theoretical linear gain is shown
with dot line. Gain curve for the system comprised of 40 cavities is plotted with solid line

With the decrease of the number of cavities (at the same value of CN =0.3) the gain
curve becomes less smooth (see Fig. 3). This can be explained by resonant properties of a finite
length periodic structure discussed in [1]. Indeed, decreasing the number of cavities one should
increase the beam current to keep CN constant. Thus, the gain bandwidth increases, extending to
the frequency domains where end reflections are strong (see [1]). One can clearly see that with
the decrease of N the gain ripples become stronger, especially with the approach to the edges of
the passband.
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Fig. 5. Small signal gain curves for the system
comprised of 40 cavities at CN =0.4 and at
different values of beam voltage: V' =15.32kV
(solid line), ¥ =15.5 kV (dash line), V' =16.0
kV (dot line)
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Fig. 6. Large signal gain vs. input signal fre-
quency for the system comprised of 40 cavities
at CN =04 (V =15.32kV) and different lev-

els of input power

Fig. 3 also illustrates the well-known ef-
fect of deep attenuation of input signal
(Kompfner dip, [6]) at b= —1.587.

The gain curve corresponding to
CN =0.6 for the system comprised of 40 cavities
(N =30) is plotted in Fig. 4 along with theoreti-
cal linear gain. It is clearly seen that at CN =0.6
the system comprised of 40 cavities already ex-
hibits gain ripples.

To avoid parasitic self-excitation, the ex-
perimental system [5] operates at lowered level of
beam voltage, shifting the point of beam-wave
synchronism to lower frequencies (see Fig. 1).
The effects of beam voltage variation on small
signal gain are illustrated in Fig. 5 where gain
curves are plotted for a TWT comprised of 40
resonators (N =30) at CN =0.4 and at different
values of beam voltage. To clarify the relation
between beam voltage and frequency-shift the
graphs are plotted in units of frequency. As can
be seen in Fig. 5, with the increase of beam volt-
age the gain curve shifts to the left with little al-
teration of its shape.

The nonlinear nature of beam-wave inter-
action is illustrated in Fig. 6, where gain vs. fre-
quency curves are plotted for the system com-
prised of 40 cavities at CN = 0.4 operating in the
regime of beam-wave synchronism in the center
of pass-band (V' =15.32kV) and at different lev-
els of input power. With the increase of the input
power the gain decreases and the maximum of
the gain curves shifts to higher frequencies. Such
a behavior is typical for TWT operating in
nonlinear regimes.

Since the developed code is non-
stationary, it can be used for simulation of time-
dependent processes, including ones taking place
due to various instabilities in a TWT amplifier.
Particularly, in the case of beam synchronism
near stopband, the parasitic self-excitation can be
observed. This effect is characterized by occur-

rence of output power in the absence of input signal. For simulated system self-excitation can be
easily provoked if beam voltage is lowered from the value corresponding to exact beam-wave

synchronism in the center of pass-band.

The phenomenon of nonlinear drive-induced self-excitation of a TWT-amplifier operating
near stopband, predicted earlier in [8,9], is also observed in our simulations. Output signal wave-
forms shown in Fig. 7 illustrate the phenomena taking place when TWT is driven with the single-
frequency signal with sufficiently high level of power. It is clearly seen that at low level of input
power (curve 1) the regime with constant amplitude of output power settles after a short transient
process. With moderate increase of the input power, the transient becomes longer, oscillations of
output power decaying in time are evident during transient (curves 2, 3). At sufficiently high in-
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put power level oscillations of output power start

0 4 growing in time (curve 4). This phenomenon
3 MWMMWN\MMM&WNMMW{MM arises due to nonlinear electron beam decelera-
o tion [8]. As electrons convey their kinetic energy
-“-é %\»MA’WW to the amplified electromagnetic wave, the beam
=z velocity decreases. This shifts beam-wave syn-
g %W chronism point to the backward-wave branch of
E} the dispersion curve, leading to the TWT excita-
@ tion at a frequency close to that of input signal.
2 The presence of two waves with close frequen-
3 cies manifests itself as slow oscillations of output

1
e . power,
Normalized time

Fig. 7. Output signal waveforms illustrating 3. Summary
the driven-induced parasitic self-excitation ) )
near stopband (¥, =14.2kV). Curves 1-4 cor- The 1D PIC code for simulation of

nonlinear non-stationary processes in a coupled
cavity traveling wave tube have been developed.
The results of numerical simulation of gain in
linear and nonlinear regimes are presented. For sufficiently long structures, good agreement of
the numerical results with small-signal TWT theory is observed. The developed code is applica-
ble for solution of various practical problems, including simulation of amplification of multi-
frequency signals, self-modulation and chaos generation, parasitic self-excitation of amplifiers,
and short pulses amplification or generation.

respond to the increase of the input power
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NUMERICAL SIMULATION OF LEAKY MODES
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Abstract — The results of numerical simulation of both leaky and guided modes propagating in planar
dielectric periodic structure (Bragg gratings) using the 2-D finite-difference time domain code are pre-
sented.

1. Introduction

Numerical simulation of electromagnetic fields in wave guiding systems using a direct
solution of Maxwell’s equations is nowadays an important and promising task of the computa-
tional electrodynamics. Computer codes directly solving Maxwell’s equations are called fully-
electromagnetic. One of the areas where this approach is of much perspective is the study of
leaky modes which are used in various devices, such as dielectric antennae and tubes, microstruc-
ture fibers, and sensors [1-4]. In this paper, we focus our research on the study of leaky modes
propagation in Bragg gratings (one-dimensional photonic crystals) that have prospects of applica-
tion in communications and information processing, all-optical limiting, vacuum micro- and
nano-technologies, etc. [2,5,6].

One of the main approaches used for fully-electromagnetic simulations is the finite-
difference time domain method (FDTD) [7]. The advantages of the FDTD method are its com-
parative simplicity and ability to calculate electromagnetic wave propagation in media with rather
complex properties. When the FDTD method is applied, the investigated domain is covered with
the discrete grid, which form is defined by the geometry of the studied system. Both time and
space components for electric and magnetic fields are moved from each other for the half step of
discretization that provides the second order accuracy of the numerical algorithm.

It is well-known that in dielectric waveguides there exist two types of modes named
guided and leaky waves. The first one can propagate without changing its form and amplitude,
and its field is concentrated mostly within the dielectric layer. The second one is a wave with fre-
quency below the cutoff and cannot propagate within the structure. Thus, its field radiates out of
the waveguide, endlessly increasing in transversal direction. In our previous works [8,9] we stud-
ied the electromagnetic guided wave propagation in a nonlinear Bragg grating structure when the
input frequency was near the Bragg resonance. In this paper, we present the results of numerical
simulation of leaky waves propagation in dielectric Bragg gratings using the FDTD code devel-
oped in [8,9].

2. Studied system and FDTD method

Consider the Bragg gratings constructed of alternating dielectric layers of equal width A with
different values of dielectric permittivity, €, and &,, respectively. The schematic drawing of the
studied system is given in Fig. 1. We restrict ourselves to 2-D case supposing the system to be
infinite in y-direction. The size of the dielectric structure was chosen to be 18x1.5 um
(720x 60 space cells), permittivity of the layers ¢, =2.25+0.09, the thickness of each layer was

0.25 um, number of the layers was 72. Those parameters are typical for real structures [6]. The
dielectric structure is surrounded by vacuum (e =1).
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Fig. 1. Schematic of the periodic Bragg grating structure

To simulate the open system, we use boundary conditions in a form of perfectly matched
layers (PML, see [10] for details). This approach provides all descending waves to penetrate
through the boundary without reflection and dissipate further within the PML. The thickness of
PML was chosen to be 40 steps of space discretization.

For the numerical simulation we use 2-D code, developed previously in [8,9] and adopted
for the studied problem. All further consideration will relate to TE-mode only. Maxwell’s equa-
tions in this case have the form:

oF OB

y z

ox ot

OF, 0B,

0z _E’
oD, oH, OH.
otz ox

(D

2

accompanied with the material equation

v
£y e(x,z)
Expressions for TM-mode can be easily obtained by changing components of D and E to H
and B, and vice versa. The equations (1) are solved by the well-known numerical leapfrog algo-
rithm on the rectangular mesh which is second-order accuracy both in space and time [7].
In (1) all the variables are dimensionless and normalized as follows:
x> x/Ax, z—>z/Az, t > ct/At,

E, D, H.. |y, cB. .
E —>—,D —  H  —>—— |—,B  —>—,
Y E ’ ’ E, \ g, ’ E

0 gk, 0 0
where E; is an arbitrary constant, space step Ax =0.025 um, i.e. 10 steps per layer. We also as-

sume Ax=Az, and cAt=Ax/2, so as At=8.1333-10"" s. Such a choice of the time and space

steps satisfies the Courante’s condition of stability of the numerical method [7]. Magnetic perme-
ability is assumed to be equal to 1, in that case B=H .
At the left boundary, at z =0, the structure is excited by the harmonic signal of the fol-
lowing form
E,(x,t;z=0)=E(x)cosot . ()

Two other components of the input signal, B, _, can be found from the first two equations of (1).
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Fig 2. Spatial distribution of electric field amplitude for the guided mode (left, ®=12.38-10" s,
¢=0.71644 m™', p=0.62386 m™") and for the leaky mode (right, ®=1.699-10" s, ¢=6.12077 m™',
p=-1.00295 m™"). Half-width of the waveguide in x-direction d =0.75 um

Transversal structure of the field, £ (x) is chosen from the well-known analytic solution

of dispersion relation for the uniform dielectric layer with permittivity &= (81 +g, ) / 2=225.In

that case, for symmetric TE-modes the dispersion relation can be written in the following form
(see [1,2] for details):
Q*+P =V7,
A3)
P=0QtanQ.
Here V? =d’ ( p’ +q2) =k*(e—1)d* is the dimensionless frequency, d is the half-width of di-

electric in x-direction, B is the longitudinal wavenumber, g°> =k’c—’ is the inner transversal

wavenumber, p’ =B’ -k’ is the external transversal wavenumber, k =w/c, Q=qd, P=pd.

After solving the dispersion relation (3), one can obtain transversal structure of the field using the
following formulas:

Acosgx, |x| <d,
E(x): Be ™, x> +d,
Be™, x<—d.

In Fig. 2 typical transversal distributions for guided and leaky modes are presented.

3. Numerical results

In this section we discuss the results of numerical simulation of electromagnetic waves
propagating in Bragg gratings with the parameters given in Sec. 2.

First, we verified the FDTD numerical code having it applied for simulation of leaky and
guided modes propagating in a homogenous dielectric layer. We found a perfect coincidence be-
tween our numerical results with those obtained analytically.

The typical dynamics for the case of periodic structure is illustrated in Fig. 3 where we
plot space distributions of the electric field component £, taken in three subsequent moments of

time for guided (left column) and leaky (right column) modes. The gradation of grey corresponds
to the field intensity and in both cases is calibrated to its maximum. Transversal distributions of
the input signal are the same as presented in Fig. 2. Initially, at # =0, the structure is empty and
all the components of the electromagnetic field are zero.

From Fig. 3 it is clearly seen that in the case of guided wave the field is concentrated
within the grating structure (shown with dashed lines) and its form remains constant while propa-
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gating along the system. In the case of leaky mode the wave cannot penetrate into the grating and
the field is leaking away from the side boundaries of the dielectric, increasing while approaching
to the PML. The amplitude of the signal inside the waveguide decays along the system, being
about 2-3 times less on the left edge, since the electromagnetic field radiates through the bounda-
ries of the dielectric. Because of the finite size of the calculated area, we did not obtain the infi-
nite growth of the field.

e —— -

]

e e . . . e . . e e e

c

Fig. 3. Electromagnetic wave propagation in the periodic Bragg grating structure for guided mode (left,
®=12.38-10" s) and for leaky mode (right, ®=1.699-10"* s™'). Space distributions of E, are presented

in different moments of time equal to 400 (a), 1000 (b) and 2500 (c) time steps, respectively. The dielec-
tric structure is marked with dashed line

4. Conclusion

The 2-D code based on FDTD method to calculate the propagation of electromagnetic
waves in periodic Bragg grating structure composed of alternating dielectric layers with different
values of dielectric permittivity, €, and &, was developed. Results of numerical simulations of

leaky and guided modes propagation were presented. When the guided mode was considered, we
found that the field of electromagnetic wave was concentrated mostly within the dielectric layer.
For the leaky mode, the electromagnetic field radiated through the boundaries of the structure.
The results are very similar to those obtained for the uniform dielectric waveguide.

Obviously, the study of nonlinear effects in such systems is of great interest since nonlin-
earity would doubtlessly widen the functional properties of such devices. The purpose of future
work will be examining the periodic nonlinear structure with the nonlinearity supposed to be of
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Kerr-type and nonlinear term not exceeding 1% of a linear part. We expect to observe nonlinear
transition between leaky and guided modes with the increase of the input power due to the
nonlinear shift of the dispersion curve, similar to the effect described in [8,9].
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HOMOGENIZATION OF PERIODIC ARTIFICIAL MEDIA
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Abstract — The methods of homogenization for periodic metamaterials or artificial media with periodic
magnetodielectric, semiconductor, metallic, and cavity objects included in the background medium have
been considered using the based on Green’s functions integrodifferential equation methods.

1. Introduction

In recent time there is the boom in the investigation and manufacturing of artificial mag-
netodielectric media named as metamaterials, artificial media (AM), complex (or heterogeneous)
media, composites, photonic crystals (PC) [1-9]. Such media, which earlier have been named as
artificial dielectrics, were known more then about sixty years ago, and at that time their investiga-
tion had been started [10—13]. At present time the technique needs and the nanotechnology de-
velopments give the new push for such investigations. The metamaterials are the strongly disper-
sive and usually very lossy AM, with the exception of PC with lossless dielectric or cavity inclu-
sions into lossless dielectric background. The active PC lasers also may be considered as AM
[14].

Likewise the natural substances, the dielectric and magnetic properties of which are de-
termined by the averaging of contributions to electric and magnetic polarizations from their par-
ticles or molecules by the physical infinitesimal volume, here the effective permittivity £, and

permeability £, are introduces for AM. In that case the averaging is fulfilling by some little vol-
ume of characteristic cell €2,. The introduction of effective permittivities and permeabilities is

named the homogenization (the description of heterogeneous material as corresponding homoge-
neous magnetodielectric) [5—7,15-21]. It is ambiguous and depended from the method of averag-
ing [15-18]. The homogenization allows one to describe the AM with good accuracy in the fre-
quency regions with upper boundary frequency which is determined by maximal wavelength suf-
ficiently greater than the characteristic cell QQ, dimension. The essential here is the presence of

several spatial scales, and one of basic analytical methods is the small parameter expansion. This
leads to frequency limitations. In a number of cases the boundary wavelength may be comparable
or even smaller than the introduced characteristic dimension. The homogenization allows to solve
the electromagnetic boundary problem with the metamaterials objects without of inner cell fields
consideration .

The AMs may be parted on two classes: having the periodical or random inclusions
[15,16,22]. Their combination also is possible. The PCs correspond to the first type when the fre-
quencies belong to optical range. [1]. The effective penetrabilities (permittivities and permeabili-
ties) in general case are the complex tensors. Moreover, the metamaterials may demonstrate the
chiral and bianisotropic properties [8,9,22—-25]. Recently, the left-handed metamaterials with si-
multaneously negative both penetrabilities in some frequency range have been obtained [2-5,9].
Such AMs contain the periodical wire split-ring and rod inclusions into dielectric background.
Often such AMs are named as wire media although the metallic strips and other objects also are
used.

In spite of numerous publications in this field the statement of basic approaches is absent,
and usually only the special case results in low frequency limit are presented. The goal of this pa-
per is the consideration of general methods of periodic AM homogenization using the rigorous
integral equation (IE) approaches based on periodic Green’s functions (GFs).
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2. The Green’s Functions and Integral Equations

Let consider the infinite homogeneous and isotropic magnetodielectric with permittivity
¢ and permeability x# in which the identical metallic and/or magnetodielectric objects are peri-

odically embedded. Let the metallic objects are characterized by joint volumeV, € 3, with com-
bined boundary surface S, in the elementary cell Q. The region V;, may be multilinked. The
object belonging to metallic type signifies the impedance boundary condition
VxE=27 (17 x(17 x H )) fulfillment on its surface. Here Z is the surface impedance, and Vv is the
external normal vector on the surface S,. The object belonging to magnetodielectric material sig-
nifies that it is electrodynamically equivalent to volumetric electric and magnetic polarization
currents with the densities j;(?)= ja)go(é(F)—gf E(7), j;”(?)=ja)yo(ﬂ(7)—yf)[jl(7). Here &,
A are the tensors of macroscopic penetrabilities for inclusions, I is the unite tensor. Let such
inclusions in the cell Q; have the volume V' with the boundary surface S.

The periodic implantation (embedding) means the translation symmetry, i.e. the availabil-
ity of primitive translation vectors a;, (or grating periods) and the vectors of periods

p =na, +n,a, +n,d, = An. Here n is the cell shift (numeration) vector with integer coordinates
n,, i=1273,and A is the translation matrix (made up on basis of vector-columns &, ). The AM is
splitted or zoning by the cells €, , which are numbered by the vector # or by multiindex
N =(n,,n,,n,). All cells have equal volumes |Q N| = |QO| = |Zzl “a, X 513| =Q,. We consider that the

translation vectors form right-hand systems.
To formulate the considered problems the more convenient is the periodic sources
Green’s function (GF) approach [26-32] which leads to the IE in one (usually in zero) cell Q.

Such scalar GF has the view

Gle e K. 7 —f’)=éo;exp (/fi (;: gA_ﬁl)fggj)L;G(ko .7~ = BJexpl- ji-5) . (1)

Here G(k,,7)= (47r|17|)exp(— jk0|17|) is the scalar GF of free space, k, = w/c is the wavenumber,
the 3D summation is performed over the vector n (multiindex N ) in infinite limits
—oo<n <o, §=274" is the tensor of inverse reciprocal lattice, k is the reduced wavevector

connected with phase shift vector per cell: ¢ = Ak . Correspondingly k = A”'@ . Further let sup-
pose that the vectors a, are orthogonal and directed correspondingly along axes x, y and z. Then

the matrix A4 is diagonal, and the GF view (1) is simplified [31]. The IEs for different inclusions
and GF (1) have been formulated in the paper [31]. The electromagnetic field is creating by the

sources in the form of surface electric current density J on the S, and by the polarization cur-
rents in the volume V. Thus, the vector-potentials may be written in the form:
()= [ Gli o k.7 =7 T + jooe, [ Glkofew k.7~ 7 |6 - d 7, @)
Vv

A"(F)= jopy | Gl ou k.7 ~ 7 |a) - d JA(F )7 (3)

There are the full fields in (2) and (3). Conformably the excited by sources fields are determined
standardly:

E.(7)=(joee) (k2eu+VV A (F) -V x 4" (F), (4)
H,(7)=(jeouou) (kK2 eu+VV A" (7)+ V x 4(F) . (5)
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They, generally speaking, may be added by the incident fields El. and H . up to full values. The

fields E,- , H . are exciting by incident sources. These sources can not be located in finite region

as it disturbs the periodicity. The sources may be located periodically with correspondingly phase
shifts, and then we have the excitation of periodic structure by periodically located sources. Let
consider that such sources are absent. The located at infinity sources are corresponded with flat
waves. Unique flat wave which does not disturb the periodicity is the wave with the dependence

exp(— jEF). This wave already is included into the GF (as and its higher spatial harmonics).
However it could not be the wave of background media as k= k;eu . Since we consider the ei-

genwaves (free waves), the amplitude of this «additional» wave must be zero. Then the volume-
surface [Es obtain the form

EF)=E(F). H(F)=HF). (©)
The sense of the notation (6) is that the full field in the region Q -V} is continuous and created
by the sources inside the volume V" and at the boundaryS,. This field satisfy the introduces
boundary conditions at the S . It is easy to show that the solution of IE (6) also satisfy the media

interfacing conditions at boundary S. The radiation conditions here are the Floget- Bloch condi-
tion, which automatically are provided by the GF. The hypersingular IE (6) may be by several
ways transformed to integrodifferential equations or into singular IEs. They may contain the both
the volume and surface integral terms of only the volume ones.

2. Dispersion equations

Further let investigate the IE only in the form (6). The dispersion equation (DE) for ei-
genwaves defines the dependence F (ko,lg ): 0or k,= CD(IE ) These functions depend also on the

parameters, which is determining the AM configuration. To get the DE one must solve the IE (6)
in the region V' + S, . Let introduce for the vector-functions in the V' and at the S, the innerpro-

ducts (scalar products):
(F.F) jF )-F,(7)d’%, E.F, eV, (7)

<(;1,G> jG (7)d*, G.G,eS, . (8)

The surface current is connected with magnetic field by the relation J(7)=v(F)x H(F), 7 € S, .

If there are the thin metallic inclusions with the thicknesses compared with skin-layer, then the
bilateral boundary conditions must be used. For PC in the infra-red and optical ranges it must go
from surface to volume currents in the metallic inclusions using its properties in this range [33].

Thus, the problem solution must has the form of vector-function u = (E ,ﬁ ,j , wWhich is deter-
mined in the 9D functional spaces and adjusted in the volume J and at the surface S,. Let this
surface belongs to the Lyapunov class. Note that if ¥, =0, then it is not closed. In this case it is
necessary to introduce the concept of bilateral (double-sided) surface current density, as there are
two normal vectors in each point. The scalar product <u1,u2> in this functional space is deter-

mined by combination (7) and (8) as

<u19u2>:<E13E2>V+<H1aH2>V+<jlaj2>S0' (9)
The IE relatively the surface current may be written in the form
V(F)x E(F)=v(F)x E,(F)= Zv(F)x J(F), FeS,. (10)

69



For closed surface the J(7)=.J"(F) is the current density on the its outer side (so J ()= 0). For

open surface it must be taken in form J(#)=J"(7)+J (¥)=2J"(¥). The open surface may be

considered as the limit case of closed one which is biplicated along some contour. Instead the re-
lation (10) one can write also

J(F)=v(F)x HF)=wv(F)x H (F)= 27V([F)x E(F)xv(F), FeS,. (11)
Here w=1 and w=2 correspondingly for open and closed cases. As the integral representation
for surface current density (or tangent magnetic field) has the potential of single layer form, there
is the jump when the observation point tends to the surface. This leads to the coefficient 2 in the
(11). Presenting the open surface as the limit case of closed one, we get the reduction of this coef-
ficient.

To get the DE we introduce the functional

A(u,ko,/;):<u,u—ue>, (12)
in which the index e denotes the function (Ee,fle,j ) The stationary value of (12) is 0 and it is

reached for the exact solution of problem (6). Substituting the exact solution into (11) one can get
the DE in the form

Al ey, K )=0. (13)
In order to get the approximate solution the test function must be expanded into the series using
the full system basis functions of functional space

u@zi%m@) (14)

m=1
with the extremum conditions application (8/ 805; )A =0, m=12,...M (here Ais the corre-

sponding to (12) quadratic form). Then the DE (13) approximately has the form of equality to
zero of determinant.
Let consider the matrix elements. The operator VV - after acting on the GF ®I" (1) is

equivalent to tensor of dyadic operator — (lg + gn )® (Ig + gn ), and the operator Vx acts as
- ](lg + gﬁ)x. Let the DE has the solution %, k. Taking the conjugated value from (13) we ex-
change the summation order, i.e. we replace n — —n . Obviously, the set &, , — k" is also the so-
lution. It corresponds to backward wave. If Z =0 and the penetrabilities ¢, u are real, then k is

also real. The substitution k —> —k~ conserves E and changes the H sign. The DE (13) may be
rewritten in several detailed forms. The finite surface impedance may be taken into account in the
functional. Frequently the IEs with wire inclusions are considered. It is convenien to model these
by the axial currents and impose the boundary conditions at the line which belongs to the side
surface and is parallel to the axis. In this case the surface integrals are replaces by the linear ones,
and the small parameter is the wire radius o . The simplifications are also obtained under the ab-
sence of any kind inclusions, especially for inclusions of one type. For example, the dielectric PC

is described only by E field. If PC presents the periodically hollow cavities of volume V' in the
background, then PC describes by polarization current j; = jws, (1 - S)E .

3. Homogenization

The developed approach allows one to determine the functions E(F), H(7) and J(#),
which are presentable identically in all infinite region. For example,

E(7)= E(F)expl— jkr) . (16)
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where E (F ) is periodic function with periods p . The homogenization means the replacement of
relations (16) by the relations

E(F)= E expl- jk7) , (17)
where E is a certain averaged field. By virtue of averaging ambiguity the homogenization is also
ambiguous [16,17]. There are several approaches to the homogenization. The first is the picking
up of effective values &,, fi, by such way that the scattering parameters of flat electromagnetic

wave on the half-infinite AM coincide with the respective ones for the diffraction on the flat
boundary vacuum-effective medium [5,10]. This approach allows one to get the frequency-
depended values ée(a)), ,[te(a)) But because of complicacy of problem it is usually solved for

normal incident wave in approaching of effective scalar penetrabilities [10]. The method may be
generalized for diffraction on the finite thickness plate. But such problem is very complicated. To
solve it by IE method it is necessary to present the fields in the plate using 2D-periodic source GF
[31] and match their with the fields of two half-spaces.

Another way [15-18,20,21] is based on the perturbation theory and founded on field de-
composition in the Maxwell equations by small perturbation parameters and by the averaging
over the cell with getting zero-order, first-order and higher-order approximations. Usually the
two-parameter approach is applied with the low and fast variable coordinates. The value a (in
most cases as scalar a, =a, =a, =a) is usually the perturbation parameter (or its normalized

value a=a/l). Here A is the wavelength. For the first case one can introduce the fast variable
vector coordinates & =(x/a,,y/a,,z/a,) which are used for averaging with zero-order and first-

order approaches with zero phase shift per cell [20]. In the second case the long wavelength as-
ymptotic form for tensors &, (a)), 4, (a)) is seeking. It, particularly, may be based on the polariza-

tion vectors calculations.

Let consider in detail one of more universe, convenient, and obvious example of ap-
proaches. It is based on the IE solutions and calculations with their help the tensors of electrical
and magnetic polarizations per the cell. In this case owing to the averaging over the cell the re-
sults approximately applicable for A >a. They are applicable with good accuracy when 1 >> a.

Thus, let E (77 ) and H (77 ) are the solutions of IE, which are obtained, perhaps, numerically at the

frequency @ by the vector root k determination from (9). There are infinite set of such solu-
tions. By virtue of problem uniformity they are defined accurate within arbitrary multiplier. It do
not influence on the final results. The relations

D =¢,é.(0)E = &,6lE + P°, B = i (w)H = u i + P" (18)
must be fulfilled for macroscopic AM. The upper line here denotes the averaging over the cell, I

is the unit tensor, and P¢, P™ are the electrical and magnetic polarization vectors of unit volume.
These vectors are caused by quasi-static changing dipole charges and surface or contour currents.
The condition of quasi-static character is fulfilled on conditions that A >> a. The inductions are
defined by their amplitudes (18) as in the (17). Notice, that the «molecular» polarization of mag-
netodielectric background medium is taken into account yet by the parameters &, . The electric

dipole polarization of surface charge contributes to Pe(? ) and is connected with surface current

density J as 2 J=— jowo . Here V_- is the surface divergence, o is the surface charge den-
sity. The mentioned contribution is

ﬁ;:Ql [Fo(F)aF = ngz 7V, - JF)F (19)

05, 05,

If the surface S, is flat with the boundary in form of contour L, then the integral (19) may be

transformed. Placing the axes x, y on this surface, one has P, =0,
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JD;:wQ [xv, - J(F)d*F = m§ 7 )dF — jJ

0 S, 0L Oso

As the normal component J, in the contour is zero, the first integral vanishes. The term P, =0

is expressed similarly. Then it is not difficult to get the components 13; in arbitrary coordinate

system.
The averaged fields present in the form
Ez— [EGY7. ﬁz— [EFw7. (20)
0 Qy-V, 0 [o A

as the fields inside of the conductors must be zero in these integrals. The contributions into
13e( ) and P’"( ) from the polarization currents we define correspondingly by terms

De ] = ef— 3 - 3>

P = PV-JF )T =227V — &l JE(F)d°F , 1)
O‘I[ 3 QO 4 ( P

P .] e TFm(=\ 33> luo Ny (= 3>

P = vV-J d AR —ul ’H . 22

f 0,;[r p(r) = Q, Vdr ( (r)]d r (22)

The volume integrals in the (21), (22) also may be transformed. Particularly,

= 5 va( 7)) - *(f)]fﬂg_iyxo le@)-dEG7 . @3

These relations are simplified for isotropic inclusions. If the permittivity £ is constantan inside
such inclusion then there is only the surface integral:

P = 50(5—1‘9)%?(12“(?)-9(?))42?- (24)

g
0
For the magnetic polarization we have
By =2 [ (7 =20 [(7)x (T (PP (25)
Q, S Q, S,
where 7, =7 -V(F). At last, let consider more simple case of line current. Introducing the continu-

ity equation d/ (l )/ dl=—j a)p(l ) with the line charge density p, one can write

o Jopaindl(l) —j dr(l)
P "o ! r(l)p(l)dl=wQ ! 7(0) o dl:a)QO ! 1(0) o (26)
P = SI F()x (P ()l 27)

Here [ is the arc length, l; is the unit tangent vector.

The homogenization means that the vectors like (17) satisfy the Maxwell equations. By
virtue of linear relations between the polarization vectors and average fields, one can write that in
general form [8,25]

P = e fE +c & = go(zeﬁ+zogﬁ), P" =y jH + ¢ = ﬂo(;gﬁ+ Zg‘@f). (28)
They correspond to bianisotropic properties of equivalent homogeneous medium, as the periodic
AMs are bianisotropic in general. The relations (28) may be presented by several forms and are
defined the medium model. They mean the linear tensor intercouplings of each field like (17)
with another and with its rotor. Accordlngly the intercouplings for amplltudes are
Alka+k0§H = AlkxE kOgE

-, —= H=-j —— (29)
wée, )

Djll

The wave equations for amplitudes may bee written as:
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KEE =k x y'l(k xE - kOgE)+ koé/:lj(lé x E — kyCE ) (30)

K H =k x & (kxﬁ+k0§ﬁ)—k0§§;1(l€xﬁ+k0§ﬁ). 31)
Since (30), (31) are the linear homogeneous equations, their determinants must be zero. Take an

advantage of another form of equations, for what introduce the singular antisymmetric matrix k,
which is corresponding to the operator V x [25]. Then the Maxwell equations for amplitudes may

be written as [25]:
= ~ A n = 0
A' E; = A gf k/k,?+é: ' Ei :( j 5 (32)
Z,H c—klk, ) Z,H 0

where Z, =/ 4,/ ¢&, . The equality to zero of six order matrix 4 determinant also gives the DE. If

& commutes with the tensor k/k,+&, and [, commutes with ¢—Fk/k,, then
det(4) = det(ée,& - (IQ/ ky + fXﬁ k/k, » 0. In the matrix form we have

[( i+ Btk - 2)v 8 ]E 0, [(k;/% e kR + €)+ ﬁe]ﬁ =0, (33)
and for wave equations and for DE:

det((e, ' + )iy k- )+ 2. )=0, det(ly e - ) (6% + &)+ 2 )=0.  (34)
If 99 =¢ =0, then we have the model of anisotropic media. In this case the susceptibility tensors

may be defined by following way. We have the relation
Ple,=k E +K E +K_E.. (35)

xy ™y

Using another root k by frequency conservation, we get new values of fields and polarization
vectors. There are infinitely many correlations like (35), but for nondissipative AM it is conven-
ient to use the following procedure. Supposing that k, =k, =0 and for given frequency we are

seeking the k. from (12). There is also the solution 27/a, —k_ or equivalent —k_for lossless
case. Then we suppose k. =k =0 and define the k,. At last, under k, =k =0 we find the

value k_. Using tree relations like (35) one can get the parameters & (o), r%xy(a)), &_(@). The

analogous correlations for other components allow one to determine the second and the third lines
of matrix /%(a)), and also the matrix ;2(60) The overdetermined systems like (35) also may be
solved using the Tychonoff regularization approach. The symmetry conditions must be taken into
account. All these reduce the errors of such generalized solution. In general bianisotropic case
(29) the additional backward wave solutions or, the two circularly or elliptic polarized waves
must be used. It is necessary for this to solve the system of linear algebraic equations (SLAE) of
six orders. The considered cases allow one to get at the least six such equations, and also the
overdetermined such systems. The dissipation leads to complex values of k . If such root is fine
numerically, the root — k" at once may be used in the average field determination.

One more approach may be established on minimal mean-square discrepancy between the
AS and the effective medium dispersion lows [31,32]. Since there is here the arbitrary assigned
vector complex parameter k , the method allows to define the frequency-dependent tensors with
taking into account the physical restriction in their elements in wide frequency range including
the case 4 < a. Finally, we give the homogenization example for dielectric AM, which is describ-
ing by scalar permittivity £(7). Let & is the averaged over the sell value. Using (16), we write
the Maxwell equation in the form

(& + VI EF)=—jk2, (7). [ j& +V )x HF)EF)= jkz (7)z; E(7).
wherefrom we have
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vV x E(F) = (k28 (7) - &2 )E(F) + 12(/2 - E’(f)) ~k2z()-2)i + £ @ KJEF). 36

Consequently, the tensor &(7)= (5 (F)-k?/ k2 )i +k ®k/k? for the field E () plays the role of

microscopic permittivity. It is impossible directly get £, by averaging of é(? ) (i.e. replace & (17 )
by &), inasmuch as E (17 ) depends on k . It must get the boundary problem (36) solution with

periodic conditions and determine the averaged values E and D correspondingly through E (;7 )

~

and goé(F)E (7), i.e. to fined the depended on k vector-functions E and & (F)E(7). Then the
effective permittivity &, is defined from the SLAE D= & Aef under the different & . The addi-
tional condition in solving of (36) is the relation V - E(¥)— jk - E(F)+ E(F)- VE(F)=0.

4. Conclusions

The integral dispersion equations for linear artificial periodic media have been formulated
using the Green’s functions of periodically located sources. The dielectric, magnetic and metallic
and cavity periodic inclusions into background medium have been considered including the gen-
eral anisotropic case. The methods of homogenization based on sell polarization tensors calcula-
tion using the IE solutions are formulated. The method based on list-square discrepancy minimi-
zation between the AM and effective model medium have been proposed for the homogenization.

The symmetry properties must be taken into account as some restrictions for effective
values taking the physical considerations and the inclusion configurations. Especially, this is the
Onsager-Kazemir reciprocity relations [34] for nondissipative and nonrotating media absence of
outward magnetic field. Such media are describing by symmetric penetrability tensors and by real

chiral tensor ¢ = j&=—;¢" [9]. In general nondissipative case we have &, =&.., [ =i,

z Ak
geii' - gei'i .
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MATHEMATICAL MODELLING OF MULTILAYERED WAVEGUIDES
WITH NON-UNIFORM BOUNDARIES

S.V. Alecsutova

Saratov State University
E-mail: terphys@info.sgu.ru

Abstract — The calculation of eigenmodes in multilayered magnetodielectric structures with non-
uniform boundaries is of special interest. The efficient algorithm is presented for modeling the strip line,
the slot line and the strip-slot line.

1. Introduction
Multilayered magnetodielectric structures with non-uniform boundaries are the basis of
many technical devices in radiophysics and optics. The calculation of eigen modes in such struc-
tures is of special interest. In this paper we present an algorithm for rigorous solution of Max-
well's equations in multilayered magnetodielectric structures.

2. Formulation of mathematical model

Fig.1 shows the cross section of multilayered magnetodielectric structure, which con-
tains strip lines and slot lines at the boundaries between the layers.

Wi+]

Fig.1 Multilayered magnetodielectric structure with non-uniform boundaries

Here d; is the thickness of the i-th layer, wj; is the width of the strip or slot. The metal
surfaces (s;) are assumed to be negligibly thin. It is also assumed that the whole structure is loss-
less. The structure is assumed to be uniform and infinite in both x and z directions, it is also
symmetric with respect to the plane YOZ.

A hybrid-mode analysis is apparently necessary in such structure. Denoting the scalar po-
tentials for TM and TE waves by V¢ and V", respectively, the electromagnetic (EM) fields of
hybrid modes [1] may be written as:
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ki-p° . K -p? |
EZ :j i ﬁ Ve(x’y) e/((ot—ﬂz)’ HZ :j i ﬂ Vh (x,y)e]((ot—ﬂz)’
p B
E.- Y ov' OB B~ V' we g OV o
- | ox g 0y | | Ox p Oy
P Ve @y OV" S8 g o’ L O6¢, ove S
Yloy B ox TV ley B ox ’

where /[ is the unkn_own phase constant_ of the hybrid mode, @ is the angular frequency, &, , x4,
are the permittivity and permeability of free space, ¢, ,, are the relative permittivity and per-
meability, respectively, in the i-th medium, k] =k;&, u;, k, = w1t , -
The scalar potentials V' and V" satisfy the wave equations:
8 2 8 ? 2 2 e a ? a ? 2 2 h
P +8y2 +k - p } Ve(x,y) =0, {axz +8y2 +k = p } Vi(x,y)=0 . (2)
The boundary conditions for EM fields to join these potentials are expressed as follows:
El-E =0, E -E_=0 3)
HY-H =-J, H-H =J, 4

where the superscripts “+” and "-" denote the fields in the layers below and above the boundary,
J., J, are the current components on the metal surface. As the first step, we find the Fourier

transform [2] of equations. (1) - (4) as

ﬁ(a)zLJ.F(x)e_j“dx (5)
2 2,
Then apply the continuity conditions to the field components in the Fourier transform domain:
~ k2 - ) - k2 B2 _ .
EZ :j i ﬂ V"(a,y) e](wt—ﬂz)’ Hz :j i IB Vh(O[,y) ej(mt—ﬁz),
P B
_ _ _
E = jaﬁe + a)% ILli al ej(alt—ﬂZ) FI — ]aﬁh _%al ej(a)f—ﬂZ)
- gy g 0y (6)
~ |ove 4] o _ - >h 1
Ey _ aV —ja IUO lul Vh:|€1(wtﬁ2), Hy :|:8V +jaa)6‘0 {;‘l Vei|e](wtﬂz)’
| Oy B oy Yii
8 2 2 ~ a 2 X =,
/i Ve a, = 05 /i V o, = O, 7
|:6y2 7;j| (a,y) {ayz 4 (a,y) (7)

where y’=a’+ -k .
When this is done, the transforms of scalar potentials at i-th layer are sought as follows:
Vi (a.y) =[4,(a)shy,y+ B (a)chy,y]

VM (e.y) =[C(@)shyy+D(@)chy,y]
where 4., B;, C;, D, are unknown coefficients.

(8)

: .~ (e ~
Next we introduce the notation e, |, = (:j , €= (
e
z/i-1

j . After applying the boundary condi-

tions
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we arrive at the following functional equation [5, 6]

All lel 1+A e +A11+1eu+1 Ji’
where 4, are square matrixes

(11)
The functional equation (11) relates the field distribution with the current at the bound-
ary of the layers. The functional equation for the boundary with a slot line is

Azz lE +A E +A11+1E11+1 J
The functional equation for the boundary with a strlp line is

(12)
Bll lE +B ] +Bzz+ Ezz+1:gz s (13)
_& _z &.}.h g.ﬁ.ﬂ Pin _i
s, s, t ot t ot S, s
where 4, =| |5 4= ] ;1 : O’_“ s Ay = ; P
_ _ i -+ — _i+ i+l _ i
S; S; L iy ; lin S S
B, 1_A A, B=4 ;1 5 Bii+l:A ;1 A
k — a’ —MEy? U, L wE,E
i= i ﬂ ’ Gl': zéjlj/z ’ Mi= IUOIUI; é:l — 0
B P B

ﬂ b
s;=My;shy.d;; t; =My, thy.d; v, =a’+ _ki2 :
Using of equations. (12) and (13) we can obtain functional equations for the multilayer
structure. The functional equation for the slot line at the i-th boundary is
ht = h+1
L' E. + ZIRUIJ +0,E+ > RI,+L E_=J,
J=i+

(14)

Jj=i-1
The functional equation for the strip line at the i-th boundary

D, |:Fi;*gh* + hZ:PUIJ +B”I’ ;i“l

P ]I JHF, E (15)
J=i+l Jj=i-1
The operators entering the equations (14) and (15) are combinations of the elements of matrixes

A and B. For the multilayer structure we obtain the following system of functional equations

M-X =Y,
a, . .

where X = ¥ , i=12,...p i
ar, ¥ o,

a i
current I at the strips, ( :
2

i

(16)

p 1s the vector representing the field E at the slot lines and the

J, i=12,...p are the coefficients at the distribution func-
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tion(l’ylj , Y =(¢1J - the distribution of the currents J, :(?Ji and the fields

V), l ?,

X

~

e

X

e.
e, =[ Z] . outside the slot and the strip. For solving the system (16) we apply the Galerkin’s

procedure.
The unknown distributions of the fields £ and currents / is sought in the form [7, 8]:

ialin fin(tt)
(‘”1} 5 L NP a7
l//2 Za;n f2n(ti) Wi
0

where f, (¢), f,,(¢t) are Chebyshev polynomials of the first and second kind. Substituting (17)

into (16) we obtain a set of homogeneous algebraic equations of unknown coefficients a;, , aj, :

KA=0 (18)
The elements of matrix K are calculated as follows:

Kﬂm—j&l (19)
where Rj’.f’ (a,p)- the matrix operators on the functional equations (14), (15),

Lp=12; j,i=12,...,p; mmun=12,... k.

1

The set (18) of homogeneous equations has the standard solution. The condition
Det || K || =0 gives the dispersion equation that yields the propagation constants f of eigenmodes

in the multilayered structure. The solution of the equation (18) allows one to find the distributions
of the currents J and field £ in waveguide elements.

3. Numerical results

Basing on the above model of multilayered magnetodielectric structures with non-uniform
boundaries we now proceed to the calculation of dispersion characteristics for the slot line, the
strip line and the slot-strip line. Consider the structures with the following parameters:
dl—lcm d2 Olcm d3—lcm §1 1§2 9§3 1; ulzl,uzzl,u3:1
The width of the strip and the slot lines are specified in the figures.

Modeling of the strip line. From the functional equation (13) for the boundary with the
strip line one gets

B 1171 =¢ (20)
Next we approximate the current I on the strip using the system of orthogonal functions (17). Us-
ing the projective procedure, we obtain the algebraic model (18) for the strip line. Fig. 2 shows

the results of calculation of dispersion characteristics of the modes for different widths of the
strip line.
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Fig.2 The A-P characteristics of the strip line

Modeling of the slot line. From the functional equation (14) for the boundary with the
slot line one gets

ALE =J, 21)
Now we approximate the field £ on a slot line using the system of orthogonal functions (17).
Applying the projective procedure, we obtain the algebraic model (18) for a slot line. The solu-
tion (21) gives the propagation constant /5 of eigen modes in the slot line. Fig. 3 shows the results
of calculation of dispersion characteristics of modes for different widths of the slot line.

Fig.3 The A-B characteristics of the slot line

Modeling of the strip-slot line. Using the functional equations (15) and (16) we obtain
two equations:

BHTI+BI2EZ=Ei (22)

A2131171+(A21312+A22)52:‘72 (23)

We again approximate the current / on the strip and the field £ on the slot using the system of
orthogonal functions (17). Applying the projective procedure, we obtain the algebraic model for

the strip-slot line which allows one to calculate the constant 5. Fig. 4 shows the calculated dis-
persion characteristics of modes for different widths of the strip and the slot.
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Fig.4. The A-p characteristics of the strip-slot line
4. Conclusion

The efficient algorithm is presented for modeling multilayered magnetodielectric

waveguides with non-uniform boundaries. The implementation of the algorithm is illustrated by
calculating the dispersion characteristics in different sample structures, namely, the strip line, the
slot line and the strip-slot line. Our numerical results are in good agreement with those reported

in [3.,4,5,6].
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